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Abstract

A major drawback of most Head Mounted Displays (HMDs) used in immersive

Virtual Reality (VR) is the visual and social isolation of users from their real-world

surroundings while wearing these headsets. This partial isolation of users from the

real-world might hinder social interactions with friends and family. To address this

issue, we present a new method to allow people wearing VR HMDs to use their

smartphones without removing their HMDs. To do this, we augment the scene inside

the VR HMD with a view of the user’s device so that the user can interact with

the device without removing the headset. The idea involves the use of additional

cameras, such as the Leap Motion device or a high-resolution RGB camera to capture

the user’s real-world surrounding and augment the virtual world with the content

displayed on the smartphone screen. This setup allows VR users to have a window to

their smartphone from within the virtual world and afford much of the functionality

provided by their smartphones, with the potential to reduce undesirable visual and

social isolation users may experience when using immersive VR HMDs.

This work has been successfully submitted for presentation as a poster in the

Computer and Robot Vision Conference 2017 in Edmonton, Alberta, and is scheduled

to appear in the conference proceedings at the IEEE Xplore digital library later this

year.
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Chapter 1

Introduction

Virtual Reality (VR) Head Mounted Displays (HMDs) have become increasingly pop-

ular among a wider segment of the population [1] thanks to the availability of low-cost

hardware and sophisticated game engine software. A major part of the credit goes to

products such as the Oculus Rift [2], HTC Vive [3], Samsung Gear VR [4], PlaySta-

tion VR [5], Google Cardboard [6] and similar technologies, which have extended the

accessibility of immersive VR to a wider segment of the population. These consumer

devices provide a rich, interactive and immersive VR environment by offering low-

cost, high-resolution stereoscopic images, wide field of view and, in some cases, high

graphics quality. In addition, the use of Virtual Reality Head Mounted Displays (VR

HMDs) is increasingly being applied in gaming, immersive and collaborative data

visualization [7, 8], archaeology [9, 10], training [11, 12], and rehabilitation medicine

[13, 14, 15].
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1.1 Motivation

Although VR HMDs are designed to provide an immersive environment where users

feel they are part of, or inside a virtual environment, a major drawback of most

immersive VR HMDs is that users cannot see and sometimes cannot hear their sur-

rounding environment, partially becoming isolated from the real world [16, 17]. Even

small tasks like finding the keyboard or picking up a phone call can become difficult

when wearing a VR HMD [18, 19], and might lead to temporary isolation, where users

are not able to get in touch with their friends and family while immersed in the VR

space. One can argue that the mentioned difficulties can be avoided by having the

users remove their HMDs, but such an interruption might have a negative effect on

the VR experience or its outcomes, which might not be warranted, for instance, if a

user just needs to check out a message or talk on the phone.

In the current world of social networks, users have a strong urge to be in touch

with their friends and family through social media. According to statistics published

in [20], more than 2.3 billion people are active social media users. Among them,

1.9 billion users engage with social media using a mobile device. In the absence

of communication software built inside the VR, each time a user needs to use the

smartphone to get in touch with friends and family or check for messages, the user

needs to remove the HMD, which might deteriorate the VR experience. Through

Mixed and Augmented Reality, additional devices such as an RGB camera attached

to the HMD can be used as a window to the real world. However, finding the balance
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of Real and Virtual imagery that must be shown to the users is still hard, and it

might still be difficult to read and perceive the text displayed on a smartphone when

it is captured through an RGB camera and rendered through a commercial grade VR

HMD. In this research, we will focus on the development of a system to allow users

to interact with their smartphones within the VR world while wearing an HMD.

1.2 Methodology

To address the temporary social isolation of the users from the real world while

wearing a VR HMD, we present a method that enables users to interact with their

smartphone devices so that they can read messages, place calls, and use other apps

while still being immersed in the VR environment. Users would no longer have to

remove their HMD’s each time they need to use their smartphone. To provide a

window to the smartphone, our approach uses an infrared (IR) camera in the form

of the Leap Motion device [21]. The images captured from the Leap Motion device

are processed to detect the presence of the smartphone in the real-world. Once the

smartphone is accurately detected in the real world, the scene in the VR world is

augmented with the view of the user’s smartphone, therefore enabling the users to

use their smartphone without removing the HMD.

The first step to augment the scene inside the VR HMD with a view of the user’s

device is to accurately detect the edges of the smartphone in real-time. A smartphone

is a texture-less object, in the sense that it lacks any repeatable or constant image
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patterns on its screen and/or surface, that can be used by existing feature extraction

approaches to detect and track it. As feature extraction approaches like SIFT [22],

SURF [23] or ORB [24] could not be used, we decided to explore edge-based object

detection to detect the smartphone in real-time and designed an algorithm using some

basic image processing. Our initial algorithm was solely based on image processing

techniques and could successfully detect the smartphone edges in the Leap Motion

images but with a high number of incorrect detections (high false positive rate). We

then decided to explore the use of machine learning approaches to improve the speci-

ficity of our system while maintaining a high recall rate [25, 26]. As the smartphone

detection must be done in real-time and the detection system should not deteriorate

the user VR experience (e.g., by slowing the response of the VR environment), the

machine learning approaches considered had to generate models that could be em-

bedded into the detection system without a lot of computational overhead. Thus,

we assessed the performance of three statistical learning methods that met these re-

quirements: Logistic Regression (LR) [27], Linear Discriminant Analysis (LDA) [28]

and Quadratic Discriminant Analysis (QDA) [29]. A justification of why the above

mentioned three statistical classifiers were considered to improve the specificity of our

system is given in 3.3.1.

In sum, our new device detection system first processes the images obtained from

the Leap Motion device using standard image processing techniques for smartphone

detection. Then, we identify and extract several unique features (attributes) from
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the processed image, and gave these features to the statistical model to discriminate

between correctly or incorrectly detected smartphone edges in the image. Based on

several performance measurements we decided to integrate the QDA model into the

smartphone detection system. Once the new smartphone detection system success-

fully identifies the smartphone edges in the input image, the VR scene is augmented

with the view of the user’s smartphone screen so that the user can interact with the

device without removing the headset.

1.3 Outline

The Thesis is organized as follows: Chapter 2 summarizes the previous work done

in Augmented Virtuality, texture-less object detection and tracking, and previous in-

stances of use of machine learning methods in image processing. Chapter 3 describes

the system setup, devices used, and applications required to make the system work. It

also describes the system design and implementation of the image-based smartphone

detection system (IBSD), and the smartphone detection system using statistical clas-

sifiers (SDSC). Chapter 4 discusses our achievement, presents results and describes

limitations of our system. Chapter 5 lists future enhancements and summarizes our

findings.
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Chapter 2

Background

2.1 Never Blind in VR: Augmented Virtuality to

the rescue

While wearing an HMD, interacting with real world objects is a challenge, as users are

partially isolated from the outside environment. Users cannot perceive most of their

environment because their sight is occluded by the HMD and sometimes they cannot

even hear their surrounding environment if they are wearing headphones inside the

VR [16]. Under these conditions, interacting with other people and finding objects

like desktops and peripherals or a cup of coffee is difficult [18, 19]. Milgram et al.

[30] defined the term ‘Reality-Virtuality (RV) Continuum’, which states that the real

environment and the virtual environment are the two ends of a continuum and should

not be considered as an alternative to each other. One end of the spectrum represents
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the real world which surrounds the user and at the other end of the spectrum lies the

virtual environment which is computer generated. As we move along the spectrum,

either computer generated models are embedded into the real environment or elements

of the real world are embedded into the virtual world. One point along this spectrum

gives rise to a term called ‘Augmented Virtuality’, where elements of the real world are

embedded into the virtual environment [31]. This differs from ‘Augmented Reality’

where virtual images are embedded inside a real world scene. To address the partial

isolation issue, solutions usually involve the use of ‘Augmented Virtuality’. These

solutions embed user’s hands and/or objects that are in close proximity to the user’s

interaction space with the help of a head-mounted RGB camera, a head-mounted

RGBD camera, or a external depth sensing device like Microsofts Kinect [32].

