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Abstract

Traditionally, rural areas in many countries are limited by a lack of access to

health care due to the inherent challenges associated with recruitment and retention

of healthcare professionals. Telemedicine, which uses communication technology to

deliver medical services over distance, is an economical and potentially effective way to

address this problem. In this research, we develop a new telepresence application using

an augmented reality (AR) system. We explore the use of the Microsoft HoloLens to

facilitate and enhance remote medical training. Intrinsic advantages of AR systems

enable remote learners to perform complex medical procedures such as Point of Care

Ultrasound (PoCUS) without visual interference. This research uses the HoloLens

to capture the first-person view of a simulated rural emergency room (ER) through

mixed reality capture (MRC) and serves as a novel telemedicine platform with remote

pointing capabilities. The mentor’s hand gestures are captured using a Leap Motion

and virtually displayed in the AR space of the HoloLens. To explore the feasibility

of the developed platform, twelve novice medical trainees were guided by a mentor

through a simulated ultrasound exploration in a trauma scenario, as part of a pilot

user study. The study explores the utility of the system from the trainees, mentor,

and objective observers’ perspectives and compares the findings to that of a more

traditional multi-camera telemedicine solution. The results obtained provide valuable

insight and guidance for the development of an AR-supported telemedicine platform.

ii



Acknowledgements

I would like to express my sincere thanks to my supervisors, Dr. Oscar Meruvia-

Pastor, Dr. Minglun Gong and Dr. Andrew Smith. They have been providing

me the possible research direction of AR-aided telemedicine, detailed discussions,

and encouraging innovative ideas and critical thinking. All these are the key points

guiding me to be an independent researcher.

I would like to acknowledge that Ignite R&D program, which is managed by

Research and Development Corporation (RDC) of Newfoundland and Labrador, and

provided me continuous financial support [RDC Project #5404.1890.101].

Additionally, I would like to give my special thanks to the researchers for details

discussions related to the HoloLens from Microsoft and other organizations. They

provided professional support of holographic programming, network programming,

and user inteface design.

Last but not the least, I would like to thank my mother who have been supporting

me from all sides.

iii



Contents

Abstract ii

Acknowledgements iii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Rural Healthcare Problems . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Explosion of Computer-Mediated Reality . . . . . . . . . . . . . . . . 5

1.5 What is Microsoft HoloLens? . . . . . . . . . . . . . . . . . . . . . . 6

1.6 The HoloLens vs. Google Glass . . . . . . . . . . . . . . . . . . . . . 8

1.7 Leap Motion Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Research History at Memorial University . . . . . . . . . . . . . . . . 9

1.9 Point of Care Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . 10

iv



2 Background and Related Work 11

2.1 Telemedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Virtual Reality (VR) History . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Augmented Reality (AR) History . . . . . . . . . . . . . . . . . . . . 14

2.4 Prototype of VR/AR headset . . . . . . . . . . . . . . . . . . . . . . 15

2.5 VR Research in Medicine . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 AR Research in Medicine . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Augmented Reality Research in Telemedicine . . . . . . . . . . . . . . 16

2.8 Advantages of the HoloLens . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Disadvantages of the HoloLens . . . . . . . . . . . . . . . . . . . . . . 19

2.10 Stereo Vision and Simultaneous Localization And Mapping (SLAM) . 20

2.11 Google Glass and Microsoft HoloLens . . . . . . . . . . . . . . . . . . 23

3 System Design and Overview 25

3.1 Final Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 The Mentor’s End . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 The Trainee’s End . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Experimental Validation 30

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Experimental Control . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



4.1.4 Ethics Approvals . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.5 System Setup and Performance . . . . . . . . . . . . . . . . . 32

4.1.6 Data and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Trainees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Mentor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Global Rating Scale (GRS) . . . . . . . . . . . . . . . . . . . 37

4.2.4 Response time, mental effort and task difficulty ratings . . . . 38

5 Discussion 41

5.1 The Performance of the System . . . . . . . . . . . . . . . . . . . . . 41

5.2 General Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusions 48

Bibliography 51

A Video and Development Related 63

B Development of a Telemedicine Prototype Using the Hololens 65

B.1 Gyroscope-controlled Probe . . . . . . . . . . . . . . . . . . . . . . . 65

B.2 Video Conferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.3 AR together with VR . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vi



C Video Streaming on the HoloLens 71

C.1 Web Real Time Communication (WebRTC) . . . . . . . . . . . . . . 71

C.2 HTTP Live Streaming (HLS) . . . . . . . . . . . . . . . . . . . . . . 72

C.3 Real-Time Messaging Protocol (RTMP) and Real Time Streaming Pro-

tocol (RTSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C.4 Dynamic Streaming over HTTP (DASH) . . . . . . . . . . . . . . . . 74

vii



List of Tables

1.1 Rural Population Statistics, Canada 2001 [1] . . . . . . . . . . . . . . 2

1.2 Low cost VR/AR headsets and select peripherals [2] . . . . . . . . . . 6

4.1 Trainee’s opinions on the efficacy and difficulty of the HoloLens and

Full Telemedicine Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Mentor’s opinions on the efficacy and real-life application of the HoloLens

and Full Telemedicine Set-Up . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Global Rating Scale for right upper quadrant exam of the HoloLens

and Full Telemedicine Set-Up . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Trainee’s perception of response time, mental effort and task difficulty

for the HoloLens and Full Telemedicine Set-Up . . . . . . . . . . . . . 40

viii



List of Figures

1.1 “Talking head” Telepresence [3] . . . . . . . . . . . . . . . . . . . . . 3

1.2 Rosie the Robot [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Microsoft HoloLens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Leap Motion Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 “Radio News” Magazine [5] . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 ATS-1 Satellite [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Sensorama [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Virtual Fixtures [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Ultimate Display [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Surgeon X-ray Vision [10] . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Virtual fetus of pregnant patient [11, 12] . . . . . . . . . . . . . . . . 17

2.8 Depth Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Stereo Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Kinect Fusion workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Mentor side of view. A live mixed reality view displaying with buttons. 28

ix



3.2 Trainee side of view. a) four holograms represent different posture.

b) skeletal hand view on the HoloLens. c) real hologram view on the

HoloLens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Overview of the system pipeline . . . . . . . . . . . . . . . . . . . . . 29

4.1 Trainee’s opinions on the efficacy and difficulty of the HoloLens and

Full Telemedicine Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Mentor’s opinions on the efficacy and real-life application of the HoloLens

and Full Telemedicine Set-Up . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Trainee’s Response time for the HoloLens and Full Telemedicine Set-Up 39

4.4 Trainee’s perception of mental effort and task difficulty for the HoloLens

and Full Telemedicine Set-Up (Mental effort and task difficulty were

scored out of 9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Overview of the improved system pipeline . . . . . . . . . . . . . . . 47

6.1 A novel augmented reality telemedicine platform involving real-time

remote pointing and gesture capture (Professor Andrew Smith and

Professor Michael Parsons). For video example and further informa-

tion, please see Appendix A. . . . . . . . . . . . . . . . . . . . . . . . 50

B.1 Virtual Probe controlled by the gyroscope located in the mobile phone.

Remote drawing can also be achieved by drawing on the screen of the

phone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.2 Videoconferencing, with the HoloLens, was displayed on a floating mesh. 69

B.3 Displaying a mixed reality view of a hologram inside a VR headset. . 70

x



Chapter 1

Introduction

1.1 Rural Healthcare Problems

Frequently, the provision of healthcare to individuals in rural areas represents a signif-

icant logistical challenge resulting from geographic, demographic and socioeconomic

factors. Recruitment and retention of healthcare providers (HCP) to rural loca-

tions continues to be a significant problem [13]. Research focused on addressing the

problems associated with the provision of rural healthcare is a top priority in many

countries [14].

Newfoundland and Labrador population is 41% rural according to the 2001 Census

[15], making rural healthcare a very important problem in our province. Several

provinces have an even higher proportion of rural population (Table 1.1), which makes

rural health care provision a national issue in Canada. In fact, this is a global problem,

particularly in developing countries.

