
Graph-Based Point Relaxation for 3D Stippling

Oscar Meruvia Pastor
Department of Computing Science
University College of the Cariboo

Box 3010, V2C 5N3 Kamloops, BC, Canada
meruvia@cariboo.bc.ca

Thomas Strotthote
Department of Simulation and Graphics

Otto-von-Guericke University of Magdeburg
P.O. Box 3120 39108 Magdeburg, Germany

tstr@isg.cs.uni-magdeburg.de

Abstract

Point hierarchies are suitable for creating frame-
coherent animations of 3D models in non-photorealistic
styles such as stippling, painterly and other artistic render-
ing. In this paper, we present a new approach to produce
regular point distributions on the surface of a polygo-
nal mesh. We propose a graph-based token distribution
approach, where a graph that extends over the sur-
face of the polygonal model is used as the playing field for
the distribution of points. This graph-based approach elim-
inates the need of using geometrical operations to dis-
tribute points over the surface of a polygonal mesh. The
graph exists at several levels of detail that are easily cre-
ated using iterative patch fusion, and which are used to
create a point hierarchy. In addition, we show how 3D stip-
pling is used to render transparent surfaces and illustrate
complex animations.

1. Introduction

Real-time animated stippling (RTA stippling, or 3D stip-
pling) is a rendering technique where a 3D model is ren-
dered in the stippling style by using a point hierarchy to de-
termine the size and position of the stipple particles which
are distributed on the surface of a model [11]. The point hi-
erarchy used in RTA stippling determines both the distri-
bution of particles on the surface of a model at different
levels of detail and the order of rendering of these parti-
cles, depending on conditions such as shading, grey tone,
and viewing distance (see Figure 1). The rendering func-
tion used in RTA stippling emulates the artistic rendering
style called stippling, where shading is given by the stipple
density when rendering. Darker tones are obtained by hav-
ing points closely spaced, and lighter tones are obtained by
placing a few points while taking care that the points are ap-
propriately distributed.

Simplification

Subdivision

Low Stipple
Density

High Stipple
Density

Figure 1:Point hierarchies determine both the po-
sition and the order of appearance and removal
of stipples during rendering. In addition, they are
used to control the stipple density according to
the rendering parameters.

Hierarchical particle systems enable both frame-
coherent and view-dependant rendering. Frame-coherence
is achieved by setting particles at fixed locations on the sur-
face of the model, while adaptive rendering is achieved
by assigning a radius value to each particle, accord-
ing to its position in the hierarchy. The rendering system
uses this radius value to produce view-dependent anima-
tions with smooth insertion and removal of points at each
frame.

So far, point hierarchies have been created by apply-
ing a series of randomization, subdivision and simplifica-
tion transformations on the input polygonal mesh [11]. In
this paper, we present a new method for creating a point hi-
erarchy for real-time animated stippling and for distribut-
ing particles on the surface of a model using graph-based
token distribution. Our primary goal is to improve the dis-
tribution of stipples on the surface of the model, but our re-
sults indicate that this technique reduces the time required
to create the point hierarchy as well.

1.1. Outline of Contents

In Section 1.2 we describe our approach at a glance. We
proceed to discuss related work on computer-generated stip-
pling and point relaxation in Section 2. After that, we de-
scribe our approach in detail: Section 3 describes the pro-
cess of creating the patch hierarchy and Section 4 describes
point relaxation by token displacement. Section 5 shows our
experimental results and Section 6 describes new applica-
tions for 3D stippling. Finally, in Section 7 we present con-
clusions and future work.

1.2. Graph-Based Point Relaxation

The first stage of our approach is to produce a patch hi-
erarchy, which is done by iterative patch fusion (described
in section 3). The patch hierarchy produces several levels of
surface patch subdivisions of the input model. Each patch
at a given level encloses a set of patches at a lower level of
the patch hierarchy.

At each level of the patch hierarchy, a connectivity graph
can be derived from the set of surface patches which make
up the entire model. To create the patch graph, each patch is
associated with a point randomly selected from its surface,
which we call the patch ’center’. The edges of the graph
are formed by connecting each pair of patch centers that be-
long to neighboring patches (see Figure 2). This connectiv-
ity graph is used as the ’playing field’ for token distribution
later on.