Among the early work that involved combination of real and virtual world elements

in a scene was the SIMNET project [19]. It could overlay real-world objects onto a

virtual world environment, as well as overlay virtual world objects onto a real world

environment. With the help of a head-mounted camera placed on an HMD, the

proposed system was able to provide a window to the outside world from within the

virtual environment. This enabled users to perceive real world objects within the

virtual world. In 2004, Regenbrecht et al. [33] described an Augmented Virtuality-

based videoconferencing system that consists of HMD and an additional RGB camera.

The RGB camera was used to capture video images of the user and track user’s head

at the same time. The captured video was then embedded as a 2D video-plane into
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a virtual 3D space to give users an impression of a videoconference.

A more recent solution that involved the use of ‘Augmented Virtuality’ was pre-

sented in 2009 by Steinicke et al. [34]. The solution presented was able to model

a user’s hands and body inside the virtual environment. It was achieved with the

help of a head-mounted RGB camera with a resolution of 640 x 480. Infrared LEDs

were also mounted on top of the HMD to track the user’s position within the physical

real-world. In 2014, Tecchia et al. [35] and Ha et al. [36] demonstrated a system that

allows the users to see and use their hands and body while interacting with virtual

objects placed around the virtual environment. The demonstrated system consists

of an RGBD camera that captures users hands in real-time and embeds them in the

virtual world. The use of an RGBD camera allows the system to capture a textured

depth image of hands and body which can easily be embedded in the virtual scene.

In 2015, McGill et al. [18] presented a user study to help identify usability challenges

faced by the HMD users. The study involved the use of an external head-mounted

camera and chroma-key image segmentation to embed peripheral devices like the

keyboard in the virtual environment to examine users’ ability to interact with real

world objects. The user study concluded that there is a need to embed aspects of

reality into virtual environments to enhance the interactivity of users with peripheral

devices. A similar implementation that uses an additional head-mounted RGB cam-

era and chroma-keying technique to segment the captured image into foreground and

background has been described in [37, 38, 39, 40].
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Other researchers have been able to address other aspects of the isolation issue

using Microsoft’s Kinect, a depth sensing camera which can provide visual feedback

of the objects that surround the user. The Kinect allows room-wide sensing capa-

bilities, which makes it ideal for user tracking and gesture identification. One such

system was presented by Dassault Systémes [41]. The system presented was success-

fully able to embed 3D point clouds obtained by the Kinect V2 in the user’s virtual

space and display elements of the real world that are in close proximity to the user.

Although the system was not portable, they were able to display point clouds that

represent people present in the same room, allowing people to see each other in the

virtual world and throw and catch virtual objects at each other, partially addressing

the social isolation issue. Another research conducted by [18] that involved a study

of engagement dependent awareness of other people present in the same room was in-

troduced in 2015. Similar to the system presented by Dassault Systémes, the authors

used the Kinect to insert other people’s silhouettes whenever they are within a close

proximity to the user. In order to make it engagement-dependent, the other people’s

outline is initially faded in the VR world and then if the user wishes to engage, the

users became visible in full color.

So far, most of the research done in this area has focused on how to make the

user aware of other users or objects present in close proximity, and little research has

been done to help the user stay in touch with other parts of the real world which

are not in close physical proximity. The main motivation behind this research is to
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allow people to stay in touch with others and their digital life by allowing them to

use their personal computing and communication devices, such as smartphones and

tablets, from inside the VR world without removing their HMD headset.

2.2 Texture-less object detection and tracking

Existing feature-based object detection and tracking approaches like SIFT [22], SURF

[23] or ORB [24], rely on matching descriptor features like blobs, corners or patterns

in texture, but may not be effective in detecting featureless objects [42, 43]. As a

smartphone device is a texture-less object, in the sense that it lacks any repeatable

and constant image patterns on its screen and/or surface that can be used to detect

and track it using existing feature-based techniques, feature-based approaches like

SIFT, SURF or ORB could not be used. Thus, we explored the use of texture-less

object detection techniques.

Most of the state-of-the-art techniques present in the area of texture-less detec-

tion use edge-based template matching [44, 45, 46, 47, 42]. The earliest record of

texture-less 3D object detection based on template matching was presented by Olson

and Huttenlocher [48] in 1997. The technique presented by them consists of repre-

senting the target 3D objects by edge maps of 2D views (from every possible viewing

angle) of the object. These 2D edge maps along with a Hausdorff measure [49] that

incorporates both location and orientation information are then used to determine

the position of the target object in the target environment. Although effective, the
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data size required to correctly recognize and estimate the pose of the target object

was large. Similarly in 2002, Steger’s [46] method for industrial inspection matched

2D views of the target 3D object by using a robust similarity measure. Although the

similarity measure was robust with respect to illumination changes and occlusion,

when thousands of templates were used (in case of 3D objects for each and every

pose) its speed decreased, as demonstrated in [45]. In 2010, Hinterstoisser et al. [44]

presented a new template method called ‘Dominant Orientation Template’ based on

local dominant gradient orientations. The new method introduced was robust with

respect to small image transformations and could easily handle texture-less objects.

Although fast evaluations of templates were obtained by using binary operators, the

results varied with respect to template size and slowed down while handling multiple

objects in an image.

Other researchers have explored texture-less object detection by combining tem-

plate matching with a particle filter framework. One such system was presented in

2007 by Lee et al. [50]. It uses a sequence of images captured at different orienta-

tions and poses to recognize and estimate the pose of a texture-less 3D object. They

then used a novel particle filter based probabilistic method for recognizing the target

object and estimating the pose from the saved sequence of images with the help of

template matching. In 2012, Choi and Christensen [42] presented a texture-less object

detection method that uses an efficient chamfer matching algorithm [51] to match 2D

edge templates and the query image. Using chamfer matching, they first estimated
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a set of course pose hypothesis of the target object, then initialized a particle filter

framework with the result set and kept refining the pose of the target 3D object from

subsequent images to improve the correspondence between edge points in the gener-

ated object model and the input image. In addition, others have utilized 3D CAD

models instead of physical real objects to generate templates for template match-

ing algorithms, like in [47]. These edge-based template matching techniques perform

better than feature-based technique for texture-less object detection; however, they

suffer from problems related to occlusion, cluttering and scalability of template li-

brary [43]. While some researchers have been able to reduce the search time required

for template based matching such as in [52, 53, 54] the underlying problems related

to occlusion, cluttering and scalability still remain.

In [43], Tombari et al. took a complete different approach, where instead of match-

ing a template from the model template library they rely on descriptor-based object

detector. In this method, a descriptor called BOLD (Bunch of Lines Descriptor) is

proposed that can be injected into the standard SIFT-based object detection pipeline

to provide performance improvement. The proposed method first extracts BOLD

descriptors from the objects present in the model library and matches them with

the BOLD descriptor extracted from the input image by using Euclidean distance

[55] and FLANN Randomized Kd-tree forest [56] algorithms. Although the proposed

method has impressive detection rates, the method is limited in detecting simple

objects (made out of few lines) in scenes with heavy occlusion and clutter. Similar
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to [43] for descriptor-based object detection, Chen et al. [57] presented a detector

termed BORDER (Bounding Oriented-Rectangle Descriptors for Enclosed Regions)

to recognize texture-less objects in highly clutter and occluded images. BORDER

follows a SIFT-like three step pipeline that consists of detection of interest-points

by means of linelets (elongated line-segments divided into smaller equal-sized frag-

ments), followed by a descriptor based on oriented rectangles, and then matching

based on ‘point-of-view’ scheme. Although the method described is good at detecting

texture-less objects, the runtime of BORDER based detector is high compared to the

descriptor proposed in the BOLD-based descriptor.

In our case, as smartphones may vary in size and aspect ratio, existing template-

matching, texture-less object detection methods may require a large template database.