An economical and effective solution to the lack of HCP in rural areas is telemedicine,
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Table 1.1: Rural Population Statistics, Canada 2001 [1]

RURAL POPULATION PERCENT(%)

Canada 6,098,883 20.3

Yukon 11,831 41.3

Northwest Territories 15,529 41.6

Newfoundland and Labrador 216,734 42.3

Nova Scotia 400,998 44.2

New Brunswick 361,596 49.6

Prince Edward Island 74,619 55.2

Nunavut 18,056 67.5

which uses information technologies to deliver health care services over both large and

small distances [14, 16]. Telemedicine has many advantages, such as improved access

to primary and specialized health services, improved continuity of care, increased

availability of patient information, and decreased frequency of patient visits to health

care specialists [17]. It also has been shown to increase patient empowerment and

patient/provider satisfaction [16], while decreasing unnecessary referrals, travel and

wait times, as well as the associated costs for both patients and providers [18].

1.2 Current Limitations

Teleconferencing is one of the main applications within telemedicine, enabling health-

care providers to interact with patients or colleagues on a regular basis. Current “talk-

ing head” interfaces (Figure 1.1) used in traditional teleconferencing systems may be
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adequate for supporting one-on-one communication between a doctor and a patient,

or even a group of doctors, but may be unsuitable in a more chaotic environment

such as an emergency room (ER). Mobile robot systems have been deployed in rural

settings such as “Rosie the Robot” in Nain, Labrador [4] (Figure 1.2), in an attempt

to address these problems. However, they remain quite expensive. Real-time con-

sultation and support during low-frequency, high-stakes scenarios has the potential

to enhance acute medical care. A system that provides a better immersive experi-

ence coupled with real-time consultation could improve performance during complex

life-saving medical procedures.

Figure 1.1: “Talking head” Telepresence [3]
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Figure 1.2: Rosie the Robot [4]

1.3 Research Focus

This research aims at the question of how to take advantage of the HoloLens within

a telemedicine AR application. The potential of AR technology has always been

significant [19, 20]. Even though researchers can nowadays immerse themselves in

more complex virtual environments and realistic simulations, the concept of using a

computer-mediated reality system in a hospital without a dedicated technician re-

mains a hurdle as these systems are still subject to inherent technical limitations. For

example, Google Glass lacked a 3D display, environment recognition ability, and had

a very small field of view to be of practical use. Since the introduction of immer-

sive VR HMDs, such as the Oculus Rift and the HTC VIVE, VR has become more
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accessible as a viable option. However, these and similar devices are still tethered

to workstations or have limited computing power. In this sense, the HoloLens has

some particular advantages, since it has adequate computing power, does not require

any tethering and does not occlude the users’ field of view. In spite of these advan-

tages, significant efforts and multi-disciplinary cooperation is still required to assess

the suitability of this and similar tools for practical use in telemedicine. Our goal in

this research will be building a telemedicine platform with the help of HoloLens and

Leap Motion controller (see Section 1.7). The mentor can use Leap Motion for hand

tracking, and then position a virtual hand in the view of a remote trainee wearing

the HoloLens.

1.4 Explosion of Computer-Mediated Reality

Virtual, Mixed and Augmented Reality (VMAR), together with unmanned aerial

vehicles, autonomous cars, smart homes, as well as High Dynamic Range (HDR)

Imaging are listed as top trends at the CES (Consumer Electronics Show) in 2016.

Google released its Glass project in 2013, a technology that enabled users to con-

nect a wearable camera and heads-up display to mobile phones via Wi-Fi. This was

followed up with Google’s release of Cardboard [21], a simple cardboard box capable

of transforming the ubiquitous smartphone into a virtual reality (VR) Head Mounted

Display (HMD). Cardboard was instrumental in generating global interest and de-

velopment of VR applications due to its broad appeal and accessibility. Attention

then shifted to the Oculus Rift and HTC Vive, commercial immersive VR HMD sys-

tems connected to full computer workstations for increased performance and graphics
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power. More recently, Microsoft released the HoloLens in 2015. HoloLens was the

first AR HMD capable of spatial capture of its environment [22]. Apart from these

products, 360 degree cameras such as RICOH Theta S [23] and depth sensors such

as Leap Motion controller (see Section 1.7) were all playing an important role in

the field of VMAR. All of these products demonstrate the incremental and steady

progression towards immersive AR/VR platforms and mass-market appeal (Table

1.2). That being said, computer-mediated systems are still relatively immature, with

related techniques and applications waiting to be implemented and explored.

Table 1.2: Low cost VR/AR headsets and select peripherals [2]

Device Type Required Hardware Price(USD)

Google Cardboard VR Headset Mobile $15

Samsung Gear VR VR Headset Mobile $99

Oculus Rift VR Headset PC $599

HTC Vive VR Headset PC $799

Microsoft HoloLens MR/AR Headset None $3000

RICOH Theta S 360 Degree Camera PC $350

Leap Motion Depth Sensor PC $79.99

1.5 What is Microsoft HoloLens?

The HoloLens (Figure 1.3) is a wearable computing device issued by Microsoft for

augmented reality. It has several key elements:
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Figure 1.3: Microsoft HoloLens

• It is an augmented reality (AR) product, which simultaneously presents computer-

generated images together with the real world to the user. There are several AR

products such as Google Glass which projects the image to the user, as well as

mobile AR apps which renders additional objects on top of the camera outputs.

• It has an independent processing unit, including CPU, and GPU/HPU. It re-

quires no external computers, which is vital for an AR helmet that emphasizes

environment capture and processing. The CPU is an Intel Atom processor, and

part of the Airmont family (Braswell). That processor runs at 1.04GHz, and

while it is 64-bit capable, the OS itself is only 32-bit. In this case, the RAM is

only 2GB on board.

• The GPU, or HPU on the HoloLens, is created by Microsoft. The full name

is Holographic Processing Unit, which is responsible for handling holographic

rendering and display. The HPU is a dedicated Application-specific integrated

circuit (ASIS), custom designed for the HoloLens. This Microsoft’s custom
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coprocessor (HPU) can reportedly processes terabytes of information from all

of the HoloLens sensors in real time [24].

1.6 The HoloLens vs. Google Glass

Google Glass was one key AR product which provides non-occluded vision. Compared

to Google Glass, the HoloLens has three-dimensional depth perception, enabling it

to perform environment reconstruction and relocation. This is significantly different

from Google Glass which only deals with RGB information.

In addition, the HoloLens has three-dimensional rendering ability. The HoloLens

display is a set of transparent screens placed in front of the users’ eyes. Each screen lets

some background light through and simultaneously shows digital content just like a

see-through display. Two screens each show a slightly different image independently to

one side of your eye, creating a stereoscopic illusion like 3D glasses do when watching

3D movies. However, Google Glass just has a one-eye display.

Finally, the HoloLens has a human-computer interactive system containing gesture

and voice recognition, enabling the user to control the HoloLens in multiple ways.

1.7 Leap Motion Controller

The Leap Motion controller is a small USB peripheral device as shown in Figure

1.4, which is designed to be connected to a computer. For virtual reality headsets

connected to a computer such as Oculus Rift, the Leap Motion can also be mounted

onto the headset. The cable of the Leap Motion should still be connected to the
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computer, and hand motion will be interpreted from the computer to the headset. It

is commonly used to capture hand movements and gestures [25, 26].

Figure 1.4: Leap Motion Controller

1.8 Research History at Memorial University

Memorial University has a long history of contributing to ground-breaking advances

in Telemedicine [27]. A self-sufficient telemedicine center had been created, which

prevented the discontinuity commonly found in the programs after the grand funds

ended. Under the leadership of Dr. Max House, the founder of the center, Memo-

rial was involved in several Telemedicine projects, many of which became ongoing

services [27]. This multidisciplinary initiative represented a significant step towards

positioning Memorial as an innovator in Telemedicine, with world-class expertise in

the provision of rural and remote healthcare. The Research and Development (R&D)

focus of this and other research projects will support increasing collaborations with

Eastern Health and the Newfoundland and Labrador Centre for Health Information

as we work towards a more sustainable model of health care in the province.
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1.9 Point of Care Ultrasound

The use of portable ultrasound by clinicians outside of the radiology suite is rapidly

increasing throughout the field of medicine. Its portability and reduced cost, com-

bined with the fact that scans can be performed rapidly, repeatedly and without

exposure to ionizing radiation, has enabled its widespread acceptance [28, 29]. Per-

formance of Point of Care Ultrasound (PoCUS) is a complex resource-intensive task

similar to other medical procedures that require repetition under expert supervision

over time. Telemedicine has been successfully used to support remote training both

in rural, remote and even extra-terrestrial environments [30, 31].

