
We define stippling as the process of ren-
dering an image using dots. You can

render almost any imaginable model using stipples. In
the natural sciences or in archaeology, scientific illus-
trators use stippling in combination with other render-
ing techniques to convey an object’s shape, texture, and
surface material. 

Figure 1 shows a vase rendered
using stippling. A closer look at the
image reveals that the darker areas
are more densely stippled than the
lighter areas, and that the stipples
have a constant size. Stippled
objects do not scale well—especial-
ly when you drastically reduce the
image’s size or view it from a dis-
tance—because the stipples become
too small and blend with each other.
The stippling process requires that
you judge the proper scale and spac-
ing of individual stipples because
the density of the dots conveys both
shape and tone.

The original work for computer-
generated stippling typically focus-

es on creating high-quality renditions of 2D images at

high resolutions. These renditions are normally one-
time productions intended for printed media. Image-
based approaches1,2 provide interactive and automatic
tools to obtain high-quality renderings for single rendi-
tions (see Figure 2). These techniques have focused on
evenly distributing input dots using Voronoi relaxation.

Several issues make animated stippling a complex
problem for graphics researchers. The first issue relates
to how the animated stipples should behave. Because
the stippling technique typically produces single images
at a certain scale, it’s not clear how the stipples should
react to scaling and changes in shading when they exist
in a moving 3D environment. Ideally, we would create
stippled renditions that could be arbitrarily scaled, but
this is an elusive goal. Another issue relates to main-
taining even distributions as the viewpoint, illumina-
tion, and viewing distance change—or even as the
model itself changes.

Our contribution to this area is in integrating exist-
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1 Two stippling
examples: (a)
Ron C. Guthrie’s
Indian Pottery
and (b) a close-
up from the
same image
showing the
individual
stipples. 

(a) (b)

2 Stippling technique using Voronoi relaxation: (a) a
stippled image of a grasshopper and (b) a detail of the
grasshopper’s head.1-2
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ing work in point hierarchies3 in a general framework
that produces view-dependent, frame-coherent anima-
tions in the stippling style for static and animated 3D
models at any resolution.

Frame-coherent stippling
In animation, you cannot use stippling by putting

together a sequence of independently rendered images
without introducing noise. While artists produce ani-
mations in the hatching style by redrawing each frame
and pasting them together in a sequence, it would be
useless to do this with stippling because stipples would
randomly appear and disappear over the course of the
animation. This effect could even
become annoying, depending on the
amount of noise the stipples gener-
ated. For this reason, we advocate
frame-coherent stippling at the level
of each individual stipple.

The stipples should behave like a
texture on the surface of the model.
In addition, the stippling density
should smoothly adapt to changes
in illumination. It should increase
when shading becomes darker and
decrease when shading becomes
lighter. Thus, the stipples would
blend in or out of the images by
means of a change in point size. We
also want to keep appropriate spac-
ing between rendered stipples,
avoiding the formation of regular
patterns or irregular grouping of
stipple dots as much as possible.

We implement frame-coherent animated stippling by
defining a point hierarchy that we fix to the surface of a
model and by using a rendering algorithm that employs
this point hierarchy to produce stippled renditions. To
achieve frame coherence, we take the concept of parti-
cle systems from painterly rendering, where particles,
graftals,4 or geograftals5 are fixed on the surface of 3D
models. In principle, we consider each input model’s
vertex to be a particle that indicates a potential stipple
location. Because each point attaches to a specific loca-
tion on the surface of the model, points move along with
the model as the model moves in an animated scene.
This technique provides the frame-coherence effect at
the stipple level.

In addition, we control the stipple distribution on the
model’s surface so that it dynamically adapts to changes
in shading, letting dark areas fill with more stipples than
light shaded areas (see Figure 3). We use the point hier-
archy to determine which points should appear or dis-
appear first from the images. Stippling is not scalable
per se, but 3D models are, so we also use the point hier-
archy to control the stipple density according to changes
in scale and viewing distance(see Figure 4).

We generate the point hierarchy in the same way that
vertex hierarchies for mesh simplification and level of
detail are generated.6,7 We refine the edges of a mesh
and produce a vertex hierarchy as a result. Other
research3 has developed the idea of applying mesh sim-

plification in a view-dependent real-time system for ren-
dering strokes. We extend this idea by adding a mesh
subdivision stage to generate more stipples when need-
ed. This extension lets us use models with low com-
plexity and render them in nonphotorealistic styles. In
addition, we include a randomization stage to improve
point-distribution quality.