Ideally, the template database would consist of records for every possible 3D posi-

tion of the smartphone as well as records for each variation of aspect ratio of the

smartphone making the template database large. Searching such a large template

database can prove to be inefficient for real-time tracking. In addition, creating an

initial large edge-based template database or a set of BOLD descriptors with each

and every possible smartphone currently available is highly impractical.Therefore, we

decided to make use of traditional edge based object detection method as described

in Chapter 3.2.
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2.3 Machine learning in image processing and HCI

The edge based object detection method devised by us, although robust in locating

the presence of smartphone edges within the input image, at times did not produce

accurate results. Due to illumination changes, occlusion and clutter, there were some

instances where edges of objects surrounding the smartphone were incorrectly in-

cluded as part of the smartphone. For augmenting an object in VR environment it

is important to detect and localize the target object in the input image accurately.

To address the temporary social isolation of the users from the real world, we

needed a reliable method that would enables users to interact with their smartphone

devices so that they can read messages, place calls, and use other apps while still

being immersed in the VR environment. A detected false smartphone edge would

not only produce undesirable results while augmenting the smartphone device but

might also place the user’s fingers in a false position in the VR scene, making it

difficult for the users to use their smartphone. We need to discard those cases where

edges of other objects were considered to be part of the smartphone. We basically

needed a method that would identify whether or not the detected edges are part of

the smartphone. As machine learning classifiers do this reliably and also run in real-

time, we considered machine learning approaches that would lower the false detection

rate and make the image-based object detection method reliable, without adversely

affecting its real-time execution.

An early case of the use of machine learning in object detection was presented
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by Schneiderman and Kanade [25], where a statistical model was used within a face

detector to account for variation in orientation and pose of the person’s face. In

order to cope with variation in pose estimation of a face, they followed a two-part

strategy. First, they used a view-based detector for each specific orientation (e.g.

right profile of face), then, they trained a statistical model within each detector to

classify whether or not the detected object belongs to a non-object (objects other than

face profile). By combining a statistical model with view-based multi detectors they

were able to achieve an accuracy of 92.8%. In 2001, Viola and Jones [58] described a

method based on machine learning for fast object detection in an image. They used

a modified version of AdaBoost [59], which boosts the classification performance of

simple classifiers to form an efficient classifier. The cascaded classifier was able to

achieve highly accurate detection rate and perform 15 times faster than any previous

object detection algorithm at the time.

In [26], Takeuchi et al. proposed a novel method for vehicle detection and tracking

by using a combination of latent support vector machine (LSVM) [60] and Histograms

of oriented gradients (HOG) [61] on previously defined deformable object model-based

detection algorithm [62]. LSVM was used to reduce the false negative detection rate

while maintaining the false positive rate obtained from deformable object model-based

detection algorithm. By combining LSVM with HOG, they were able to achieve an

average vehicle detection rate of 98% and an average vehicle tracking rate of 87%.

Recently in 2014, Zhang et al. [63] proposed a human posture recognition system
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that uses SVM to identify pre-defined human postures from depth images. The depth

image captured by Microsoft’s Kinect is used to infer skeleton information represented

by nine features. These extracted features are then fed to the SVM to identify the

pre-defined postures from input images. The proposed method was able to achieve

an overall accuracy of 99.14%.

Similarly in 2015, Marqués and Basterretxea [64] developed a hand gesture recog-

nition system that uses information from an accelerometer attached to the fingers,

to dynamically recognize seven different gestures. The researchers compared perfor-

mance of three classifiers: Artificial Neural Networks (ANNs), Support Vector Ma-

chines (SVMs) and Extreme Learning Machines (ELMs). The experimental results

obtained by them show that an accuracy of 98% can be achieved by using ANNs

or ELMs. In 2015, Hai et al. [65] used ANNs and K-Nearest Neighbors (K-NNs)

for facial expression classification. Using a combined proposed method ‘ANN KNN’,

they were able to classify seven basic facial expressions in categories such as anger,

fear, surprise, sad, happy, disgust and neutral. The proposed method was evaluated

on JAFEE database [66] and a classification precision of 92.38% was obtained.

Machine learning has also been extensively used in medical applications that in-

volve processing of images captured from various medical instruments to identify a

disease. For example, in 2015 Moreira et al [67] proposed a method that aims at de-

veloping an upper body evaluation method for women’s who have undergone breast

cancer treatments. To detect lymphedema caused by removal of axillary lymph nodes,
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they used Microsoft’s Kinect to extract features from upper-body limbs motion and

used these features to train LDA, NaiveBayes and SVM classifiers. The classifiers were

then compared to find the best performing classifier. The results published by the

team indicate that SVM was the best classier with 19% miscalculation error. While

in the same year, Nayak et al. [68] proposed a system to classify brain’s magnetic

resonance images (MRIs) into normal or pathological brain. The proposed methods

first extracts features from MR images by utilizing two-dimensional discrete wavelet

transform, then reduces the extracted features by a significant number using principal

component analysis (PCA) and linear discriminant analysis (LDA) algorithm. The

reduced significant features are then applied to a random forests classifier to deter-

mine if the brain is normal or pathologic. They used a standard dataset ‘Dataset-255’

introduced by Das et al. [69] to evaluate the proposed method and were able to obtain

a classification accuracy of 99.22%.

To consider the integration of a classifier into our traditional edge-based object

detection algorithm, we needed a classifier that could satisfy constraints such as de-

tection of smartphone in real-time, ease of integration with the existing solution, no

additional process calls to external programs or libraries that might slow down the

smartphone detector, and no additional storage of instance vectors (as required by

instance-based classifiers such as K-NN [70]). Considering the constraints, we de-

cided to evaluate three statistical classifiers: Logistic Regression (LR) [27], Linear

Discriminant Analysis (LDA) [28], and Quadratic Discriminant Analysis (QDA) [29].
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Chapter 3

System Design and Setup

This chapter first lists out the hardware used for our system setup to test out the

algorithm designed. It then provides details about various steps used in Image-Based

Smartphone Detector (IBSD) and explains the problem faced by the designed algo-

rithm. This chapter then explains the need for statistical classifier, the steps required

to extract features, assessment of the classifiers and creation of mathematical model

from the analyzed data.

3.1 System Setup

To setup the system that would allow testing of the designed algorithm, the following

components are required:

1. Oculus Rift enabled desktop PC

A desktop PC that will support the Oculus Rift DK2 device. The desktop PC
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Figure 3.1: Oculus Rift DK2 Device

we used has the following specifications: 24 GB RAM, two Nvidia GTX 670

graphics cards each with 2 GB memory, Intel i7 processor, HDMI video output

port, four USB 3.0 ports and Windows 10 professional edition installed on it.

The recommended system specifications for the Oculus Rift DK2 can be found

in [71].

2. Oculus Rift DK2 device

A virtual reality headset offered by Oculus to developers to build and test VR

applications and games. The Oculus Rift DK2 device is shown in Figure 3.1.

The Oculus Rift DK2 device specification includes: a display resolution of 960

x 1080 pixels per eye, refresh rate of up to 75 Hz and 100◦ field of view. The

Oculus Rift is connected to the desktop PC by using one HDMI port for video

display and one USB 3.0 port for power requirement as shown in Figure 3.2.

3. Leap Motion VR device
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Figure 3.2: Oculus Rift DK2’s connections to desktop PC

An IR motion sensor device that captures hand gestures and provide hand track-

ing functionality inside the virtual reality space. The Leap Motion VR device,

as shown in Figure 3.3, was used as a camera that would act as a window to the

real world inside the VR environment. The Leap Motion VR device operates at

20-200 frames per second depending on available computing resources, activity

within the device field of view, and software tracking settings. The Leap motion

API can be used to capture an IR image of resolution 640 x 320 from the Leap

motion device.

4. Leap Motion’s Universal VR Dev Mount

A mount that can be attached to the Oculus Rift DK2 device to hold the Leap
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Figure 3.3: Leap Motion VR Controller

Figure 3.4: Leap Motion’s Universal VR Dev mount

Motion VR device in such a way that the IR sensors are facing away from the

user. The Universal VR Dev mount setup is shown in Figure 3.4, while Figure

3.5 shows the arrangement after the Leap Motion was attached to the Oculus

Rift DK2.