Related research of VR/AR and related technologies in medical field will be dis-

cussed in the next chapter (Chapter 2), the history of telemedicine and the medical

research about Google Glass and Microsoft HoloLens will also be present.
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Chapter 2

Background and Related Work

2.1 Telemedicine

In 1924, the cover of the magazine “Radio News” showed a radio doctor (Figure 2.1),

which was considered to be “the first exposition of Telecare” [5]. There has been a

massive boom of telemedicine programs all over the United States since the 1960’s

[6]. On December 7th, 1966, NASA launched the ATS-1 Satellite (Figure 2.2), the

first satellite used for civic purposes, such as education, and telemedicine [6].

Canada was one of the first countries to use tele-communications to assist in the

delivery of health services. In the late 1950s, Dr. Albert Jutras, a radiologist in

Montreal, used closed-circuit television to transmit medical images [32]. Commu-

nication satellites were used as early as the 1960s to send electroencephalograms

(EEGs) over large distances [33]. In 1976, the launching of the Hermes-CTS commu-

nications satellite permitted Canada and the United States to embark on extensive

telemedicine experiments and pilot projects to reach the far northern regions and to
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test wider applications [33].

The Canadian government has continued to support the concept of using commu-

nications technologies to provide medical care and education at a distance due to its

climate and geography. In the early 1990’s, the Internet went public and telemedicine

expanded exponentially [6].

Figure 2.1: “Radio News” Magazine [5] Figure 2.2: ATS-1 Satellite [6]

2.2 Virtual Reality (VR) History

It is well believed that the first attempt at Virtual Reality (VR) came in the 1860’s,

as artists began to create three-dimensional, panoramic murals [7]. In 1957, Morton

Heilig invented the Sensorama (Figure 2.3), a simulator with 3D images along with

smells, wind and sound, to create the illusion of a virtual reality [7]. Jaron Lanier,
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founder of VPL Research and creator of the DataGlove and the EyePhone, was cred-

ited with coining the term “Virtual Reality” in 1987 [7]. VR was used for military

training and as a form of therapy since 1990’s [34].

In 2012 the company called Oculus turned to fundraising platform KickStarter to

finance the Oculus developer kit, which was meant to get the Oculus Rift to developers

who could then integrate the VR device into their games. Oculus received a lot of

attention from the media and, in April 2014, the Federal Trade Commission approved

Facebook’s purchase of Oculus for nearly USD $2 billion [35]. Today’s VR is perhaps

best known for its use in the gaming world.

Figure 2.3: Sensorama [7]
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2.3 Augmented Reality (AR) History

The first related idea of AR is believed to have come in 1901 when L. Frank Baum,

in his novel “The Master Key: An Electrical Fairy Tale” described a set of electronic

glasses that provided insight into a person’s character [8]. The term “Augmented

Reality” was coined in 1990 by Boeing researcher Tom Caudell [8]. Louis Rosenberg

developed Virtual Fixtures (Figure 2.4), one of the first functioning AR systems, for

the Air Force [8]. This allowed the military to work in remote areas. Wearable AR

made headlines in 2014, mostly thanks to Google Glass. However, other companies,

like Epson, had also developed their own smart glasses. The start-up company In-

novega was then taking smart glasses one step further, introducing AR contact lenses

[36]. Looking ahead, the development of the HoloLens system by Microsoft in 2015

and its native support in Windows 10 could facilitate the development of a new range

of training and educational applications.

Figure 2.4: Virtual Fixtures [8] Figure 2.5: Ultimate Display [9]
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2.4 Prototype of VR/AR headset

Both VR and AR headsets come from the same general model. Ivan Sutherland

devised a machine called the Ultimate Display (Figure 2.5) in 1965 [9]. Using a head-

mounted display (HMD) connected to a computer, users could see a virtual world.

The system was suspended from the ceiling. The computer-generated graphics users

saw were just simple wireframe drawings. He was thus credited with creating the first

HMD system.

2.5 VR Research in Medicine

An early application of VR for health care provision started in the early 90’s intended

to visualize complex medical data during surgery or surgery planning [37]. Surgery-

related applications of VR were divided into two categories: surgery training and

surgery planning [38]. VR applications in medicine have broadened to a range of

disciplines including neuropsychological assessment and rehabilitation, such as the

treatment of anxiety disorders, post-traumatic stress disorders, eating disorders and

obesity [39].

From the clinical practice perspective, VR was considered a “closed” experience,

produced and lived in the therapist’s office only, separated from the patient in the

real world. To overcome this issue, a critical advancement can be exemplified by a

new technological paradigm, Interreality [40, 41] a hybrid, closed-loop empowering

experience that uses smartphones and wearable devices to bridge physical and virtual

worlds.

15



2.6 AR Research in Medicine

Doctors can use AR as a visualization and mentoring aid in open surgery, endoscopy,

and radiosurgery [38]. It has also commonly been used in orthopedic surgery, neuro-

surgery and oral maxillofacial (OMF) surgery [42], enabling the surgeon to visualize

the proper positioning of their surgical instruments. AR is also useful when operat-

ing in a confined space and in close proximity to delicate and sensitive anatomical

structures [43]. Many studies suggest that AR-assisted surgery appears to improve

accuracy and decrease intraoperative errors in contrast to traditional, non-AR surgery

[43, 44, 45, 46, 47]. However, further technological development and research is needed

before AR systems can become widely adopted. General medical visualization is an-

other task for AR to access and display types of necessary data simultaneously vir-

tually in the surgical suite [38]. AR has the potential to support the fusion of 3D

datasets of patients in real time, using non-invasive sensors like magnetic resonance

imaging (MRI), computed tomography scans (CT), or ultrasound imaging. All in-

formation could then be rendered with a view of the patient at the same time, like

“X-ray vision” (Figure 2.6 and 2.7) [38]. For medical training and education, AR can

play an important role [48, 49]. However, gesture interaction in AR has been found

to be too complicated, for both trainees and mentors [50, 51].

2.7 Augmented Reality Research in Telemedicine

The early research mentioned in the previous section provided relevant directions

and presented valuable solutions in the medical field. More advanced systems have
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Figure 2.6: Surgeon X-ray Vision [10]

Figure 2.7: Virtual fetus of pregnant patient [11, 12]

been created as the technology has evolved. Ruzena Bajcsy et al. [52, 53] collected

patient’s depth maps through Microsoft Kinect and then reconstructed a virtual pa-

tient in an AR device. Using telemedicine, the mentor could then provide consultation

based on the 3D model at a distance as shown in several previously developed tele-

consultation applications [39, 54]. However, the application required massive fund

and setup[39, 52, 53, 54]. Marina Carbone et al. [55] and Mahesh B Shenai et al.
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[56] created AR-assisted telemedicine applications. However, their AR system still

required significant setup in both sides and had some shortcomings. It combined

video from a computer-generated image and a camera-captured video, which is not

as realistic as the combination of the HoloLens see-through stereoscopic vision and

3D graphics imagery. Their systems were not validated through a comparison with

other more traditional telemedicine setups. Telemedicine has been proposed to solve

the lack of HCP in remote locations, however, if the telemedicine application requires

significant setup and even requires technical professionals in rural locations, it would

lead to a new problem regarding the lack of technicians. All previous systems have

this problem, while our system only requires the trainee to wear the HoloLens, which

is a self-contained solution specially suitable for telemedicine. Our research attempts

to overcome the limitations in previous works by designing a new telemedicine ar-

chitecture using the latest telecomunication protocols and the Microsoft HoloLens.

This work also provides insight into how our solution compares to more traditional

telemedicine solutions.