Figure 2:On the left, we illustrate a sample patch
arrangement and the points associated to the
patches. On the right, we show the graph obtained
from the patch arrangement based on the connec-
tivity information contained in the patches.

The second stage of our approach is the iterative point
relaxation, where we traverse each level of the patch hierar-
chy, and perform graph-based token distribution. To create
each level of the point hierarchy, we proceed to distribute
a number of tokens among the nodes of the graph. The to-
kens represent point particles which are fixed to the surface
of the input model once relaxation is finished. This relax-
ation process is explained in section 4.

The relaxation process is done first on the highest level
of the patch hierarchy and proceeds in a top-down fash-

ion. Once the relaxation of the tokens has been finished at
a certain patch level, we fix the tokens on the surface of
the model, go down one level in the patch hierarchy, gen-
erate additional tokens and perform relaxation on this new
set of tokens. This is done iteratively until all levels of the
patch hierarchy have been traversed.

2. Related Work

In the area of computer-generated stippling, both
Deussen et al. [1] and Secord [13] perform Voronoi re-
laxation of stipples. An advantage of these techniques is
that they can take as input any grey scale image to pro-
duce a stippled rendition. However, a frame-coherent
animation sequence cannot be constructed using these ap-
proaches, because the point relaxation is unique to each
rendered image. To address this problem, a particle render-
ing system for image-based frame-coherent rendering of
stipples and strokes was proposed by Secord [14]. The re-
sulting animations are coherent across frames of the an-
imation. However, because the particles are not fixed
to the model surface, the connection between the parti-
cles and the model itself is lost.

Frame-coherent animations at the particle level were pre-
sented for Real-time animated stippling [11], where a hier-
archy of points fixed on the surface of a polygonal model is
created by applying a series of randomization, subdivision
and simplification transformations on the input mesh (see
Figure 1, right). In our approach, we also create a point hi-
erarchy fixed to the surface of the input model. However, in-
stead of doing mesh simplification and randomization, we
perform patch-based hierarchy creation, and use a graph-
based relaxation approach to ensure that point distribution
is regular at all levels of the point hierarchy. In our case, we
need to perform mesh subdivision if the input model is very
coarse or if it is not regularly tessellated. Once the model
is subdivided, patches at the lowest level of the hierarchy
are roughly at the same scale, and we proceed with graph-
based relaxation as described before. In [12] a method is
presented for halftoning on hexagonal grids which could be
applied to distribute stipples on dense, regularly tessellated
polygonal meshes, but noise might appear due to a lack of
frame-coherence when applying the technique during ani-
mations.

frame-coherence and animation is not discussed, and
dithering techniques can suffer from the screen-door effect.

A point-based rendering system to illustrate volumetric
data in the stippling style has been presented by Lu et al. [6].
In their approach, a point hierarchy is produced using a spa-
tial partition scheme (an octree). Their approach consists in
controlling the size of the stipples according to their level
at the octree and information computed from the volumet-
ric data. This system has several advantages. First, their an-

Figure 3:Patch hierarchies on the horse model. The first image (from left to right) shows the model with 25
patches, the second and thirds models have their surface subdivided in 350 and 6144 patches, respec-
tively.
imations are view-dependant and frame-coherent. Second,
the system takes advantage of hardware acceleration to ren-
der models at interactive rates. A drawback of their ap-
proach is that it is difficult to distinguish among different
layers of the input model, because no mechanism is pro-
vided to perform occlusion culling. A solution to this prob-
lem is given by Lum and Ma [7], who mix photorealistic
and non-photorealistic styles to illustrate different elements
of the volume data. In addition, Dong et al. use stroke-based
rendering [2] to illustrate medical volume data while pro-
viding occlusion culling. Our approach mixes polygons and
stipples and uses theZ-buffer to determine occluded ar-
eas, so we can use stipples to illustrate transparent surfaces
on top of opaque polygonal surfaces, while in addition, we
produce frame-coherent animations of static and animated
models (as shown in Section 6).

Graph-based token relaxation is based on the work on
point relaxation for polygonal re-tiling [17] and for texture
synthesis using reaction-diffusion [16]. An important dif-
ference between our approach and Turk’s method for relax-
ation is that while in [16] points are displaced from polygon
to polygon using geometric operators that ”unfold” the sur-
face as the point is being displaced by the repulsion forces
of their neighbors, our approach eliminates the task of dis-
placing points over the polygonal surface and thus, the need
of unfolding the surface along the displacement paths. In
addition, the graph where the points are displaced is a sim-
plified graph with respect to the graph that corresponds to
the input mesh. This results in a fast relaxation process
which is linear to the number of points distributed at each
level.