5. A Smartphone Device

A Smartphone device with Android 4.2 (Jelly Bean) or higher that has basic

sensors such as accelerometer and gyroscope and internet connectivity is re-

quired. The Smartphone device used for experimentation was ‘One Plus One’

with 3 GB of RAM, Qualcomm Snapdragon 801 Quad-core processor, 5.5 inches
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Figure 3.5: Leap Motion VR device attached to Oculus Rift DK2

Figure 3.6: The smartphone device used for testing IBSD: OnePlus One

of display and 1080 x 1920 pixels ( 401 PPI pixel density) screen resolution with

Android 6.0 (Marshmallow) operating system. The Smartphone device used is

shown in Figure 3.6

6. Android Application to Transfer Smartphone’s Screen

An Android application that continuously captures the screenshots of the cur-
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(a) (b)

Figure 3.7: Android application: (a)Screen shown when the app starts. Note the app

displays the TCP/IP server’s IP address on the screen (b) Screen shown after User

clicks on ‘Start Servers’ button

rent contents displayed on the Smartphone’s Screen and, using TCP/IP protocol

transfers the captured screenshots to the designed VR application, was created

using Android Studio [72]. The rate at which the Android application captures

the screenshots was 33 frames per second. In addition to the screenshots, the

Android application was also designed to send the device’s orientation and po-
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sition change information from the accelerometer and gyroscope sensors. The

sampling rate of the gyroscope and accelerometer obtained for OnePlusOne de-

vice was 5Hz and 15Hz, respectively. The Android application was designed

as a TCP/IP server and would initiate continuous transfer of screenshots and

sensor data to any client connected to it. As shown in Figure 3.7, it has two

buttons that are used to start or stop the TCP/IP server. Once the TCP/IP

server is initialized, it displays the IP address and port it is bound to. The

displayed address is used by TCP/IP client (VR application) to connect to the

server and receive the captured screenshots.

7. VR application

A VR application was created using Unity [73] to display the VR environment

using the Oculus Rift DK2 device. The Unity version 5.2.2 was used for devel-

opment. Unity 5.2.2 provides an extensive support for Oculus Rift DK2, which

was removed from the latest versions of Unity. Unity 5.2.2 can be downloaded

from [74]. The VR application designed in Unity displays cubes of different

colors to users; these cubes are placed at random locations within the VR en-

vironment. Figure 3.8 shows the designed VR application.

The Leap Motion VR device was integrated with Unity using Unity assets pro-

vided by Leap motion. The Unity assets can be downloaded from [75]. Leap

Motion’s Unity assets provide the relevant code and objects inside Unity to
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Figure 3.8: VR application created in Unity to display cubes of different colors to

users. The cubes are placed at random locations within the VR environment

display images captured by the Leap Motion device. The images captured by

Leap Motion basically are blended with existing VR objects (cubes in our ap-

plication) and are displayed in the background of the VR space in such a way

that it covers the entire user’s VR visible space.

The Image-Based Smartphone Detector (IBSD) explained in section 3.2 was in-

tegrated inside the Unity application to detect the presence of the smartphone

in the images captured by Leap Motion. A Unity’s quad object [76] called

‘Smartphone Quad’ was used to display the screenshot captured and transferred

from the Android application. The position and dimensions of the ‘Smartphone

Quad’ were updated dynamically depending on the position of the smartphone

tracked in real world. Another quad object (Finger Quad) was used to display
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the outline of the user’s fingers. The Finger Quad was placed on top of the

Smartphone Quad and the images displayed in both the quads (Smartphone’s

screenshot and User’s Fingers) were blended so that a user could visualize the

position of their fingers while operating the Smartphone. The application de-

signed also acts like a TCP/IP client that connects to the Android application

and receives the smartphone’s screenshots.

8. Local LAN setup

To enable the VR application to connect to the TCP/IP server running on the

Android smartphone, a local LAN setup is recommended. A local LAN setup

will not only ensure communication between the smartphone and VR applica-

tion but will also enable transfer of screenshots captured from smartphone at a

faster rate due to reduced communication latencies. We used a wireless D-Link

router with data transfer rate of 54 Mbps and frequency band of 2.4 GHz.

9. Cubicle to test IBSD

To test the smartphone detection algorithm, we set up a cubicle as shown in

Figure 3.9 to limit the interference from other objects surrounding the user

while testing IBSD. The cubicle dimensions recorded were 22 inch height, 24

inch width and 20 inch length. Three sheets of white paper were used as the

walls on three sides while the fourth side was kept open. All interactions with

the smartphone were done inside the cubicle.
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Figure 3.9: Cubicle to test IBSD

3.2 Image-Based Smartphone Detector (IBSD)

To correctly augment the scene inside the immersive VR environment with a view of

the user’s smartphone device, one needs to obtain in real-time an accurate identifi-

cation of the edges of the smartphone or tablet using the images obtained from the

LeapMotion sensor. Once the smartphone’s edges are correctly identified, one can

proceed with the augmentation logic to display the smartphone’s screen and position

of user’s fingers inside the VR environment. To identify the smartphone’s edges, a

set of image processing steps (as described below) were devised that, when applied to

the images captured by the Leap Motion VR device, would lead to an identification

of the smartphone.

The steps involved in detecting a smartphone in an image captured by the Leap

Motion device are outlined in Figure 3.10. All the image processing steps were per-

formed using OpenCV [77]. OpenCV or Open Source Computer Vision is a set of
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Figure 3.10: Flow diagram of the Image Based Smartphone Detector (IBSD)

libraries of programming functions for real-time computer vision algorithms. An

OpenCV wrapper known as EmguCV [78] was used to access OpenCV API’s in C#

language. Detection of any object in an image involves two steps: locate the region

of interest (localization) and then recognize if the desired object is present in that

region or not (object detection).

1. Localization of the Smartphone

In our case, instead of searching the entire image for the smartphone, we relied

on a finding that helped us localize the smartphone: The Leap Motion device is

basically an Infrared (IR) Camera that relies on the reflected IR light back to its
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Figure 3.11: Image captured by leap motion device with speckle at the center

(a) (b)

Figure 3.12: Binary Threshold. (a) Original image captured by Leap Motion device

(b) Image obtained after applying a binary threshold

sensors to detect user’s hands. We noticed that whenever an object which has

a reflective surface such as the smartphone is held in front of the Leap Motion

device, it produces a blob with high brightness (which we call smartphone’s

speckle) as seen in Figure 3.11. We used this property to localize the smartphone

in the Leap Motion image. This only works under the assumption that users

will position their smartphone in front of the HMD in such a way that they

can read and/or view the smartphone’s screen correctly, i.e., the smartphone’s

screen is facing the HMD.

For localization, once the VR application captures grayscale images from the
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Leap Motion device through a set of API’s provided by Leap Motion, we first

apply a fixed-level threshold on the grayscale image to find the bright speckle

in the image. A binary threshold value of 230 was used for binary thresholding

[79]. To obtain a threshold value of 230, images obtained from Leap Motion

were thresholded using different values of threshold and an optimal threshold

(Threshold = 230) was selected such that only speckle will be visible in the

image. A sample of binary threshold result is shown in Figure 3.12. A blob

detection algorithm [80] is applied on the thresholded image to extract blobs

present. The blobs are filtered by area such that small blobs with area less

than 20 units and large blobs with area more than 250 units are discarded.

The remaining blobs are sorted out by size and the blob with maximum size is

selected as the speckle. The speckle’s center and size are marked.

2. Detection of the Smartphone

The smartphone detection algorithm works as follows:

(a) Extract Region of Interest (ROI)

Once the smartphone is localized, we extract a region of interest (ROI)

from the original grayscale image obtained from the Leap Motion device.