2.8 Advantages of the HoloLens

One of the main strengths of the HoloLens as a telemedicine platform is that it is

untethered - a feature valuable for chaotic environments such as the ER or operating

room. It is a non-occluding AR system, in that it complements the actual scene with

a relatively small amount of computer-generated imagery using a semi-transparent

HMD. Furthermore, it enables a first-person view of the remote environment to be

relayed and represented locally to expert observers at a remote location through
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a camera mounted in the middle of the HMD. Such a telepresence interface [57,

58] has the potential to enhance the observers’ sense of presence, enabling them

to better understand crucial circumstances and provide better guidance at critical

times. From the remote learners’ perspective, the HoloLens enables recipients to

participate in real-time mentoring as well as ‘just-in-time’ learning during extremely

stressful situations. The ability to receive visual guidance and instructions during an

infrequently performed complex medical procedure represents a significant advance

for emergency personnel. A final feature is the HoloLens’ intrinsic depth-sensing

and relocation ability which can be used to support remote pointing and enhance

procedural guidance. This last element is the main subject of this research. The

HoloLens can simultaneously interpret its own location inside a room when the user

is moving. Therefore, we can render a virtual object statically in the environment

and keep it stable. With the help of this, the remote presenter can steadily position

a virtual object to a real location.

2.9 Disadvantages of the HoloLens

Even though Microsoft manufactures the HoloLens with a decent 120 degrees field of

view (FOV), it is still not comparable to a fully immersive HMD [59]. The weight of

the HoloLens is also a problem. Discomfort and pain reports can easily be found in

the literature regarding to the HoloLens [59, 60]. In addition, the ergonomics of the

HoloLens are described as disappointing in various aspects, including the “airtap”

gesture, weight, vision and comfort [59, 60]. The HoloLens is also significantly lower-

resolution [59] than full HD monitors. Furthermore, the battery of the HoloLens could
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only last for approximately 100 minutes when running an application before having

to be charged again. Another issue was that the HoloLens would sometimes kill an

application in order to protect itself, due to the limited memory size [59]. A further

limitation is that it has been designed to be exclusively as an indoor device, designed

to capture its surroundings in closed environments, such as laboratories, offices and

classrooms. Other disadvantages will be described in more detail in the following

Chapters.

2.10 Stereo Vision and Simultaneous Localization

And Mapping (SLAM)

Part of the “reality” to the HoloLens is that it is a see-through display that allow

viewers to see the real world without any cameras used as mediators. The other

part of the reality is the data captured about the environment where the user is

located. This is captured from multiple sensors, a.k.a., cameras. The HoloLens

contains four cameras designed to enhance environmental understanding, two on each

side, providing support for stereoscopic vision (stereo vision for brevity). Through

real-time analysis of four video streams, the HoloLens has a 120 degree Field of View

(FOV) horizontally and vertically.

Stereo vision (Figure 2.9) is an essential part of computer vision and is used to

obtain the depth map from images captured by multiple cameras, by focusing on

recovering the distance between all the objects in the captured environment and the

device, as shown in Figure 2.8.
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Figure 2.8: Depth Map

Figure 2.9: Stereo Vision

Stereo vision begins with a procedure designed to eliminate the distortion of a

camera using a pre-calibration process. In the next step, rectification is used to
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identify the overlapping portions of each image followed by the creation of a disparity

map. Finally, a re-projection function is used to calculate the final depth map [61].

One single depth map simply represents a snapshot of the environment from a

single location and point in time. In order to reconstruct the whole scene, we need

depth information from multiple samples. Therefore, a series of depth maps are used

to reconstruct the environment.

SLAM (Simultaneous Localization and Mapping) is a solution to reconstruction

and relocation, meant to address two fundamental problems: i) where is the user

or robot located within the environment, and ii) where the user or robot should go.

SLAM has multiple implementations, including Microsoft’s Kinect Fusion [62, 63] and

open source libraries such as Point Cloud Library (PCL) [64].

Kinect Fusion (Figure 2.10 [62, 63]) captures different angles of the indoor en-

vironment from a moving Kinect and calculates the room model from those depth

maps. In order to obtain a raw depth map, a Depth Map Conversion should be

performed to convert the data into meters. After that, we can get the coordinates

of vertices and normal maps of surfaces. Then, we will be able to track the camera

pose and location with these coordinates and normal maps. Using depth maps and

camera coordinates from the previous step, we can then use Volumetric Integration

to get the 3D model. Additionally, we can also perform 3D Rendering techniques,

such as Raycasting, Raytracing and Rasterization to render the 3D scene.

A proprietary and undisclosed simultaneous localization and mapping (SLAM)

algorithm is embedded in the HoloLens. It is thought to be a modified Kinect Fusion

algorithm ([65]), with the main difference being that Kinect Fusion is open to public.

Unfortunately, there is a limited ability to modify the HoloLens depth map/data,
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Figure 2.10: Kinect Fusion workflow

and this constrains the ability to research and develop customized solutions. This

“black-box” approach does have several advantages from a commercial development

perspective, though. No extra knowledge is needed, no complicated programing en-

vironment needs to be set, no optimization needs to be performed. The degree of

expertise required for this approach is considerably lower. Therefore, if we just need

a SLAM solution, the HoloLens is a good option.

2.11 Google Glass and Microsoft HoloLens

Google Glass has been tested in a wide range of medical applications since 2014.

Muensterer et al. explored its use in pediatric surgery, and concluded that the Glass

had some utility in the clinical setting [66]. However, substantial improvements were

needed prior to actual development in the medical field related to data security and

specialized medical applications [66]. Other applications include Glass being used
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for Disaster Telemedicine triage, but no increase in triage accuracy was found [67].

Mentoring was also studied in which recorded videos were played with Google Glass

[68], while a similar approach was used to enable telemedicine communication [69].

Research has also explored pre-hospital care, in which Glass acted like a console

for transferring patient data [70]. However, Glass could not show any advantage

compared to mobile devices in this study.

Due to its novelty, research literature using the Microsoft HoloLens (released in

2015) is still scarce, especially in the medical field. Nan Cui et al. [71] have used it

in near-infrared fluorescence-based image guided surgery in which the HoloLens was

used to provide vital information such as location of cancerous tissue to the surgeon.

Additionally, in [72] the HoloLens was used to elicit gestures for the exploration of

MRI volumetric data.

The design and the overview of the system will be presented in Chapter 3.
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Chapter 3

System Design and Overview

In order to test the possibility that the HoloLens can be used in the field of remote

ultrasound training, we developed several prototypes covering different approaches of

telecommunication technologies. Those prototypes demonstrated different shortcom-

ings, which illuminated a feasible solution to the problem. With the help of those

prototypes, we proposed a final design to use of the HoloLens in a telemedicine ap-

plication. Further detail about those prototypes can be found in Appendix B. An

important technical aspect of the implementation is the video streaming solution we

chose for use with the HoloLens. Appendix C discusses this aspect in more detail.

3.1 Final Design

For our final design, we took the following observations and requirements into account:

• Latency is an important factor in the quality of the teleconference experience

and should be kept to a minimum.
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• Voice communication is critical for mentoring. Video conferencing within the

AR without two-way voice communication was found generally less valuable.

• Immersive VR HMD for the mentors creates more challenges and requires sig-

nificant technical development prior to enhancing telemedicine.

• The simplicity and familiarity of conventional technology for the mentor was an

important aspect that should remain in the proposed solution.

• Remote pointing and display of hand gestures from the mentor to the trainee

would be helpful for training purposes.

• Specific to ultrasound teaching, a hologram with a hand model provided addi-

tional context for remote training.

We proposed a design in order to address the requirements above through the

following implementation:

1. The Leap Motion sensor was used to capture the hand and finger motion of the

mentor in order to project into the AR space of the trainee.

2. Three static holograms depicting specific hand positions holding the ultrasound

probe was generated and controlled by the mentor using the Leap Motion.

3. MRC (video, hologram and audio) was streamed to the mentor while the men-

tor’s voice and hologram representations of the mentors’ hand(s) was sent to

the trainee to support learning.
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4. Hand model data captured by Leap Motion was serialized and bundled together

with the mentor’s audio at a controlled rate to minimize latency while main-

taining adequate communications.