Witkin and Heckbert [18] also presented a particle relax-
ation method to provide appropriate sampling and manip-
ulation of implicit surfaces. Their work describes the use
of energy functions, particle subdivision and particle fusion
for adaptive sampling, and includes the use of velocity func-
tions modeled by differential equations to rapidly achieve
regular point distributions under implicit surfaces deforma-

tion. Their approach to point relaxation is similar to ours,
specially in the use of repelling forces among neighboring
particles to do the relaxation. However, their approach was
not designed to work on polygonal models and cannot be
intuitively extended to adapt to the discontinuities present
in polygonal surfaces. On the other hand, our approach in-
troduces the concept of using a graph as the playing field
where point relaxation takes place.

As shown by Garland et al. [3], polygonal patch hierar-
chies have a number of applications such as mesh simpli-
fication, multiresolution radiosity and collision detection.
Several methods exist for creating polygonal patch hierar-
chies, for example, face cluster hierarchies by [3], Soler
et al.’s method for hierarchical texture mapping [15] and
Meruvia’s approach for visibility preprocessing [10]. In
principle, patch-graph based relaxation can be performed
using patch hierarchies generated with any of the methods
mentioned above.

3. Patch Hierarchy Creation

The patch creation approach we use was originally de-
veloped for visibility preprocessing [10]. This is a bottom-
up approach: we start by constructing the hierarchy from the
lowest patch level and then perform iterative fusion of the
patches available at a given level. The initial patch list (the
lowest level in the hierarchy) is constructed from the graph
connectivity information of the input model: each polygon
becomes a patch, and the polygons which share an edge
with a given polygon are inserted in the list of neighbor-
ing patches of this polygon.

Initially, all the patches of a given level are stored in
a binary search tree (BST) ordered by the amount of sur-
face they cover. In each fusion step, the smallest patch
found in the BST is combined with a number of neigh-
bors (four in our case), creating a patch at the next level.
To select which neighbors will be combined with the patch
chosen, we choose the neighbor that minimizes the span

of the bounding box of the input patch, with the restric-
tion that only patches at the same level can be fused to-
gether. The patches that were combined are removed from
the BST and the next smallest patch available is used at the
next fusion step until all patches at a given level have been
removed from the BST. After this, we insert the newly cre-
ated patches in the BST, and proceed with patch fusion at
the next level.

The patch hierarchy creation process finishes once a cer-
tain number of target patches at the highest level are reached
or after a certain number of levels have been produced. In
our case we stop when we have less than 10 patches at a cer-
tain level. In Figure 3 we show a series of patch hierarchies
for the horse model.

A patch hierarchy is initialized with patch ’center’ values
by randomly assigning one point to each of the patches at
the lowest level (which are the base polygons of the model).
Patches of the higher levels are assigned a point randomly
selected from one of its descendants ’center’ values.

4. Particle Relaxation by Token Displacement

Now we are ready to carry out a token relaxation pro-
cess to distribute particles on the surface of the model. The
goal of the relaxation process is that the distribution of the
particles does not conform with any linear or regular pat-
tern, and that the spacing among particles is regular at each
level of the point hierarchy.

We perform the process of particle relaxation as a token
distribution approach. A token represents the place where
a rendering particle is located. We borrow the term token
from the computer networks literature, where a token is
passed along the nodes of a graph and does not belong to
any specific node until relaxation finishes. The graph where
the tokens are distributed is defined by a list of all the
patches and their connectivity information at a given level:
the nodes are the points in 3D associated with each patch
and the edges are formed by the list of neighboring patches
of each patch in the list (see Figure 2).

The relaxation process starts by pseudo randomly dis-
tributing tokens among the nodes of the graph. After that,
tokens are brought apart from each other by iteratively ap-
plying a relaxation step where each token is pushed away
by the tokens in its neighborhood. At each iteration, we
count how many tokens were actually displaced (changed
their position in the graph). Relaxation stops when the dis-
placement count is zero or when we detect this count has
stopped decreasing. In summary, our algorithm for the re-
laxation process is as follows:

distribute tokens on the graph
loop until the displacement count stops decreasing

for each token T on the graph

1. determine neighbor tokens of T

2. compute the repulsive forces that the neighbor to-
kens exert on T

3. determine whether the token needs to be dis-
placed, and in this case, which of the neighbor
nodes should receive the token based on the re-
pulsive forces

for each token T on the graph

if the token needs to be displaced, displace the token
T to the new host node, and increase the displace-
ment count.