In our case, the ROI is a circular region of radius of 90 pixels around the

speckle center, as shown in Figure 3.13. The radius of 90 pixels was decided

after experimenting with various sizes of ROI. The selected ROI captures

the smartphone irrespective of the position of speckle on the smartphone’s
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(a) (b)

Figure 3.13: Extracting Region of Interest (ROI). (a) Original image captured by

Leap Motion device (b) The circle denoted the ROI that will be extracted from the

original image for further processing.

screen or the distance of smartphone from the HMD, i.e, if the speckle

is detected correctly the ROI may contain the smartphone even if the

smartphone is held near the HMD or as far as user’s hand can possibly be

far away from the HMD.

(b) Extract Straight Lines

After extracting the ROI, in order to obtain best results with any edge

detection algorithm, we applied a normalized box blur filter (with kernel

size = 3x3) [81] to smooth the extracted ROI image. The smoothed image

is then sent to a Canny edge detector [82]. Figure 3.14 shows a sample

image after Canny Edge Detection.

Current smartphones have a particular geometry, i.e., they are rectangular

and have straight edges. We use a basic principle in perspective projection

for detecting these straight smartphone’s edges, i.e., in perspective pro-

jection, straight lines in 3D will project to straight lines in the 2D image.
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(a) (b)

Figure 3.14: Canny Edge Detection. (a) Original image captured by Leap Motion

device (b) Image obtained after applying canny edge detector

(a) (b)

Figure 3.15: Probabilistic Hough Line Transform. (a) Original image captured by

Leap Motion device (b) Image obtained after Hough Line Transform

We apply a Probabilistic Hough Line Transform [83] algorithm available

in OpenCV to detect these straight lines. Each extracted straight line, in

addition to the start and end point of line, also contains information about

the orientation of the line with respect to the image’s X axis. Figure 3.15

shows a sample image after Hough Line Transformation.

(c) Smartphone Edge Detector

Once the straight lines are obtained, we pass these lines (potential smart-

phone edges) through the smartphone edge detector module. The smart-
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Figure 3.16: Image captured by leap motion device with speckle at the center of the

cross hairs

phone edge detector module then applies geometrical constraints on the ex-

tracted ROI image to detect if a potential smartphone edge belongs to the

smartphone or not. The steps followed by Smartphone edge detector are as

follows: With the smartphone’s speckle as the center, the smartphone de-

tector module first shoots four straight lines (Edge Detector Lines) in four

different directions (left, right, top and bottom of speckle) with respect to

the current orientation of the smartphone, as shown in Figure 3.16.

The module then extracts only those potential smartphone edges that in-

tersect with the Edge Detector Lines and place them in groups (LeftGrp,

RightGrp, TopGrp and BottomGrp). The edges from LeftGrp and Right-

Grp are then compared to find pairs of edges that are nearly parallel to

each other (the difference between the orientation of both the edges is

minimum). Similarly, the edges from TopGrp and BottomGrp are com-

pared to find pairs of edges that are nearly parallel to each other. The two

pair obtained (left-right and top-bottom) are considered as smartphone
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(a) (b)

Figure 3.17: Extracted Smartphone Edges. (a) Original image captured by the Leap

Motion device (b) Extracted smartphone edges drawn on top the original image

edges. Figure 3.17 shows an example of the pair of edges extracted by the

Smartphone Edge Detector that are considered to be smartphone edges.

3. Display smartphone screenshots

Once the smartphone edges are detected, the ’Smartphone’s Quad’ object

(Unity’s quad object) in VR application gets modified with any changes in the

edges of smartphone. The screenshots transferred from the Android’s TCP/IP

server are rendered on to the Quad to create an overlaying effect, such that

the screenshot would match the position and shape of the smartphone present

in the image captured by Leap Motion device. Figure 3.18 shows one such

example after a successful detection of smartphone edges, the Quad object is

rendered with the screenshot of smartphone’s screen and overlaid on the leap

motion image.

4. Display Finger outlines

The problem with overlaying the smartphone’s screenshot on top of the actual
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Figure 3.18: Smartphone’s screenshot overlaid on the leap motion image. Note: Only

a portion of the VR space is shown in the image

smartphone in the images captured by the Leap Motion device, is that the over-

lay obstructs the view of user’s finger position as shown in Figure 3.19. To avoid

the obstruction and let the user’s view the position of their fingers to operate the

smartphone, we did some image processing on the edges detected by the Canny

Edge Detector [82]. The resulting edge image from Canny was first converted

to an RGB image with all edges marked in red color. Alpha channel was added

to the new image. The alpha channel contained grayscale values from the image

captured by leap motion. This arrangement gives a transparency to the RGB

image such that only the detected edges will be visible to the user, and the rest

of the image becomes transparent. The final result can be shown in Figure 3.20.
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(a) (b)

Figure 3.19: Smartphone screenshot overlay obstructs the view of user’s fingers: a)

The original image captured from leap motion b) the original image is mapped to the

background in Unity and then overlaid with smartphone’s screenshot

IBSD was able to detect the smartphone’s edges; however, there were many in-

stances where edges of other objects in the surroundings were also (mistakenly) con-

sidered as a smartphone edge. In short, our devised algorithm had a high false

positive rate, which was unacceptable. Figure 3.21 shows instances where edges of

other objects in the surroundings were considered to be edges of the smartphone. A

detected false smartphone edge will not only produce undesirable results while aug-

menting the smartphone device in VR environment, but might also place the user’s

fingers in a false position in the VR scene, making it difficult for the users to use their

smartphone.
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(a) (b)

Figure 3.20: The resulting RGBA image overlaid on top of smartphone screenshot

to show user’s finger. a) original image captured from leap motion b) Image cap-

tured in Unity that shows user’s finger in red outline overlaid on top of smartphone’s

screenshot.

(a) (b)

Figure 3.21: Edges of other objects in the surrounding are considered as a smartphone

edge. (a) Original image captured by the Leap Motion device (b) The edge of the

keyboard is erroneously considered to be a smartphone edge
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3.3 Smartphone Detection with Statistical Classi-

fier (SDSC)

After analyzing and testing IBSD (testing is discussed in Section 4.1), we found

that IBSD was able to detect a smartphone in nearly 70% of the cases successfully;

however, the remaining 30% were false positive instances where edges of other objects

in the surroundings were also considered a smartphone edge. To lower the false

positive rate and obtain better detection results, we considered the use of machine

learning approaches, such as statistical classifiers [84], that would be able to determine

whether or not the detected edges are indeed the smartphone’s edges. To obtain better

detection results, we compared three statistical classifiers: Logistic Regression (LR)

[27], Linear Discriminant Analysis (LDA) [28], and Quadratic Discriminant Analysis

(QDA) [29].

3.3.1 Justification of Statistical Classifiers chosen

To consider integration of a classifier into the exciting IBSD algorithm, we needed a

classifier that could satisfy constraints such as detection of smartphone in real-time,

ease of integration with the existing solution (possibly by some mathematical model),

no additional process calls to external programs or libraries that might slow down the

smartphone detector, and no additional storage of instance vectors (as required by

instance-based classifiers such as K-NN [70]). The three statistical classifiers cho-
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sen: Logistic Regression (LR) [27], Linear Discriminant Analysis (LDA) [28], and

Quadratic Discriminant Analysis (QDA) [29], each generate a mathematical model

that can be easily integrated into the existing system, can evaluate the input and

produce results in real-time, and do not cause significant computing overhead. In

addition, evaluation of the mathematical models generated by these three statistical

classifiers does not depend on any external program or software libraries which re-

duces the overall computing overhead. Also, as these classifiers do not depend on the

any additional vector instances that were used for training them, additional memory

requirement is minimal.