3.2 System Overview

3.2.1 The Mentor’s End

We implemented an application using the Unity game engine. The final application

was run on a laptop PC with a Leap Motion sensor attached to it. The hand gestures

were captured and manipulated using the Leap Motion SDK v3.1.3. There are four

different ultrasound probe holding postures needed for remote ultrasound teaching.

Different hand gestures would be recognized as one of four holding posture from the

mentor’s side, as shown in Figure 3.1. Buttons that represent different gestures were

also displayed for clicking as an alternative to compensate in case of malfunction of

gesture recognition. The data from the Leap Motion was sent to the application and

then serialized and compressed. We used a Logitech headphone to eliminate the pres-

ence of audio echo and to emphasize the remote sounds by keeping the surrounding

noise to a minimum. The audio data from the headphone was also captured and en-

coded using the A-law algorithm. The computer exchanged data with the HoloLens

located in a separated simulated ER (details below). The MRC video received from

the HoloLens was rendered and played by a free add-on to stream video to texture

using VLC media backend [73].
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Figure 3.1: Mentor side of view. A live mixed reality view displaying with buttons.

3.2.2 The Trainee’s End

We developed another application using the Unity game engine with HoloLens sup-

port. The hand models were created based on the Leap Motion Unity asset Orion

v4.1.4. Several preliminary Unity 3D objects (cubes, cylinders, spheres) were com-

bined to represent an ultrasound transducer being held in a hand model, as shown

in Figure 3.2. The orientation and position of the hand were simulated through the

data received from the mentor’s side. The audio data was decoded and played. The

MRC live video was captured through Microsoft’s Device Portal REST API [22, 74].
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Figure 3.2: Trainee side of view. a) four holograms represent different posture. b)

skeletal hand view on the HoloLens. c) real hologram view on the HoloLens.

3.2.3 Settings

The MRC video from the trainee was captured and broadcasted by a built-in web-

server running in the HoloLens. The hand data and audio data from the mentor

were transmitted using Unity’s built-in multiplayer networking system called UNET.

Both the HoloLens and the laptop were connected through a local area network. An

overview of the system is shown in Figure 3.3. During the experiment, the mentor

and the trainee were in separate rooms to perform a simulated teleconference session.

Figure 3.3: Overview of the system pipeline
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Chapter 4

Experimental Validation

Point of Care Ultrasound (PoCUS) represents a complex medical procedure usually

performed under extremely stressful circumstances. In-person, hands-on training is

highly effective, but this remains a significant challenge for rural practitioners seeking

initial training or maintenance of skill. The combination of Microsoft’s HoloLens and

Leap Motion represents an AR platform capable of supporting remote procedural

training. In this research, we have performed a pilot user study to explore the feasi-

bility and user experiences of novice practitioners and a mentor using AR to enhance

remote PoCUS training and compare the performance to a standard remote training

platform.
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4.1 Methods

4.1.1 Participants

Twelve first and second year medical students with minimal PoCUS experience were

enrolled in the pilot study. Minimal experience is defined as having previously per-

formed 5 or less PoCUS scans. Data from a recent remote PoCUS training study

involving a similar study design and cohort but with different participants is used

for baseline comparison. Further details about the reference setup are introduced

in the next section. One mentor guided all medical students in order to maintain

consistency across subjects.

4.1.2 Experimental Control

We compared our solution against one of the configurations most commonly used

for telemedicine today, which we refer to as a “full telemedicine setup”, and which

is used as the experimental control to validate our system. This setup consists of a

full overhead view of the whole patient room captured through a PTZ camera near

the ceiling and a second view of the patient captured from a webcam placed on the

ultrasound machine. Both cameras were live streaming together with the ultrasound

screen view from the remote side to the mentor side. VSee (Vsee Lab Inc.) was used

for this secure, high-resolution and low-bandwidth video-conferencing task. Both

mentor and trainees were wearing a headset to facilitate comunication.
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4.1.3 Procedure

Each subject was asked to complete a right upper quadrant Focused Assessment using

Sonography in Trauma (FAST) ultrasound examination on a healthy volunteer under

the guidance of an experienced mentor (the same as in the study) while wearing the

Microsoft HoloLens. In addition to verbal guidance, the mentor provided remotely

a physical demonstration of hand position and proper exploration procedures using

the Leap Motion. Performance of the trainee was independently observed and graded

by a PoCUS expert using a Global Rating Scale (GRS). Participants and the mentor

each completed a short Likert survey regarding the utility, simplicity and perceived

usefulness of the technology. Cognitive load was assessed using time to perform the

task, mental effort and task difficulty rating. A similar approach was used to collect

comparison data for remote PoCUS training using standard telemedicine technology

during a prior study. Informed written consent was provided prior to participation.

4.1.4 Ethics Approvals

The study design was reviewed and approved by the Health Research Ethics Author-

ity (HREA) at Memorial University, and found to be in compliance with Memorial

University’s ethics policy (HREA Code: 20161306).

4.1.5 System Setup and Performance

Subjects were asked to wear the HoloLens prior to the start of the procedure. A

curvilinear probe (1-5 Mhz) connected to a portable ultrasound (M-Turbo, Sonosite-

FujiFilm) was used to perform the FAST examination. The ultrasound was connected
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to a laptop (Macbook Air, Apple) via a framegrabber (AV.io; Epiphan) and live-

streamed over a local-area network via a standard communications software (VSee).

Ultrasound streaming was both hardware and network independent from the HoloLens

communications. The mentor was asked to wear a Logitech UE4500 headphone con-

nected to a Windows PC. A Leap Motion was attached to the PC. The HoloLens and

this PC were connected via a local-area network.

4.1.6 Data and Analysis

The GRS developed by Black et al. was used to objectively assess student perfor-

mance on the FAST examination [75]. Students and the mentor were surveyed upon

completion of the task using both a short Likert survey and open-ended feedback.

Cognitive load was assessed using a combination of time taken for task completion

and Likert questions. Participants provided a cognitive load and task difficulty mea-

sure for each scan, and completed a general information feedback questionnaire for

the study. Data were entered into SPSS for analysis. An Independent-Samples T-Test

was used for each analysis.

4.2 Results

4.2.1 Trainees

As can be seen in Figure 4.1, the feedback from the 12 participants assigned to use

the HoloLens as their telemedicine tool was positive. They felt excited when using

this new technology, and considered it useful for the study. Although there was a
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slight trend toward Full Telemedicine being superior to the HoloLens setup, there

wasn’t a statistically significant difference between HoloLens and Full Setup for the

questions “The technology was easy to use”, “The technology enhanced my ability

to generate a suitable ultrasound image” and “The technology was overly complex”.

The numeric values are shown in Table 4.1.

Figure 4.1: Trainee’s opinions on the efficacy and difficulty of the HoloLens and Full

Telemedicine Set-Up

4.2.2 Mentor

From the mentor’s perspective, however, the technology did not reach expectations.

For all categories from the mentor’s perspective, the Full Telemedicine setup was

significantly superior. A detailed comparison is shown in Figure 4.2, and the numeric

34



Table 4.1: Trainee’s opinions on the efficacy and difficulty of the HoloLens and Full

Telemedicine Set-Up

HoloLens Full Telemedicine Set-Up

Score Out of 5 Score Out of 5 P-Value

(Standard Deviation) (Standard Deviation)

The technology was 4.08 (0.90) 4.67 (0.49) 0.065

easy to setup and use

The technology

enhanced my ability 4.50 (0.67) 4.58 (0.51) 0.737

to generate a suitable

ultrasound image

The technology was 1.92 (0.79) 1.42 (0.51) 0.081

overly complex
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values are shown in Table 4.2. It is important to note that there was only one mentor,

so the results may have an inherent bias and cannot be generalized. However, it is

still clear that the mentors’ assessment of the technology was worse. The reason why

this would happen is vital for making improvements in the future work. The study

was paused frequently due to technical issues, which can be considered as the first

negative factor to the mentor. Some students were not familiar with the HoloLens and

the mentor should sometimes acted as a technician to provide them with guidance.

This additional task would also be another key to the problem. Finally, the mentor

was accustomed to traditional user interfaces such as buttons and keyboards rather

than new ones such as gesture and speech. All these factors should be evaluated and

covered in the future version.