Now we proceed to describe in more detail each step of
this algorithm.

4.1. Token Distribution

Initially, we randomly select, for each patch at a given
level in the hierarchy, one descendant foundn-levels below
in the patch hierarchy, and assign this descendant a token.
The goal of using patches at lower levels in the hierarchy is
to relax the tokens in a graph with such a number of extra
nodes, that there is enough room for the tokens to be freely
displaced. In our case, we have chosenn to be 3, so that
each selected descendant is displaced within a graph con-
taining approximately43 nodes without a token.

4.2. Determining the Set of Neighboring Tokens

The first step to perform relaxation on a given token is
to determine which tokens are located in its neighborhood.
First, we select for each token the neighboring patches (at
the higher level) that hold a token. Each token explores its
neighborhood by visiting all the descendants of its ascen-
dants, up to two levels higher in the hierarchy, and its im-
mediate neighbors. Each node in this set is queried as to
whether the node is host of a token. All the nodes which
are hosting a token are inserted in the list of neighbor to-
kens, which is used to compute the repulsive forces exerted
on the original token. An alternative approach to find the
list of neighbors is to visit all nodes which are within a cer-
tain distance from the node (this can be determined for ex-
ample, by using Dijkstra’s algorithm to find the shortest dis-
tances to the neighbors) by traversing the graph from the to-
ken outwards, but this is more time-consuming than our ap-
proach.

4.3. Computing the Repulsive Forces

To compute the repulsive forces, we use those tokens in
the list of neighbor tokens which are within a region of in-
fluence determined by arepulsion radius. The repulsion ra-
dius (repRadius) is obtained as:

repRadius = 2
√

(a/n)/π = 1.128
√

a/n

wherea is the area of the surface of the input model andn
is the number of tokens being distributed.

We compute the repelling forcesForceV ec by comput-
ing the vectorsNT V ec which go from the position of the
neighboring tokensN to the input tokenT , and then scal-
ing each of these according to their distance, and in propor-
tion of the repulsion radius, using the formula

ForceV ec = (repRadius−|NT V ec|)∗NT V ec/|NT V ec|

After that, we average all the neighboring forces and pro-
duce a vector in 3D which indicates the direction of the
overall force that the neighbors within the repulsion radius
exert on the input nodeT .

4.4. Displacement Selection

If the overall force is different from zero, we need to de-
termine which of the empty neighbors aroundT is the best
candidate to receive the token. This is done by computing
the dot product between the computed force and the vec-
tors leaving from the host node to its neighbors. The neigh-
bor which maximizes this dot product is chosen and stored
as the node that will hold the token. Once the displacement
of each token is computed, the actual displacement of all to-
kens is done at once, hereby completing one relaxation iter-
ation.

4.5. Termination Criteria

Since tokens can only occupy a limited set of positions
within the surface of the model, a token can constantly jump
back and forth between two nodes in search of the optimal
position as several iterations take place. Since the algorithm
does not necessarily converge to an stable token arrange-
ment, we finish relaxation once the total energy (the sum of
the force values of all the distributed tokens) stops decreas-
ing.

Figure 4 illustrates the relative drop in energy as each re-
laxation iterations take place. The first data point shows the
energy contained by the tokens measured before the first it-
eration took place (100%), and the following data points in-
dicate the energy as a fraction of the initial energy value.
To obtain these values, we averaged the total energy val-
ues obtained after each relaxation for a total of 7 models of
different sizes (listed in Table 1). We observe that the de-
crease in energy reaches a plateau in less than 10 iterations,
although a minimal decrease still takes place after 10 iter-
ations. Based on this information, we stop iterating once 5
iterations have taken place without a significant decrease
in the energy (where a significant decrease is any decrease
larger or equal to 1% of the initial value) or after 15 itera-
tions have taken place.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration Number

E
n

er
g

y
(%

)

Figure 4:Drop in total energy value as relaxation it-
erations take place. The data points represent the
percentage of total energy remaining after each it-
eration, with respect to the initial energy value.