3.3.2 Feature extraction

To select the most suitable classifier, we assessed the predictive performance of these

three statistical learning methods and selected the one with the lowest false positive

rate at a comparable recall rate. Once the images captured by the Leap Motion device

are processed by IBSD, we extract a set of 11 features from the detected smartphone

edges. A list of the features extracted from the detected edges is given in Table

3.1, while Figure 3.22 illustrates these features in the processed images. Since the

values of the extracted features are absolute X and Y coordinates of the smartphone

detected in the image, these features are normalized. To normalize the features, the

X coordinates of the four corners and X coordinate of the speckle are divided by the

maximum width of an image, while the Y coordinates are divided by the maximum
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Table 3.1: List of features extracted from detected edges

Feature (D) Name Description

1 SpeckleX x coordinate of speckle in the captured image

2 SpeckleY y coordinate of speckle

3 SpeckleSize size of speckle

4 TopLeftX x coordinate of top left corner of smartphone

5 TopLeftY y coordinate of top left corner

6 TopRightX x coordinate of top right corner

7 TopRightY y coordinate of top right corner

8 BottomRightX x coordinate of bottom right corner

9 BottomRightY y coordinate of bottom right corner

10 BottomLeftX x coordinate of bottom left corner

11 BottomLeftY y coordinate of bottom left corner

height of an image. The maximum height and width of an image obtained from the

Leap Motion VR device are 240 and 640 respectively. As the feature ’SpeckleSize’

had no relationship with the image size, we used a different scale to normalize it.

According to our empirical observations, we found that the maximum size a speckle

can have was 40 pixels, so the ’SpeckleSize’ feature is normalized by dividing its value

by 40.
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Figure 3.22: Features extracted from the detected smartphone

3.3.3 Assessment of Machine Learning Approaches

To create a Smartphone Detection with Statistical Classifier (SDSC) system, we first

generated a data set and evaluated the performance of three classifiers using three

different feature subsets. In this subsection, we describe the process followed to select

the most suitable classifier for our application domain. The R programming language

was used to perform most of the steps described below. The R code used for the

analysis can be found in the file name ‘SmartPhoneClassifier’, located in an online

repository at [85].

3.3.3.1 Dataset used

The dataset used to evaluate the performance of the statistical classifiers contained

312 instances or records. Each instance was made up of a set of 11 features (see Table

3.1) that were extracted from the smartphone’s edges detected by IBSD as described

in the previous section. The instances were classified into two groups, depending on

whether the edges of the smartphone are correctly detected (group 1) or not (group
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0). For each instance, a features vector along with its corresponding class is stored in

the dataset. Out of 312 records, 222 (or 71.15%) records belonged to group 0, while

90 (or 28.85%) records belonged to group 1. The normalized dataset used can be

found in a file named ‘DatasetForSDSC’, located in an online repository at [85].

3.3.3.2 Feature Selection

We undertook a feature selection process on the normalized data to select those

features that allow the machine learning approaches to generate the models with

the best predictive performance in terms of recall, false positive rate (1 - specificity)

and Area under the ROC Curve (AUC). To estimate the performance measurements

for each statistical learner (LR, LDA and QDA) and feature set, we carried out 10-

fold cross-validation [86]. At the end of the 10-fold cross-validation, we obtained the

average and standard deviation of each performance measurement. The classifier with

the lowest false positive rate at a comparable recall was selected to be integrated into

the SDSC implementation. The details on the classifier selection process are given in

Section 4.2.2.

To select those features that are most relevant to construct a classification model,

we created three different subsets of features. Each of the three features subsets were

used to train LR, LDA and QDA as described in step 3.3.3.3. We compared the

performance of each of the features subsets and used the subset of features that yield

the best performing model to obtain the final model for integration with IBSD. The
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feature selection methods used are described below:

1. Remove Redundant Features (RRF)

In this method of feature selection, we iteratively removed those features that

were highly correlated with another feature. The ’findCorrelation’ function in

the Caret R package [87] was used to report the highly correlated features. A

pair-wise absolute Pearson correlation coefficient of 0.7 was used as threshold

to remove redundant features.

2. Recursive Feature Elimination (RFE)

This is an automatic feature selection method that builds different models using

Random Forest and identifies those features that are not relevant to construct

an accurate statistical model [88]. We used the RFE implementation provided

by the Caret R package.

3. All available features

We also used all available 11 features from IBSD feature extraction for training

the classifiers.

3.3.3.3 Training the classifiers

To evaluate the classification performance of LR, LDA, and QDA on our application

domain, we performed 10-fold cross-validation on the dataset. We first randomized

the dataset and divided it into ten folds (partitions) of roughly the same size. Each

data partition had approximately 31 observations in it. For each fold, we left out one
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data partition for testing purpose and train LR, LDA, and QDA with the remain-

ing data partitions. The model obtained during training is tested against the left

out fold and performance measures such AUC, accuracy, specificity and sensitivity

are recorded. The calculated performance measurements for all ten folds were then

averaged out. After calculating the average performance measures for all ten folds,

we compared the three classifiers. In the end, the classifier with the highest average

AUC was selected.

3.3.3.4 Integration of the classification model with IBSD

Two of the constraints considered while selecting the classifiers to evaluate were: a)

easy integration with IBSD and b) no additional process calls to external programs.

To facilitate that, we used classifiers that can be represented with a mathematical

model. The mathematical models for each classifier are given below:

1. Logistic Regression: For LR, the equation can be given as below [27]:

p(X) =
eβ0+β1X1+...+β11X11

1 + eβ0+β1X1+...+β11X11
(3.1)

where X = (X1 . . . X11) are features, β0 . . . β11 are the learned parameters, and

p(X) is the predicted probability calculated for class 1. Observations are as-

signed to class 1 if p(X) > T , where T is a threshold set to maximize the

classifier’s performance.

2. Linear Discriminant Analysis: Assuming a Gaussian distribution, the Bayes
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classifier can be approximated for LDA by the equation [28]:

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + logπk (3.2)

where µk = mean of kth class, Σ = covariance matrix, πk is prior probability of

kth class, and δk(x) is the discriminant function for the class k. Observation x

is assigned to the class for which δk(x) is largest.

3. Quadratic Discriminant Analysis: For QDA, the Bayes classifier can be approx-

imated by the equation [29]:

δk(x) = −1

2
(x− µk)

TΣ−1
k (x− µk) + logπk (3.3)

where µk = mean of kth class, Σk = covariance matrix for the kth class, πk is

prior probability of kth class and δk(x) is the discriminant function for the class

k. Observation x is assigned to the class for which δk(x) is largest.

3.3.4 Comparing IBSD with SDSC

After integrating the best performing classifier with IBSD, we compared the perfor-

mance of IBSD with that of SDSC. To do that, a dataset of 210 records was generated

where each record contained three variables. Variable 1 was given a value of 1 to indi-

cate a smartphone is identified by IBSD. Variable 2 was given a value of 0 if SDSC did

not identify a smartphone and 1 if it identified a smartphone. Variable 3 indicated

the actual class (or group) the record should belong to (0 - if the smartphone edges

are not properly detected or 1 - if the smartphone edges are properly detected). Out
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of 210 records obtained, 59 (or 28.1%) records belonged to group 0 while 151 (or

71.9%) records belonged to group 1. The validation dataset used can be found in the

file named ‘ValidationDatasetForSDSC’, located in an online repository at [85].

At the end of the 10-fold cross-validation, we obtained the average and standard

deviation of each performance measurement. The classifier with the lowest false

positive rate (< 0.2) at a comparable recall of 0.8 was QDA (Figure 4.4), thus, QDA

was selected to be used in the SDSC implementation. QDA was then trained with the

complete dataset to generate the classification model to be implemented. To do this,

we obtained class means per feature and class covariances from the dataset. These

values were then used to generate a mathematical model that was integrated with

our existing smartphone detector.

3.4 Smartphone Detection with Generalized Sta-

tistical Classifier (SDGSC)

The data used for comparing the performance of LR, LDA and QDA classifiers above

and training the best performing classifier (QDA) was limited to the data collected

from the primary researcher of this thesis. It did not account for variations in sizes

of the smartphone nor did it account for variations in the way different users use

their smartphones at different positions and orientations. Therefore, although the

initial results obtained from SDSC were promising, for users other than the primary
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researcher, there were some instances where SDSC would accept a false positive.