Figure 4.2: Mentor’s opinions on the efficacy and real-life application of the HoloLens

and Full Telemedicine Set-Up
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Table 4.2: Mentor’s opinions on the efficacy and real-life application of the HoloLens

and Full Telemedicine Set-Up

HoloLens Full Telemedicine Set-Up

Score Out of 5 Score Out of 5 P-Value

(Standard Deviation) (Standard Deviation)

I was able to

telementor the 2.92 (1.00) 3.67 (0.65) 0.04

student effectively

The technology was

effective in enhancing 2.50 (1.17) 3.75 (0.45) 0.004

remote ultrasound

training

I would be able to

mentor a trainee in a

real-life stressful 2.25 (1.14) 3.42 (0.67) 0.007

situation with this

technology

4.2.3 Global Rating Scale (GRS)

From the expert evaluator’s scores on the GRS for right upper quadrant exam, there

was no significant statistical difference (p = 0.534) between the HoloLens application

(2.75, SD = 0.62) and the full telemedicine setup (2.91, SD = 0.67) (Table 4.3).
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Table 4.3: Global Rating Scale for right upper quadrant exam of the HoloLens and

Full Telemedicine Set-Up

HoloLens Full Telemedicine Set-Up

Score Out of 5 Score Out of 5 P-Value

(Standard Deviation) (Standard Deviation)

Preparation for 2.92(0.79) 3.00(0.60) 0.775

Procedure

Patient Interaction 3.00(0.43) 3.08(0.51) 0.670

Image Optimization 3.00(0.60) 3.08(0.51) 0.719

Probe Technique 2.83(0.58) 2.83(0.72) 1.000

Overall Performance 2.75(0.62) 2.91(0.67) 0.534

4.2.4 Response time, mental effort and task difficulty ratings

We noticed that participants using the HoloLens application took much longer to

finish the procedure (mean difference of 2.5 minutes) than participants completing

the standard telemedicine setup (Figure 4.3). The time difference between the two

was statistically significant. (p = 0.01). However, trends appeared to suggest that

participants felt it was easier to use the HoloLens application to perform an ultrasound

scan as the mental effort rating and task difficulty rating were lower than the full

setup, though there was no significant difference between the groups (see Figure 4.4

and Table 4.4).
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Figure 4.3: Trainee’s Response time for the HoloLens and Full Telemedicine Set-Up

Figure 4.4: Trainee’s perception of mental effort and task difficulty for the HoloLens

and Full Telemedicine Set-Up (Mental effort and task difficulty were scored out of 9)

39



Table 4.4: Trainee’s perception of response time, mental effort and task difficulty for

the HoloLens and Full Telemedicine Set-Up

HoloLens Score Full Telemedicine Set-Up Score P-Value

(Standard Deviation) (Standard Deviation)

Response Time 536.00 (142.11) 382.25 (124.09) 0.010

(Seconds)

Mental Effort 3.83 (1.59) 4.58 (1.73) 0.280

Score out of 9

Task Difficulty 3.42 (1.31) 4.25 (1.66) 0.186

Score out of 9
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Chapter 5

Discussion

5.1 The Performance of the System

As described earlier in the Results section, there was no significant difference in

overall trainee performance according to the expert evaluator. Also, the trainee rated

mental effort and task difficulty slightly lower for the HoloLens, which suggested

that the HoloLens application could potentially make the task easier, though there

was not a statistically significant difference. However, the effectiveness of the system

was rated low by the mentor. This suggests that the mentor felt it was harder to

provide guidance with this setup. Furthermore, the HoloLens group took an average

of 2.5 minutes longer to complete the ultrasound exploration compared to the full

telemedicine group. This may be caused by frequent malfunction and bad connection

quality of the HoloLens. During the study, the system did not perform as well as

expected.

There were several problems with the HoloLens that impacted the user experience.
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For example, some trainees felt that the HoloLens was too heavy and found it painful

to wear. Most participants felt uncomfortable with the nose pad in particular. The

nose pad should actually never be place where the weight of the device relies, because

the device is too heavy. Instead, the HoloLens should be worn as a headband, so

that the skull carries the weight of the device. Furthermore, some participants could

not find a suitable fit to their head, as they had a smaller skull than the smallest

fit available in the device. Even though the HoloLens has a decent field of view of

120 degrees horizontally, for many users this is still too narrow. This is particularly

relevant if we consider that the entire human field of view is 210 degrees [76]. This

greatly influenced the user experience for all the participants.

In the HoloLens, a stereoscopic image pair is projected to the user [77]. However,

the mentor’s display is just a 2D screen without stereoscopic vision. This drawback

affects the performance for remote pointing, as the mentor may lose the sense of

depth. Another limitation was that the HoloLens could last for only approximately 4

participants or about 100 minutes before having to be charged again. One participant

even had to finish the study with a connected charging cable. Another issue experi-

enced was that the HoloLens would sometimes quit the current running application

when the user was looking towards a dark area. The application would also quit

when the user’s hand movements were accidently recognized as the “bloom” gesture,

which would quit the current application and open the Start menu. On the other

hand, some participants enjoyed using the HoloLens. In particular, they liked how

the open and non-occluding system allowed them to perform other activities while

wearing the HoloLens. They were able to finish survey forms, answer their phone and

talk to others without removing the device. Some participants with VR experience
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also mentioned that wearing the HoloLens would not cause them to get dizzy like

other VR devices.

Further details about the limitations of the system are discussed later in this

chapter (see Section 5.4);

5.2 General Insights

Though we chose to perform the telementoring for a specific area of telemedicine (ul-

trasound training), most of our results have the potential to inform other applications

across various disciplines and areas. We learned that, for building a communication

application, the quality of connection (latency) would be the first problem noticed

by an operator [78, 79]. During the experiment, we noticed that traditional user

interfaces such as buttons and keyboards were more reliable compared to new ones

such as gesture and speech. For inexperienced users, if the new user interfaces worked

improperly only one or two times, they may abandon them. The HoloLens still has

some limitations and is not yet ready for practical application. However, the idea

of presenting 3D objects in addition to one’s vision may still be beneficial in var-

ious scenarios such as virtual fitting dressing room, remote presenting and remote

teaching. We also learned that the performance was not always improved with new

technology, as this AR setup did not show statistical difference when compared to

a low cost setup. On the other hand, these type of systems have the potential to

become a helpful tool in telemedicine, just like the full telemedicine set-up, if we can

make them more robust and lightweight.
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5.3 Privacy

Most patients are willing to have their doctor use face-mounted wearable comput-

ers, even when unfamiliar with the technology [80]. However, some patients have

expressed concerns about privacy, which can certainly be a concern when a camera

is pointing directly at them [80]. In this research, we serialized hand and audio data

prior to network transmission. Compression and encryption can also be added into

the serialization process. Furthermore, MRC is protected by a username and pass-

word combination. This setup provides a basic protection to the patient’s privacy.

However, all the data is transmitted through the Internet, which may make it vul-

nerable to hackers. The privacy regarding recording is also another concern when a

videoconference is established.

5.4 Limitations

There were many limitations to this pilot study. First of all, the experiment was not

under entirely real circumstances, as the connection was established in a local area net-

work. The reason for using a local network was to provide a dedicated bandwidth and

not rely on the variability of the university local area network, which was important

to support the high bandwidth requirements of the application. Another limitation

would be the technical problems that happened in the testing environment. Next,

every participant reported different levels of discomfort with the HoloLens, which

negatively impacted the experience. Also, only one mentor was involved in the study,

so the mentor gradually familiarized himself with the whole setup, which may have
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caused an increasing trend in performance across trials due to the learning effect.

Finally, the results could be biased due to a low sample size. Time and budget lim-

itations forced us to have a small study. Future studies could measure performance

using only one assessment which might save a substantial amount of time.

During the study, the mentor was able to indicate desired hand position through

the Leap Motion sensing technology. After 5 participants used the system, however,

Leap Motion appeared to be working improperly. It was unable to recognize and

provide the orientation of the hand correctly. It is still unknown why this occurred.

However, when we unplugged the Leap Motion sensor for a while, the problem can

be solved. The study was then paused until the Leap Motion was working correctly

again. For the next study, we plan to have multiple Leap Motion sensors to avoid

this issue.