4.6. Point Hierarchy Creation

We have so far described how we can distribute particles
on the surface of a model for a specific patch level. To cre-
ate a point hierarchy, we use a top-down approach as in [17].
We start the relaxation process with the patches at the high-
est hierarchy level, then we fix the results of the relaxation
and proceed to distribute and relax tokens at the next level,
until we have traversed the complete hierarchy. The algo-
rithm of this process is the following:

Select the top level of the patch-graph hierarchy

while not all patch-graph hierarchy levels have been traversed:

1. For each patch at the current level, create a token and
place it among the patch’s descendants located 3 levels
down the hierarchy.

2. Perform token relaxation using the graph where the to-
kens were placed.

3. Fix the tokens on the patch-graph hierarchy and on the
model.

4. Assign the radius values for all nodes at the current
patch-graph level.

5. Go down one level in the patch hierarchy.

The point hierarchy is generated as a dual of the patch hi-
erarchy. Instead of storing the patch information and its con-
nectivity at each level, the point hierarchy stores the point
position and its radius value. For each patch, the point posi-
tion is obtained from the position assumed by its token after
relaxation. The point’s radius value is obtained as the av-
erage of the distances to the point positions of the neigh-
boring patches. Because the point density increases at each
level down the hierarchy, the particles that are distributed
at any given level of the patch hierarchy necessarily have
larger radius values than the particles relaxed at lower lev-

els of the hierarchy. Finally, the information of the point hi-
erarchy is saved in a file and used during rendering.

Figure 5 shows the distribution of points on the surface
of the hand bones model at subsequent levels, once relax-
ation has taken place at each level.

4.7. View-dependent Rendering

Under stippling, points can only reach a maximum size.
To keep shading while zooming into a model, more points
are needed to maintain the tone and stippling style.

The rendering makes use of a function which is applied
to each point tested for rendering. To reproduce a given
shading tone, we compute the desired shading tone accord-
ing to the viewing parameters, and compare it with the shad-
ing tone that would be produced if we decided to render the
point. This shading tone is estimated dividing the maximum
point size (defined by the user) over the area covered by the
screen-space projection of the point as a function of its ra-
dius. If the desired shading tone is exceeded by placing the
point on the image, the point is not rendered, otherwise, the
point is rendered. This is the basic function, however, this
is a binary test which would insert popping artifacts dur-
ing interactive rendering. To avoid this, we have produced a
function which interpolates the point size from zero to the
maximum point size, depending on how much the estimated
shading tone exceeds the desired shading tone. Using this
function, new points appear between existing points, and
fill-in smoothly as the animation occurs. This is the render-
ing function used in all stippled images shown in this paper
(Figures 6, 7 and 8).

Since the point hierarchy stems from the patch hierarchy,
it is possible to store and use the point hierarchy as a linear
point data array ordered by radius. For rendering, we tra-
verse the hierarchy in a top-down fashion and stop travers-
ing once the area covered by a point is less than or equal to
one pixel. Since all the descendants of a point have smaller
radius than their ascendants, they occupy even a smaller
section of the viewing area when projected and need not be
considered for rendering. In addition, since each point be-
longs to a patch, and each patch is a member of a patch hier-
archy, we can organize the points into groups of patches and
assign a list of associated points to each patch. In this case,
we use hardware acceleration (P-Buffers) to determine the
set of visible patches, and then render only the points asso-
ciated with the visible patches.

5. Experimental Results

Table 1 shows the completion times required for creating
point hierarchies for several models using two techniques:
mesh simplification and subdivision, and patch-based re-

laxation. The results were obtained using an SGI Octane
w/1Gb Memory.

Table 1:Statistics for the creation of point hierar-
chies.