We also decouple the mesh simplification from the ren-
dering process, eliminating the need to perform real-time
mesh simplification. After each simplification and each
refinement step, we assign the resulting vertex to a list of
neighbors that we use to decide which stipples should be
included in a particular rendition. Previous research pre-
sented the initial approach for frame-coherent stippling
in which models are refined as part of an offline anima-
tion.8 Our technique extends this approach to include ani-
mated models and real-time rendering.

When we look at existing work for 2D stippling and
try to extrapolate it to 3D models, we wonder whether it’s
possible to obtain appropriately spaced particle or stip-
ple distributions (such as those obtained in image-based
stippling) while providing frame coherence at the parti-
cle level. Other researchers have pursued frame coher-
ence on the image plane9 instead of the object space. The
results of this approach show that by enforcing frame
coherence in this way, stipple particles float on the sur-
face of an object as it moves or as shading changes. This
effect conveys a vibrating look to the animations and is
different from the effect that we want to achieve, where
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3 (a) The famous Stanford Bunny in the stippling style
obtained by frame-coherent stippling. (b) Detail of the
bunny’s head.

(a) (b)

Level 2

Level 3

Level 1

Radius = 1.0

Radius = 0.5

Radius = 0.25

Simplification

Subdivision

(a)

(b)

(c)

4 Point hierarchies for (a) 1D, (b) 2D, and (c) 3D cases. Points at the lower levels of the hierar-
chy have smaller radius values, which determines their relevance in the hierarchy. For 3D mod-
els, we create a continuous level of detail using mesh simplification and subdivision.



particles move along with the model as the model moves.
Recent improvements in texture-mapping hardware

permit real-time frame-coherent rendering in pen-and-
ink styles using stroke textures. When rendered at an
appropriate resolution, stroke textures can emulate stip-
pling and adapt to changes in illumination at a given
viewing distance. The problem with textures, however,
is that it’s difficult to control the stipple shape so that it’s
always projected as a circular dot on the screen. We
avoid this problem by drawing each stipple explicitly
with point primitives.

Point-set hierarchy
When stippling, it’s important to obtain regular point

distributions on the final rendition. Artists create stip-
pled drawings by placing some groups of dots in a region
of interest and then adding dots until they achieve the
desired tone.10 Our point hierarchy takes into account
stipple spacing when adding and removing stipples. Our
system places new stipples at locations roughly in the
middle of existing stipples located at the top of the hier-
archy. When we remove stipples from a model’s surface,
stipples at the bottom of the hierarchy are the ones that
vanish first.

Figure 4 illustrates how we distribute stipples in the
higher levels of the hierarchy and add new stipples

between existing ones. Figure 4 also shows how we
assign distance values to the stipples according to their
hierarchy level. This value helps determine whether a
stipple should be rendered. In our system, we create a
hierarchy of vertices in 3D space to represent stipple loca-
tions on the model’s surface. Depending on the viewing
distance and the number of polygons in the input model,
the number of vertices in the input model might not be
enough to cover dark areas. To fill these areas, our system
generates more vertices on the surface of the model by
mesh subdivision.

In other cases, the number of vertices in the input
model rises so high that we must discard many of them
to produce a light shading tone. To discard vertices from
a highly tessellated model, we perform mesh simplifi-
cation. To ensure that we obtain the appropriate level
of detail at most viewing ranges, we mix mesh simplifi-
cation and mesh subdivision to provide seamless levels
of detail regardless of input model resolution (see Fig-
ure 4c). The vertices down the hierarchy fill the space
between existing vertices, so new stipples always come
up to fill uncovered regions of the canvas until we
achieve the desired tone.

To generate the point hierarchy, our system computes
a connectivity graph, applies randomization on the ver-
tices of the input mesh, and then performs simplifica-
tion and subdivision on the input mesh. 

The connectivity graph comes from the input polyg-
onal mesh and contains information about the connec-
tions between the model’s vertices, edges, and faces. We
use this information for randomization, mesh simplifi-
cation, and subdivision.