Most participants also found it difficult to locate the holograms (3D models). We

put hand models at a fixed position and enabled the mentors to reset it to the trainee’s

current field of vision remotely. The trainee could also reset it by voice command.

However, when a participant could not find the model, often times the participant

would move their head rapidly in order to locate the model. This behaviour made

the reset task even more difficult for the mentors. Additionally, the audio data was

not streamed from the mentor to the HoloLens. Normally, a network connection will

be created between two sides of network users, and network data will be sent byte by

byte quickly. This is network streaming, which is considered a good way to transfer

data. However, in our system, the audio was sent progressively after a short period.

This may have required more bandwidth and lead to a higher latency. We believe

that the latency should be considerably improved if we create network streaming with
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better protocol and hardware environment. Microsoft just released a project called

Mixed Remote View Compositor, which provides the ability to incorporate near real-

time viewing of mixed reality view. It is achieved through low level Media Foundation

components, which tends to resolve the MRC latency problem with Dynamic Adaptive

Streaming over HTTP (DASH), as discussed in the Appendix C.

5.5 Future Work

In the user study, we noticed that the quality of the connection, in particular, the

latency, was the key reason for poor performance. The latency came from two sides.

First, the audio data was progressively transferred together with the hand data

from the mentor to the HoloLens instead of streaming. We believe that the latency

should be considerably improved if we create a network streaming with better protocol

and hardware environment. Microsoft released a Sharing server in their HoloToolkit

project on Github.com. It allows applications to span multiple devices, and enables

collaboration between remote users. The server runs on various platform, and can

work with any programming language.

Second, the built-in Mixed Reality Capture (MRC) function is achieved by HTTP

progressive download. The mixed reality view is continuously being recorded for a

short period of time into a series of video files, and then exposed on the built-in

web server (also known as the Device Portal) on the HoloLens. After that, other

applications can then access the web server, download and play the recorded serial

video files progressively. This method is suitable for live broadcast applications, but

inappropriate for an application with instant communication requirements.

46



With the help of these projects, we improved our system, redesigned the whole

networking connections, and reduced the latency from 2-3 seconds to less than 500

millisecond. The bandwidth requirement for this design is also reduced to 4 Mbps,

which suggests the possibility to run this system under the LTE network.

The way to present the hand model is also changed. The hologram with a hand

model will now be presenting right in the middle of the users’ vision. Together with the

latency, this improved version greatly changes the user experience. Figure 5.1 shows

the pipeline of the improved system. To evaluate the effect of these improvements,

a new user study will be performed to evaluate the performance of users under the

improved system.

Figure 5.1: Overview of the improved system pipeline
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Chapter 6

Conclusions

We have presented the design and implementation of an ultrasound telementoring

application using the Microsoft HoloLens. Compared to available telementoring ap-

plications that mostly include visual and auditory instructions, the system introduced

here is more immersive as it presents a controlled hand model with an attached ul-

trasound transducer. Compared to other gesture based AR system, our system is

easier to setup and run. The trainee is wearing an AR headset and following voice

instructions together with the mentor’s transported hand gestures. The pilot user

study with 12 inexperienced sonographers (medical school students) demonstrated

that this could become an alternative system to perform ultrasound training. How-

ever, the HoloLens still needs to be improved, as every participant reported differ-

ent levels of physical discomfort during the study, and an assistant must ensure the

device is properly worn. In addition, the global rating scale used by an expert eval-

uator suggests that the trainees’ performance is slightly worse using the HoloLens

compared to the standard telemedicine setup with no significant statistical differ-
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ence. Furthermore, the response time for the HoloLens application is longer than

the other setup. Finally, the single mentor reported that the task became harder

when using the HoloLens. A new system with significant improvements has the po-

tential to be a feasible telemedicine tool, and we plan to evaluate this with a full user

study in the near future. Part of this work has been submitted to journal Sensors (

http://www.mdpi.com/journal/sensors). Other applications which could be stud-

ied in future research include other training systems and exploratory adventures in

uncharted territories, such as creating an interactive social network application on

the HoloLens.

Main Contributions of this Research

There are several components involved in this research, exploring the possibilities in

different directions. The main contributions of this research are shown below:

• We have developed one of the first telemedicine mentoring systems using the

Microsoft Hololens. We then demonstrated its viability and evaluated its suit-

ability in practical use through a user study.

• We have tested various techniques and ported together inside the HoloLens,

including: overlaying the holograms; controlling the hologram using a smart

phone; implementing a videoconference with minimal latency; projecting Leap

Motion recognized gesture inside the HoloLens. All these attempts are mean-

ingful and useful for HoloLens-related developers due to its novelty.

• We have found that the performance of a telecommunication application is not
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always improved with new technology, as the AR setup using the Hololens and

Leap Motion did not show significant statistical difference when compared to a

low cost setup.

• Until August 2017, the documentation about HoloLens development is still

scarce. When you plan to develop a new application under the HoloLens, lack

of support is a primary problem right now. We have provided a large amount

of support material to follow up on this work, which should be considered as a

valuable asset for researchers.

Above all, the most difficult part of this research would be the hand-shape holo-

gram control part. We should gather the recognized hand data from the Leap Motion

controller, serialize and transfer it to the HoloLens side, and then interpret the re-

ceived serialized data into a hand-shape hologram. All of these work were done

without enough documentation. After that, emerging this part together with Mi-

crosoft’s github projects was also important for finally completing this work, as those

github repositories were still under development.

Figure 6.1: A novel augmented reality telemedicine platform involving real-time re-

mote pointing and gesture capture (Professor Andrew Smith and Professor Michael

Parsons). For video example and further information, please see Appendix A.
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Appendix A

Video and Development Related

• A video about this study is available online at http://www.wsycarlos.com/

teleholo_video.html.

• To provide an overview of the lessons learned in this research, the advantages

and disadvantages of the different prototypes attempted to reach our proposed

solution are illustrated in Appendix B.

• Specific technical details about the video streaming solutions explored for the

HoloLens are discussed in Appendix C.

• Source code of the whole project can be accessed via https://bitbucket.or

g/wsycarlos/mrcleaphand.

There are several projects and plugins involved in the implementation of our study.

They played an important role in the implementation of this research:

• Mixed Remote View Compositor in HoloLensCompanionKit:
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https://github.com/Microsoft/HoloLensCompanionKit/tree/master/Mixe

dRemoteViewCompositor

• Sharing Sever in HoloToolkit:

https://github.com/Microsoft/HoloToolkit/tree/master/Sharing

https://github.com/Microsoft/HoloToolkit-Unity

• Leap Motion for Unity Development

https://developer.leapmotion.com/unity

• AVPro Video plugin developed by RenderHeads

http://renderheads.com/product/avpro-video/

If you still have any questions, please contact sw7164@mun.ca for detail informa-

tion. Thank you.
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Appendix B

Development of a Telemedicine

Prototype Using the Hololens

B.1 Gyroscope-controlled Probe

In order to test the possibility that the HoloLens can be used in the field of remote

ultrasound training, we developed an initial prototype simulating a virtual ultra-

sound transducer on the HoloLens with its orientation controlled by the gyroscope

inside a mobile phone (Figure B.1). A hologram of an ultrasound transducer was

projected within the trainee’s field of view while the gyroscope was accessed in an

Android phone. The orientation information of the phone was live-streamed to a lo-

cal HoloLens. The orientation data enabled the hologram to be adjusted accordingly.

The basic objective was to demonstrate that a mentor could represent a motion or

gesture in the HoloLens AR space and provide user feedback.

This early-stage prototype was deployed on the HoloLens with 10 participants
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agreeing to do a pilot test of the application. The research protocol involving hu-

man subjects for this and other related trials was reviewed and approved by the

Health Research Ethics Authority in St. John’s, Newfoundland and Labrador. Each

participant used the system for 5 minutes prior to providing general feedback. One

participant indicated that “having virtual objects around the actual environment is

so cool”. Most people felt they were able to gain some additional information without

extra effort. However one concern highlighted the challenges associated with how the

trainees should actually hold the ultrasound probe. This resulted in the addition of a

hand model to the virtual transducer. Other feedback highlighted the importance of

two-way communications, ability to manipulate the probe in 3-D space (as opposed

to simply roll, pitch, yaw), and the importance of capturing hand as well as probe

motion.