 Mesh Simplification & Subdivision
Model Polygons Points Setup SubDiv Simpl Total
 Time Time Time Time
Bunny 69,000 70,000 22” 26” 1’20” 1’59”
Horse 96,966 100,000 25” 34” 1’46” 2’11”
SavPot 172,078 86,041 38” --- 3’29” 4’7”
Brain 288,334 141,171 1’9” --- 5’41” 6’50”
Mosaic 400,000 200,002 1’30” --- 8’30” 10’
 Graph-Based Point Relaxation
Model Polygons/ Setup Patch-H Token Total
 Points Time Creation Relax Time

Bunny 69,459 5” 14” 38” 57”
Horse 96,966 7” 19” 50” 1’15”
SavingsPot 172,078 8” 36” 1’36” 2’20”
Brain 288,334 17” 59” 2’37” 3’53”
Mosaic 400,000 19” 1’28” 3’57” 5’44”
HandBones 654,660 39” 2’31” 6’12” 9’22”
Dragon 870,877 1’15” 3’20” 8’51” 13’ 26”

The extra amount of time required for setting up mesh
simplification and subdivision is due to the additional ran-
domization stage where the vertices of the input mesh are
jittered to avoid the presence of linear patterns in the rendi-
tions.

With respect to mesh subdivision, 2,400 to 3,500 poly-
gons per second are generated depending on the size of the
model. This includes the time required to update the con-
nectivity graph which represents the polygonal mesh. An
estimate of the total time required for performing graph-
based relaxation in conjunction with mesh subdivision can
be bone by adding mesh subdivision time (depending on
the desired polygon count) to the time required for relax-
ation once subdivision has taken place.

Results in Table 1 show that the patch-graph based ap-
proach produces hierarchies that have a comparable amount
of points within 45% to 60% of the time required by mesh
simplification and subdivision. In addition, in the case of
models that were processed doing only mesh-simplification,
hierarchies contain in average two times more points when
generated using the patch-graph relaxation approach. This
is because the largest possible number of points that can be
generated using mesh simplification depends on the number
of vertices in the input model, while the maximum number
of points that can be generated using the patch hierarchies
depends on the number of polygons in the input model.

6. Applications

In this section we describe two novel applications for 3D
stippling: illustration of animated transparent surfaces and
virtual object reproduction for archaeology.

Figure 5:Three levels of the point hierarchy after relaxation, the hand-bones model is shown with 1,192,
4,277 and 15,184 points respectively.

6.1. Illustration of transparent surfaces

Animated stippling [11] works by mapping each stipple
to a location within a face in an input model using barycen-
tric coordinates. This approach makes it possible to produce
frame-coherent animations in the stippling style.

A novel application of animated stippling is to use stip-
ples to represent a transparent layer in a model. To achieve
this effect, stipples are placed over the surface of the 3D
model and are rendered in place of the surface itself.

Using stipples in this way has a double effect: on one
hand, the stipples reveal the layer or surface where they are
located; on the other hand, when stipples are sparsely dis-
tributed on the represented surface, it is possible to see the
inner parts of the input model through the stipple cloud.

This transparency effect has the particular advantage,
with respect to the standard transparency effect achieved
through alpha blending, that when the model is animated,
the stipples on the surface of the transparent layer behave
like an elastic texture, showing how this surface changes
during the animation. If the inner parts of the model are also
animated, it is possible to view the animation of these parts
as well. The images in Figure 7 and Video 1 illustrate this
effect in the case of a heart beat. The heart shell has been re-
placed with a stippled layer and it is possible to see the an-
imation of the inner part of the heart. Notice that the video
was produced using standard 3D animation software and
was produced only to illustrate this effect, it does not fol-
low the actual physics of a beating heart. Several applica-
tions can take advantage of this way of presenting transpar-
ent surfaces, for example biomechanical illustrations show-
ing the skin as an outer stippled layer and the muscles or
tendons displacing underneath, or illustrations of automo-
tive design and mechanics. This approach can also be used
in volume rendering, where transparency plays and impor-

tant role, as shown by the work of Lum and Ma [7], Lu et
al. [6] and Interrante et al.[4].

6.2. Object Reconstruction for Archaeology

Stippling is a common technique for scientific illustra-
tion in archaeology to document and communicate findings
made during excavations. We have worked in cooperation
with the Institute of Archaeology of the State of -blind-
review- to apply the 3D stippling technique on some objects
they have excavated. In this project, we were given two ob-
jects, a savings pot and a colored mosaic, both dated back to
the middle ages, as case studies to test the possibility of us-
ing our techniques for this particular subject.