For mesh simplification, we create a vertex hierarchy
by applying a series of edge-collapse operations until
the model is simplified to a few vertices. The operator
for mesh refinement is a variant of the edge-collapse
operator6 where one of the vertices is removed (see Fig-
ure 5). By performing mesh simplification, we can ren-
der models of complex geometry (such as horses,
bunnies, or dragons) with only a few stipples by using
the vertices at the top of the hierarchy. We generate a
hierarchy by subdividing an input 3D model until we
reach the desired number of vertices in the model or
when the longest edge in the refined model falls under
a certain threshold in object space.

For mesh subdivision, an edge-split operator creates
a point around the middle of two vertices on the edge
we want to split (see Figure 6). At each refinement step,
we subdivide the longest edge in object space. Each ver-
tex obtained by subdivision indicates the location of a
new stipple. Figure 6 shows a wireframe view of a teapot
before and after mesh refinement.

During rendering, we use a relevance function that
draws stipples depending on the desired darkness at the
vertex and the screen-space distances between the ver-
tex and a group of relevant neighbors. We save the list
of relevant neighbors for a vertex after applying either
an edge-split or an edge-collapse operator. In addition,
we compute a radius value as the average of the distance
to the relevant edges, which is used for real-time ren-
dering. Figure 7 shows the relevant edges and the defi-
nition of the radius for a given node. 
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(a)
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Vn
Refine

5 (a) Edge-
collapse opera-
tion used in
mesh simplifica-
tion. (b) Wire-
frame view of
the original
Stanford Bunny
model and the
same model
after a series of
simplification
steps.

6 (a) Refine-
ment operation
used in mesh
subdivision. (b)
Wireframe view
of the original
teapot model
and the same
model after a
series of refine-
ment steps.



Because all vertices in the point hierarchy lie on the
input model’s surface, we can define a mapping between
each vertex in the hierarchy and the polygon in the input
model where the vertex lies. We define this mapping
using the barycentric coordinates of the refined vertex
with respect to its corresponding face in the model
(which we call the host face). We then save this infor-
mation in the vertex and assign each vertex a normal by
interpolating the normals of the neighboring vertices
(for gouraud shading) or by consulting the normal of
the host face (for flat shading). We use this mapping for
stippling animated models.

After the mesh simplification and subdivision stages,
each point has a position in 3D space, a list of relevant
neighbors, a radius value, the barycentric coordinates,
and a normal vector. We store this information in an array,
used later for rendering. The distribution of vertices in
most input models is quite regular, which becomes notice-
able in the form of linear patterns that appear when we
render each vertex as a stipple. To reduce the presence of
these patterns, we apply randomize and project opera-
tions to the vertices of the input model and to the vertices
generated by mesh subdivision.

The randomize operator receives the vertex to be
moved and the set of faces connected to the vertex. Fig-
ure 8a shows how we select a neighboring face at ran-
dom and how we displace the vertex to a random
position within that face. Figure 8b illustrates the effect

of the randomize operator on the overall stipple distri-
bution on a sphere. The composition shows the same
half of the model before and after randomization.

The vertices generated by subdivision or displaced by
randomization do not lie on the model’s surface if the
surface is not planar. The mesh that connects the ran-
domized vertices has a different geometry than the input
model mesh, as their vertices do not coincide. We pro-
ject these vertices on the surface of the original model
using the projection operator shown in Figure 9.

The projection operator defines a ray that departs
from the input vertex toward the model’s surface. We
test the ray for intersection with the faces in the neigh-
borhood of the input vertex and select a point that inter-
sects with one of these faces and that lies closest to the
input vertex. One way to avoid projection is to simplify
and subdivide using the input geometry and the ran-
domize operator to determine the position of the stip-
ples without actually modifying the input mesh.
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7 We save the vertices connected to a point affected
by an edge collapse or an edge split in a list of relevant
neighbors of the resulting vertex. We then determine
the radius associated with the point.

RandomizeV2V1
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V2

(a)
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8 (a) Application of the randomize operator on two vertices of an input
mesh. (b) On the left, we show the original point distribution; on the right,
we show the point distribution after randomization.

Project

Vn

Vn

9 The projection operator takes a randomized vertex and displaces it to the surface of the input model. In this
illustration, black lines represent the input model and dashed lines represent the particle mesh.