The main limitation we observed after integrating SDSC was mis-alignment of the

virtual smartphone panel with the real-world smartphone due to false positive in-

stances accepted by SDSC. This caused jumpiness (constant position update) of the

smartphone’s display within the virtual environment even when the user held the

smartphone in one position. To eliminate the jumpiness and improve the reliability

of the designed system we decided to train the model using a large dataset collected

from 10 different users.

Therefore, to train SDSC to accommodate for the different size of smartphones

as well as different position in which a user can hold a smartphone, we undertook an

additional data collection step where 10 users were invited to try out the designed VR

system (IBSD) and data was collected anonymously during the event. The consent

form, recruitment poster, and exit questionnaires asked after completion of the study

can be located in Appendix A, B, and C respectively. The amount of time spent

by each user on data collection was of about 15 minutes duration. The users were

asked to use their personal smartphone device and they were instructed to perform

the following steps given below:

1. Wear Oculus VR Head-mounted display

2. Pick up the smartphone placed on the table or handed to the user

3. Place the smartphone (with screen facing the HMD) in 5 different regions (center

plus corners, clockwise from the top left) and at 3 different depths/distances for
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each region designated in the VR space for a test run.

4. Place the smartphone (with screen facing the HMD) in 5 different regions (center

plus corners) and at 3 different depths/distances for each region designated in

the VR space for actual data collection.

5. The previous step was repeated with the phone in two basic orientations, anal-

ogous to the portrait and landscape printing orientations. At each designated

position the user was requested to hold the smartphone in position for 2 sec-

onds so that system will capture five images from the Leap motion VR device.

Data points were extracted from these captured smartphone images and were

recorded in a file.

6. Place the smartphone (with screen facing the HMD) at random locations any-

where in the VR space for the next five minutes. The system will continuously

capture images from the Leap motion device, extract data points and record

them in a separate file.

The different devices brought by users were OnePlus One [89], LG G4 [90], OnePlus

2 [91], LG G3 [92], HTC One M8 [93], LG Nexus 5 [94] and Moto G [95].

3.4.1 Dataset Used

The dataset collected by placing the smartphone in 5 different regions, at 3 different

depths and two orientations (described in data collection step 4 and 5 above) for 10
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users contained 3,000 instances or records (10 images at each designated position * 5

positions * 3 depths * 2 orientations * 10 users). Similar to the dataset used previ-

ously to train QDA 3.3.3.1, each instance in this dataset was made up of a set of 11

features (described in 3.1) that were extracted from the smartphone’s edges detected

by IBSD. The dataset collected by placing the smartphone at random location (de-

scribed in data collection step 6) contained 5,600 instances or records. Each instance

in this dataset was made up of a set of 11 features. Both the dataset (collected by

designated and random placement) were combined to form a single dataset that con-

tained 8,600 instances or records and the combined dataset was normalized by using

steps described in 3.1. The instances in the combined dataset were classified into two

groups: group 1 if the edges of smartphone are correctly detected or group 0 if not.

Out of 8,600 records, 7,313 (or 85%) records belonged to group 0, while 1,287 (or

15%) records belonged to group 1. The normalized dataset used can be found in the

file named ‘DatasetForSDGSC’, located in an online repository at [85].

3.4.2 Training the QDA classifier

A cross-validation for all three classifiers (LR, LDA and QDA) was performed using

the same steps as described in 3.3.3.2 and 3.3.3.3 to verify if QDA was still the best

performing classifier or not. Our results, as shown in 4.12, indicate that, although the

overall accuracy was reduced by 3%, QDA still performed better than LR and LDA.

After the evaluation, QDA was re-trained with the newly created dataset. To re-train
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the classifier, we once again obtained class means per feature and class co-variances

from the dataset and then used these values to generate a mathematical model (by

using Equation 3.3). The generated mathematical model was then integrated with our

existing smartphone detector (IBSD) to obtain a new smartphone detector (SDGSC)

3.4.3 Comparing SDSC with SDGSC

After integrating the new generalized smartphone detector (SDGSC), we compared

the performance of the previously obtained SDSC with that of SDGSC. To do that, a

dataset of 1,200 records was obtained from a completely new user, i.e, a user who was

not among the participant of the data collection study. Each record in the obtained

dataset contained three variables (Variable1, Variable2 and Variable3). Variable 1 was

given a value of 1 if SDSC classifies that the extracted edges belong to smartphone

and 0 if not. Similarly, Variable 2 was given a value of 1 if SDGSC classifies that

the extracted edges belong to smartphone and 0 if not. While, Variable 3 indicated

the actual class (or group) the record should belong to 0 - if the smartphone edges

are not properly detected, or 1 - if the smartphone edges are properly detected. Out

of 1,200 records obtained, 1,070 (or 89%) records belonged to group 0 while 130 (or

11%) records belonged to group 1. The validation dataset used can be found in the

file named ‘ValidationDatasetForSDGSC’, located in an online repository at [85].
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3.5 Summary

To summarize, this chapter first lists out the hardware used to setup a system to test

out the IBSD algorithm. It then provides details about various steps used in Image-

Based Smartphone Detector (IBSD). Although IBSD was able to detect smartphone

in a given Leap motion’s image, there were many instances where the algorithm failed

and incorrectly includes edges of surrounding objects as smartphone’s edges. To lower

this false detection rate, machine learning methods were applied. The chapter explains

the modified detection algorithm ’SDSC’ which is designed by combining IBSD and

the best performing classifier. The steps required to find the best performing classifier

are then explained. These steps include extracting features from Leap motion image,

feature selection process, training the classifiers and creation of a mathematical model.

Finally, the parameters on which the performance of IBSD and SDSC are compared

are defined.
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Chapter 4

Results and Discussion

This chapter first lists out the results obtained by IBSD and discusses the drawbacks

of the designed algorithms. It then discusses the results obtained in the process of

selecting the beat-performing classifier. This chapter then analyzes the comparison

between IBSD and SDSC. Finally, it analyzes the results obtained from the data

collection step and comparison between SDSC and SDGSC.

4.1 IBSD

By using the smartphone speckle and traditional image processing algorithms, we

were successfully able to quickly localize and recognize a smartphone in a given leap

motion image. Although there were certain instances where edges from surrounding

objects were incorrectly identified as smartphone edges, IBSD was able to successfully

detect a smartphone. There are certain situations where IBSD typically fails, one such
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Some sample instances that represent incorrect smartphone detection by

IBSD. Note that in these images the edges of other objects in the surroundings are

considered part of the smartphone.
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instance is when the smartphone’s screen is facing the HMD in such an angle that

the speckle will not be present on the smartphone. However, this would imply that

users are holding the smartphone in such a way that they will not usually be able to

read clearly the text displayed on the smartphone’s screen. Another instance where

IBSD fails is when a similar object with a highly reflective surface is present in the

vicinity of the smartphone. In these cases, there will be two speckles present in the

leap motion image, and IBSD may produce a false detection when the wrong speckle

is chosen. Sample instances of incorrect smartphone detection by IBSD are shown in

Figure 4.1.

4.2 SDSC

4.2.1 Feature selection

Different set of features were selected by the two feature selection methods used (RRF

and RFE). Based on the correlation between features (see Figure 4.2 and Table 4.1)

RRF removed SpeckleX, TopRightX, TopRightY, BottomRightX and BottomRightY,

and thus RRF’s set of features consisted of six attributes. RFE considered features

SpeckleX, SpeckleSize, TopLeftX and TopRightX irrelevant for the construction of

the classification model, and thus RFE’s set of features consisted of seven attributes.