The objects were 3D scanned, and we applied the
point relaxation approach to produce the stippled draw-
ings shown in Figure 8. We presented animations and
interactive demonstrations to the team of archaeolo-
gists and received feedback from them. Their feedback
can be summarized as follows: the technique effec-
tively and convincingly shows the models in the stippling
style in a frame-coherent way. However, the presented ap-
proach needs to deal with several issues before it can be
accepted by the archaeologists. First, the amount of dark-
ness in some areas, even though it reflects the lighting
conditions, was too dark in some cases, failing to pro-
vide useful information in some regions of the object. Sec-
ond, some details of the model are lost in the renditions,
such as the reliefs in the hat and in the chest of the char-
acter illustrated in the bottom of Figure 8. Third, the tech-
nique to capture and display the models is not widely
available to the majority of the community of archaeol-
ogists. This however, is a matter of accessibility to tech-
nology which falls outside of the scope of this work. On
the other hand, it was suggested that the presented ap-

Figure 6:Left: Stipple rendition of the dragon model. To keep shading while zooming from the view on the
top left to the view on the bottom left, more points appear that maintain the tone and stippling style. Right:
Illustration of the hand bones model. Both models were rendered using a point hierarchy generated by
graph-based point relaxation.
proach could be appropriate for making 3D presentations
of the findings for the general public in museum exhibi-
tions.

To address the first two (rather technical) issues we have
implemented the following improvements in the rendering
system: To deal with the issue of darkness, we control the
maximum stipple saturation that can be shown on the ren-
ditions. This has the side effect that contrast is reduced, and
calls for the adoption of multiple light sources to illumi-
nate particularly dark regions. To deal with the loss of detail
we have produced two solutions: the first one is the intro-
duction of silhouette enhancement using surface normals,
where points that belong to the silhouette are rendered at the
maximum point size (Figure 8, top right). The second im-
provement is the rendition of sharp edges rendered on top of
the polygonal model and the stipples. This feature is illus-
trated in the bottom middle of Figure 8, where sharp edges
have been rendered using a small point size. The result is
that more details of the model are presented in the rendi-
tions.

In addition, some details of the original models were lost

due to the resolution at which we scanned the input mod-
els (400,000 polygons for the mosaic and ca. 172,000 poly-
gons for the savings pot), such as the curls in the hair of
the character of the mosaic and some foldings in the clothes
around the neck and in the middle of the chest. This situa-
tion can be corrected by producing higher density meshes
during 3D scanning.

7. Conclusions

In this paper, we have presented an alternative approach
to produce a point hierarchy based on point relaxation
which is faster than existing approaches for point hierar-
chy creation. Our method first creates a patch subdivision
scheme, and uses the patch connectivity information to cre-
ate a graph where particle ’tokens’ are distributed among
the nodes of the graph. The tokens are distributed on the
surface of the model by using a point relaxation technique
where tokens are only allowed to locations defined by the
nodes of a graph derived from the polygonal mesh. Our ap-
proach has the advantage that no polygonal ’unfolding’ and

Figure 7:Left: the heart model illustrated with an opaque surface. Following images: frames from the ani-
mation of the heart beating, where the outer heart layer has been replaced by a semi-transparent stippled
layer to allow a look at the changes taking place inside the model.
no geometrical point displacement is required to displace
the tokens. In an initial step, polygons are organized into
patches, and these are fused together to create a patch hi-
erarchy. We apply a graph-based approach for point relax-
ation at each level of the patch hierarchy to create a point hi-
erarchy. Finally, the point hierarchy is given as input for the
stipple renderer.

We use the point hierarchy to improve the stipple dis-
tribution in our frame-coherent stippling animations, but
the whole family of techniques in NPR which perform
frame-coherent particle distribution, like artistic [8, 5] and
painterly [9] rendering could benefit from this relaxation ap-
proach. For example, the point hierarchy could be used for
evenly distributing paint strokes on the surface of a model,
or for providing levels of detail for stroke-based rendering
systems in the pen-and-ink style.

Acknowledgments

Many thanks to Oliver Deussen for proposing the use of
relaxation techniques to improve the quality of the point dis-
tribution; thanks to Lourdes Peña Castillo for her editorial
assistance and support; to R. Kuhn from the Office of Ar-
chaeology of Saxony-Anhalt for providing the archaeologi-
cal samples, to Armin Botcher (heart animations), E. Trost-
mann from the Fraunhofer IFF Magdeburg (3D scanning)
and to the staff at the Institute for Simulation and Graph-
ics, University of Magdeburg.