Point set hierarchy
We obtain a stippled rendition by rendering a 3D

model and a set of points in 3D space on the surface of
the model using the z-buffer for hidden-surface removal,
and setting a small offset so that the faces of the model
lie behind the point primitives. We obtain the frame-
coherent effect by smoothly varying the point size across
frames. We can disable color writes when drawing on
the z-buffer to save bandwidth. We can obtain a more
striking effect by using colors that differ from the back-
ground, as Figure 10 illustrates.

For the actual stippling, we traverse the complete
point hierarchy and decide which stipples to draw and
determine their point sizes by applying a rendering test
on each potential stipple. First, we determine for each
point a threshold value that lets it show up in the image.
We define the threshold value as a function of lighting,
viewing angle, target darkness, and viewport size. We
then compare the screen space projection of every edge
between the input point and its list of neighboring
nodes of the vertex against the dynamically computed
threshold. 

If a connected edge falls below the threshold, we set
the stipple size to zero. If the length of the shortest edge
exceeds the threshold by a factor of N times, we set the
point to a user-defined maximum size. If the length of
the shortest edge is somewhere between the threshold
and N × threshold, we interpolate its size between these
two values in a scale from zero to the maximum user-
defined point size. The value N determines the smooth-
ness of the transition from zero to full size. Because
spatial criteria drive mesh simplification and subdivi-
sion, points appear or vanish roughly in the middle of
existing points when rendering occurs. We also consid-
ered defining the stipples as set or unset after exceed-
ing a certain threshold and smoothly varying the point
size as a function of time. But this solution produced lag
in shading, which became more apparent as the model
moved rapidly.

Figure 11 shows frames taken from the stippling ani-
mations of static models. We computed silhouettes using
the geometry information and the viewing angle to draw
an edge as a 3D line if it connects a front- and back-facing
face. The complete animations are available at
http://isgwww.cs.uni-magdeburg.de/~oscar/. The pre-
processing stage takes about 5 minutes for the system to
create a 60,000-point hierarchy for the teapot model,
which includes mesh simplification and subdivision. For
the brain model, it takes about 18 minutes to create a
144,000-point hierarchy. Rendering a model with
60,000 points takes about 2.5 seconds. On average, using
an SGI Onyx2 Infinite Reality computer with two 195-
MHz processors, we can produce 700 frames of an offline
animation in 1 hour for a model that has 40,000 points.

The sample animations show smooth transitions
between frames and how stipple dots emerge and dis-
appear between existing dots during rendering, yielding
an interesting visual effect, as sand particles emerging
and disappearing from the surface of the model. The stip-
ples remain attached to the surfaces as the model moves.
Having a fixed amount of stipples available for a model
means that some areas lose darkness after the maximum
number of stipples for that region has been used. To guar-
antee shading, it’s possible to refine the model as need-
ed during interaction, but this is only recommended for
offline rendering because of the overhead implied when
refining a highly tessellated mesh.

Hardware-accelerated rendering
Rendering a stippled drawing from the point hierar-

chy is a time-consuming task. You can subject the ren-
dering algorithm to parallelization and process it with
programmable vertex hardware.11 Such hardware lets
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10 We obtain the frame-coherent stippling effect by rendering a set of
points on the surface of the 3D model on top of the original model and
smoothly varying the point size. Here, we have the teapot model and its
vertices rendered as stipples on top of the model.

11 Frames from our stippled renditions of static models showing changes
in lighting and viewpoint.



the user control the size of each submitted vertex with
a vertex program. Only data submitted with the vertex
is accessible in the vertex program. That means we can-
not literally transcribe the stipple-rendering algorithm
as described in the previous section because it would
require access to each vertex’s neighbors. For this rea-
son, we developed a simplified version of the algorithm
that yields satisfying results.

The algorithm’s main purpose is to reduce the cal-
culations based on each neighbor’s distance to a single
scalar value (the stipple radius). The vertex program
computes a threshold value based on distance, slope,
and lighting. We vary the point size based on the dif-
ference of threshold and radius to achieve a smooth
introduction and fading with the same function used
for conventional graphics pipelines. For maximum effi-
ciency, we store the vertex array in video memory.
Using this version of the algorithm, we can display a
model with 120,000 stipples at 60 frames per second
using an Nvidia GeForce 4 card. You can view the video
showing real-time stippling of several models at
http://computer.org/cga/cg2003/g4toc.htm.