Figure B.1: Virtual Probe controlled by the gyroscope located in the mobile phone.

Remote drawing can also be achieved by drawing on the screen of the phone.
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B.2 Video Conferencing

Feedback from the first prototype prompted us to consider a video conferencing ap-

plication (Figure B.2) between the HoloLens and a desktop computer. Microsoft

provides a built-in function called Mixed Reality Capture (MRC) for developers. The

HoloLens can create an experience of mixing the real and digital worlds, with the

MRC becoming a valuable tool to capture this experience from a first-person point of

view. The lack of compatibility between the HoloLens and video streaming protocols

is the chief obstacle of this video conferencing task. All immersive apps built for the

HoloLens run on the Universal Windows Platform (UWP) and hence, are required to

be built with the Unity Engine. Unity owns the “Asset Store” which contains many

free and paid plugins. However, the HoloLens is a new product with limited access

and no related video plugins available in the Asset Store yet. Finally, after several

failed attempts (more detail in Appendix C), a plugin developed by RenderHeads

called AVPro Video was located. AVPro Video provides powerful video playback

solutions on various platforms including the HoloLens.

Our team created a video conference in the lab using a local area network and

again sought user feedback. During this iteration, the participants had difficulty

focusing on performing the ultrasound procedure with a video-feed streaming in their

field of view. It was deemed uncomfortable to have both a video and a dynamic

probe hologram simultaneously. Furthermore, the latency of the live-stream video,

which could reach as high as 10 seconds, was unacceptable. On the other hand,

attempting to use an MRC tool would cause the system to reduce the rendering

to 30Hz, and would also cause the hologram content in the right eye of the device
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to “sparkle” [74, 81], which would be an undesirable artifact. The HoloLens was

unable to maintain sufficient rendering quality with the MRC enabled, subsequently

explaining the increased latency during a video decoding task. For this reason, the

team concluded that video conferencing was not a suitable choice for the HoloLens

and its Holographic Processing Unit (HPU) at the time.

Further details about video streaming on the HoloLens can be found in the Ap-

pendix C.

B.3 AR together with VR

Armed with new knowledge and experience learned from previous attempts, we hy-

pothesized that the 3D appearance of the remote environment could be captured by

the HoloLens and represented locally to an expert observer wearing an immersive

VR HMD (the Oculus Rift). Such an immersive telepresence interface [57, 58] had

the potential to enhance the mentors’ sense of presence. The MRC live video was

broadcasted from the HoloLens’ first-person perspective through a built-in web server

on the HoloLens. The Wowza Streaming Engine [82] was chosen to re-broadcast the

MRC video using the Real Time Streaming Protocol (RTSP). MRC video was trans-

ferred and played to the mentor using the VR headset, recreating the first person

view for the mentor in an attempt to provide a high sense of telepresence.

Figure B.3 shows a sample of the mixed reality view of a hologram (a dog) inside

a VR headset.

Feedback from this system pertained mainly to the mentor’s experience. The

expectation was that the mentor, wearing the VR headset, would be able to adjust

68



Figure B.2: Videoconferencing, with the HoloLens, was displayed on a floating mesh.

their view by moving their head. In this iteration, the VR headset simply acted as

a monitor displaying the HoloLens’ perspective. This resulted in the remote trainee

being the individual controlling the expert’s view while requiring additional guidance

on where to look. Anecdotally, this appeared to increase the cognitive load on both

the trainee and the mentor and occasionally triggered VR sickness symptoms due

to the visually-induced perception of self-motion. Finally, the mentor indicated that
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he was significantly more comfortable with traditional input methods such as mouse,

keyboard and touch rather than a new type of user interface such as voice and gesture.

Figure B.3: Displaying a mixed reality view of a hologram inside a VR headset.

Prior to the study, several streaming protocols had been used to implement pro-

totypes. In the Appendix C, those protocols will be introduced.
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Appendix C

Video Streaming on the HoloLens

Prior to the study, when we tried to implement a videoconferencing application on the

HoloLens, several streaming protocols [82] were tested. All holographic applications

built for the HoloLens run on the Universal Windows Platform (UWP). The Unity

Engine was the default option for this task. The Unity Engine is mainly designed

to develop games, and lacked adequate support related to video playback for the

HoloLens. The “Asset Store” contains many plugins that can do this job. However,

the HoloLens is a new product with limited access and most video plugins cannot

work properly on the HoloLens. The compatibility of the HoloLens was becoming a

problem for this videoconferencing task. We performed several experiments to find a

best solution. Some details are listed below.

C.1 Web Real Time Communication (WebRTC)

Web Real Time Communication (WebRTC) is the latest protocol for real-time video

streaming, but it is still an experimental project. It is fast, low latency and compatible
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with the newest browsers. The problem was how to integrate it into Unity. We tried

different ways to make it work inside Unity, but failed. The first attempt was to

use a WebGL build in Unity. WebGL is still a project in development, and is not

compatible with the HoloLens. The performance of this implementation was not quite

good. An empty scene with a cube required more than 20 seconds to load on a new

iPhone, and at a frame rate no better than 15 frames per second (fps). The second

thought was to embed a browser (web-view) inside a .Net application. However, it

was hard to find a good framework. Several frameworks were written for web-view

function, but either were not compatible with HTML5 elements or only worked on

Unity Windows PC.

C.2 HTTP Live Streaming (HLS)

HTTP Live Streaming (HLS) was the first protocol that worked in our experiments.

We could use either Open Broadcaster Software (OBS) or ffmpeg (video encod-

ing/decoding library) to capture the stream for HLS. Nginx web server and nginx-

rtmp-module with HLS support was used as the server. It is fast, smooth, high-

resolution, compatible with almost every platform (works perfect on Windows, OSX,

iOS, Android, HoloLens as well as browser). The problem was the prior delay for

every stream, because it needs to slice the video into small parts. If the parts are too

small, it would require more CPU usage, while if the parts are large, then the latency

would become quite high.
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C.3 Real-Time Messaging Protocol (RTMP) and

Real Time Streaming Protocol (RTSP)

Real-Time Messaging Protocol (RTMP) and Real Time Streaming Protocol (RTSP)

were the next two we tried. Open Broadcaster Software (OBS) or ffmpeg (video

encoding/decoding library) were also acceptable for capturing the stream for RTMP

and RTSP. Nginx web server and nginx-rtmp-module could also be used as the server.

They were fast, smooth, high-resolution and low latency. The problem was the com-

patibility. For RTMP, it required a flash player on the client side, which made it

inaccessible on many platforms, and hard to integrate into Unity. We had tried to

use FluorineFx, a framework made RTMP compatible with Microsoft .Net. It was

obsolete with a lot of errors, not very helpful. For RTSP, some plugins provided the

support to play it under the Unity environment. However, most of them were not

designed for the HoloLens.

We finally found a plugin developed by RenderHeads called AVPro Video, which

provided powerful video playback solutions on various platforms including the HoloLens.

HTTP Progessive Streaming, HLS and RTSP were all supported on the HoloLens.

With RTSP protocol, the latency caused by the video streaming was eliminated.

However, the latency caused by the Mixed Reality Capture was still significant in

video conferencing.
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C.4 Dynamic Streaming over HTTP (DASH)

Media Foundation is a video engine developed by Microsoft. It is designed to provide

video playback support for the Universal Windows Platform (UWP). This is the

native video support for the HoloLens. We could add playback of adaptive streaming

multimedia content to UWP apps using Media Foundation. This feature currently

supports playback of HTTP Live Streaming (HLS) and Dynamic Streaming over

HTTP (DASH) content. For HLS, the latency is the problem. Therefore, DASH

was chosen in the end. The Mixed Remote View Compositor project released by

Microsoft is used in our upgraded version, which provides the ability to incorporate

near real-time presenting of mixed reality view. It is achieved through low level

Media Foundation components. The video feed is captured through the camera on

the HoloLens, and then mixed with the virtual 3D objects. After that, the DASH

protocol is used to stream the final mixed reality video. With all these efforts, a low

latency mixed reality playback is finally achieved.
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