References

[1] O. Deussen, S. Hiller, C. van Overveld, and T. Strothotte.
Floating points: A method for computing stipple drawings.
Computer Graphics Forum, 19(3):40–51, 2000. http:
//www.eg.org/EG/CGF/volume19/issue3 .

[2] F. Dong, G. J. Clapworthy, H. Lin, and M. A. Krokos. Non-
photorealistic rendering of medical volume data. InIEEE
Computer Graphics and Applications Special Issue on Non-
photorealistic Rendering, July / August 2003.

[3] M. Garland, A. Willmott, and P. S. Heckbert. Hierarchical
face clustering on polygonal surfaces. InSIGGRAPH 2001
Conference Proceedings, pages 49–58. ACM Press, 2001.

[4] V. Interrante, H. Fuchs, and S. M. Pizer. Enhancing transpar-
ent skin surfaces with ridge and valley lines. InIEEE Visu-
alization, pages 52–, 1995.

[5] M. Kaplan, B. Gooch, and E. Cohen. Interactive artistic ren-
dering. InProceedings of the First International Symposium
on Non-photorealistic Animation and Rendering, pages 67–
74. ACM Press, 2000.http://www.cs.utah.edu/
npr/papers.html .

[6] A. Lu, C. Morris, D. Ebert, P. Rheingans, and C. Hansen.
Non-photorealistic volume rendering using stippling tech-
niques. InIEEE Visualization 2002 Conference Procedings,
2002.

[7] E. B. Lum and K.-L. Ma. Hardware-accelerated parallel non-
photorealistic volume rendering. InProc. of the 2nd. Interna-
tional Symposium on Non-photorealistic Animation and Ren-
dering, pages 67–74. ACM Press, 2002.

[8] L. Markosian, B. J. Meier, M. A. Kowalski, L. S. Holden,
J. D. Northrup, and J. F. Hughes. Art-based rendering with
continuous levels of detail. InProc. of the 1st. International
Symposium on Non-Photorealistic Animation and Render-
ing, pages 59–66. ACM Press, 2000.

[9] B. J. Meier. Painterly rendering for animation. InSIG-
GRAPH 96 Conference Proceedings, pages 477–484. ACM
Press, 1996.

[10] O. Meruvia. Visibility preprocessing using spherical sam-
pling of polygonal patches. InEurographics’2002 Short Pa-
per Proceedings, 2002.

[11] O. Meruvia, B. Freudenberg, and T. Strothotte. Real-
time, animated stippling. InIEEE Computer Graphics
and Applications Special Issue on Non-photorealistic Ren-
dering, July / August 2003. http://isgwww.cs.
uni-magdeburg.de/˜oscar/ .

Figure 8:The savings pot and the colored mosaic (left column) were found during archaeological exca-
vations and scanned in 3D. Top middle: the savings pot. Top right: silhouette enhancement of the mo-
saic model using surface normals. Bottom middle: detail enhancement by highlighting sharp edges. Bot-
tom right: stippling on top of the textured mosaic model.
[12] V. Ostromoukhov. Digital halftoning over a hexagonal grid.

In Proc. of Graphics Interface 2002. Graphics Interface,
2002.

[13] A. J. Secord. Weighted voronoi stippling. InProc. of the
2nd International Symposium on Non-Photorealistic Anima-
tion and Rendering, pages 37–43. ACM Press, 2002.

[14] A. J. Secord, W. Heidrich, and L. Streit. Fast primitive dis-
tribution for illustration. InProc. of the 13th Eurographics
Workshop on Rendering, pages 215–226. Eurographics As-
sociation, Eurographics Association, 2002.

[15] C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical pat-
tern mapping. InSIGGRAPH 2002 Conference Proceedings,
pages 673–680. ACM Press, 2002.

[16] G. Turk. Generating textures on arbitrary surfaces using
reaction-diffusion. InSIGGRAPH 91 Conference Proceed-
ings, pages 289–298. ACM Press, 1991.

[17] G. Turk. Re-tiling polygonal surfaces. InSIGGRAPH 92
Conference Proceedings, pages 55–64. ACM Press, 1992.

[18] A. P. Witkin and P. S. Heckbert. Using particles to sample
and control implicit surfaces. InSIGGRAPH 94 Conference
Proceedings, pages 269–277. ACM Press, 1994.