Stippling animated models
Most nonphotorealistic techniques applied to models

in 3D space work well for static models, but researchers
have done little work in applying nonphotorealistic
styles to animated models. The challenge lies in scaling
and defining how nonphotorealistic particles should
adapt to changes in a mesh’s shape. We have found that
stippling as a rendering style is well suited to producing
computer animations, because we can use the point
hierarchy as an elastic texture attached to the surface of
the model (see Figure 12). The main requirement for
producing animated stippling is to start with a mesh that
has a fixed number of vertices. You then have the mesh’s
vertices change in position over time to produce the ani-
mation sequence.

To attach the stipples to the surface of the mesh dur-
ing the animation, we recompute the position of each
point in the hierarchy at each frame using barycentric
coordinates. In the barycentric coordinate system, we
define the position of the points within the surface of a
triangle with respect to the triangle’s vertices, which is
convenient for stippling because we can move the ver-
tices of a triangular mesh in 3D space and then recom-
pute the positions of the stipples as a function of these
vertices. As a result, the points on the surface of the
mesh move along with the triangles as the mesh is dis-
torted (see Figure 13).

Because there are several stipples per face, each point
in the stipple set contains an index to the face of the
model on which the point lies (the host face for that stip-
ple) and the barycentric coordinates of the point with-
in that face. At each animation step, we recompute the
point coordinates using the barycentric coordinates and
the vertex positions of the host face. With this technique,
the stipples behave like an elastic texture printed on the
model’s surface.

If we don’t touch the stipple radii during the anima-
tion, the overall point density becomes a function of the
mesh distortion. That is, the point density increases on

those regions of the model that shrink and decreases in
those regions that expand, which is interesting for illus-
trating mesh deformation. However, to keep the stip-
pling as a function of shading and scale, as originally
postulated, we need a more elaborate solution to com-
pensate for the distortion’s effect. In regions that shrink,
we should draw fewer stipples, and in regions that
expand, we should draw more stipples—assuming the
illumination conditions and the user viewpoints remain
constant while the distortion takes place.

To allow stipple particles to adapt to the new poly-
gon shape while maintaining appropriate shading and
scale, we compute the radius of each stipple as the aver-
age of a small set of neighboring points for each frame.
We define the set of neighboring points when we gen-
erate the point set. By defining the neighboring points
in barycentric coordinates, the position and the radius
of the stipples can adapt to mesh deformations. The
point density varies proportionally to the distance from
the stipple to the original neighboring points, as Figure
13 illustrates.

Ideally, more stipples should be generated when the
surfaces are expanded and some should be eliminated
when the surfaces shrink. However, this puts addition-
al overhead on the rendering process, which is not nec-
essary if all the stipples potentially needed are generated
in a preprocessing stage.
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12 Several sample frames from our animation Upset-
ting the Crocodile.

A AB B

(a) (b)

13 (a) Points A and B have a radius value that is the
average distance to their relevant neighbors. (b) Two
points with their new average radius after the distor-
tion. Because the distance to their neighbors has
changed after the transformation, the values for the
radius of the stippled points also change, but in differ-
ent proportion for each point.



Future directions
Our implementation makes use of several techniques

that we could individually optimize to improve the sys-
tem efficiency and the overall renderings. For instance,
we could improve the point distribution by using an
algorithm to redistribute the vertices on the surface of
the input model as part of preprocessing. We could also
try different approaches for mesh simplification to
improve the selection of vertices while constructing the
point hierarchy. 

It would be worth determining the visibility of the
original model’s faces in the first pass and rendering only
stipples belonging to visible faces. A simple visibility test
would be back-face elimination for closed objects. This
test should reduce the number of stipples by roughly
one half. An even more aggressive method would be to
employ the occlusion test provided by some graphics
hardware. Both options would require breaking up the
model into parts with associated stipple sets.

If all polygons in a certain part are back facing or invis-
ible, the part’s stipples do not have to be submitted to
the graphics pipeline. We could also use a screen-based
level-of-detail approach to render only the relevant
points in the hierarchy according to the projection of the
input polygons on the model’s surface.

We also plan to develop an efficient algorithm that will
fill specific areas of the model with stipple particles when
the user zooms in and exhausts the point hierarchy. ■
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