Four features (SpeckleY, TopLeftY, BottomLeftX, and BottomLeftY) were selected

by both approaches.
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Figure 4.2: Graphical representation of correlation matrix. Darker blue indicates

higher correlation, darker red indicates lower correlation, and white indicates no cor-

relation.
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Table 4.1: Correlation matrix of all features in SDSC. Values more than ± 0.70 indicates a high correlation.
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SpeckleY 0.01 1 0.021 0.06 0.622 0.031 0.693 -0.052 0.518 0.026 0.525

SpeckleSize 0.237 0.021 1 0.131 -0.136 0.284 -0.08 0.3 0.297 0.095 0.188

TopLeftX 0.791 0.06 0.131 1 0.031 0.825 0.093 0.547 0.033 0.677 -0.157

TopLeftY -0.038 0.622 -0.136 0.031 1 0.005 0.848 -0.115 0.284 -0.007 0.304

TopRightX 0.829 0.031 0.284 0.825 0.005 1 -0.037 0.666 0.085 0.573 -0.09

TopRightY 0.021 0.693 -0.08 0.093 0.848 -0.037 1 -0.09 0.345 0.023 0.332

BottomRightX 0.82 -0.052 0.3 0.547 -0.115 0.666 -0.09 1 0.21 0.825 0.089

BottomRightY 0.109 0.518 0.297 0.033 0.284 0.085 0.345 0.21 1 0.113 0.779

BottomLeftX 0.783 0.026 0.095 0.677 -0.007 0.573 0.023 0.825 0.113 1 -0.022

BottomLeftY -0.079 0.525 0.188 -0.157 0.304 -0.09 0.332 0.089 0.779 -0.022 1
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Table 4.2: Area under the curve (± SD) for each feature selection method

Feature Selection Method LR LDA QDA

Remove Redundant Feature 0.726 ± 0.12 0.727 ± 0.12 0.838 ± 0.07

Recursive Feature Elimination 0.767 ± 0.12 0.771 ± 0.12 0.844 ± 0.08

All available features 0.778 ± 0.13 0.777 ± 0.14 0.935 ± 0.04

Table 4.3: Accuracy (± SD) performance measure for each feature selection method

Feature Selection Method LR LDA QDA

Remove Redundant Feature 0.690 ± 0.10 0.686 ± 0.10 0.840 ± 0.05

Recursive Feature Elimination 0.738 ± 0.12 0.732 ± 0.11 0.831 ± 0.06

All available features 0.758 ± 0.13 0.754 ± 0.12 0.907 ± 0.06

4.2.2 Classifier Selection

Using all 11 features, we evaluated the performance of LR, LDA and QDA using

10-fold cross-validation. Table 4.6 gives the performance measures averaged out over

the ten folds for each classifier. Figure 4.4(a) depicts the ROC curve for each of the

classifier. QDA has approximately 16% higher AUC, and higher or comparable recall

at the same level of false positive rate (1 - specificity) than LR and LDA. QDA has

also the lowest standard deviation for each of the performance measures, which is

57



False positive rate

R
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LR
LDA
QDA

(a)

False positive rate
R

ec
al

l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LR
LDA
QDA

(b)

False positive rate

R
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LR
LDA
QDA

(c)

Figure 4.3: Average ROC curve for a) Remove Redundant Feature (RRF) selection

method b) Recursive Feature Elimination (RFE) method c) all available features used
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Table 4.4: Sensitivity (± SD) performance measure for each feature selection method

Feature Selection Method LR LDA QDA

Remove Redundant Feature 0.852 ± 0.12 0.870 ± 0.14 0.854 ± 0.09

Recursive Feature Elimination 0.848 ± 0.09 0.860 ± 0.09 0.864 ± 0.11

All available features 0.875 ± 0.12 0.873 ± 0.09 0.906 ± 0.09

Table 4.5: Specificity (± SD) performance measure for each feature selection method

Feature Selection Method LR LDA QDA

Remove Redundant Feature 0.635 ± 0.13 0.627 ± 0.13 0.830 ± 0.08

Recursive Feature Elimination 0.690 ± 0.14 0.686 ± 0.15 0.816 ± 0.10

All available features 0.710 ± 0.17 0.701 ± 0.17 0.899 ± 0.07

a strong indication of a more robust classifier for this application domain than LR

and LDA. Based on these performance measures, we decided to use QDA to classify

whether the detected smartphone edges belonged to the smartphone or not.

4.2.3 Comparison of IBSD against SDSC

After integrating the mathematical model of the statistical classifier into IBSD, we

further compared the performance of IBSD against that of SDSC with a validation

data set that was not used during training. To do that, a dataset of 210 records

was generated (as discussed in Subsection 3.3.4). Out of the 210 instances, there

were 59 (or 28.1%) instances where IBSD considered edges of surrounding objects to
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Figure 4.4: (a) Comparison of LR, LDA and QDA based on ROC curve across various

probability thresholds (b) Comparison based on recall (sensitivity)(c) Comparison

based on false positive rate (1 -specificity) (d) Comparison between IBSD and SDSC.
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Table 4.6: Average performance measures AUC (± SD), Sensitivity (± SD), Speci-

ficity (± SD) and Accuracy (± SD) of LR, LDA and QDA over 10 folds. Sensitivity,

Specificity and Accuracy of LR, LDA and QDA for each of the 10 folds were calcu-

lated for the optimal probability cutoff. The average optimal cutoff for LR, LDA and

QDA was 0.295 ± 0.10, 0.280 ± 0.10 and 0.642 ± 0.30 respectively

Performance Measure LR LDA QDA

AUC 0.778 ± 0.13 0.777 ± 0.14 0.935 ± 0.04

Sensitivity 0.875 ± 0.12 0.873 ± 0.09 0.906 ± 0.09

Specificity 0.710 ± 0.17 0.701 ± 0.17 0.899 ± 0.07

Accuracy 0.758 ± 0.13 0.754 ± 0.12 0.907 ± 0.06

be part of the smartphone, while only 8 (or 3.8%) false positives were reported by

SDSC. SDSC‘s total error rate was 11%. In the Figure 4.4(d), the y-axis indicates the

percentage of instances in the validation set. IBSD error rate was 28.1% (red block)

while SDSC error rate was 11% (gray and red blocks).

Comparing IBSD and SDSC, we found that SDSC rejects 75% of the cases that

were falsely considered to be smartphone by IBSD. An accuracy of 89% was achieved

by SDSC compared to an accuracy of 72% obtained by IBSD. This represents a

17% gain in accuracy and demonstrates the benefits of combining the image-based

smartphone detector with the model constructed by QDA. Some instances from the

validation dataset where the IBSD incorrectly detects the edges of a smartphone are
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shown in Figure 4.1. These images show that IBSD considered edges of surrounding

objects like keyboard or the cubicle to be smartphone edges. Such images were

rejected by SDSC.

4.3 SDGSC

The data collected during the data collection study to train SDSC to accommodate

for the different size of smartphones as well as different position in which a user can

hold a smartphone, was analyzed by performing feature selection step (as described

in 3.3.3.2) and classifier selection step (as described in 3.3.3.3) to check if QDA was

still the best performing classifier or not. The results obtained after evaluating the

data for best feature selection method and best classifier are given below:

4.3.1 Feature selection

Different set of features were selected by the two feature selection methods used (RRF

and RFE). Based on the correlation between features (see Figure 4.5 and Table 4.7)

RRF removed SpeckleX, SpeckleY, TopLeftY, and BottomRightY. Note that except

for SpeckleX all other removed features were different from the previous results ob-

tained when limited dataset was used. After removal, RRF’s set of features consisted

of seven attributes. RFE considered all features as relevant for the construction of

the classification model which was different from the previous results obtained.
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Figure 4.5: Graphical representation of correlation matrix for the Dataset collected

from 10 users. Darker blue indicates higher correlation, darker red indicates lower

correlation, and white indicates no correlation.
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Table 4.7: Correlation matrix of all features in SDGSC for the Dataset collected from 10 users. Values more than ± 0.70

indicate high correlation.
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SpeckleX 1 0.202 0.197 0.659 0.145 0.777 0.126 0.772 0.226 0.731 0.176

SpeckleY 0.202 1 0.021 0.087 0.829 0.15 0.843 0.17 0.749 0.14 0.745

SpeckleSize 0.197 0.021 1 0.116 -0.105 0.2 -0.097 0.173 0.178 0.054 0.17

TopLeftX 0.659 0.087 0.116 1 0.182 0.656 0.108 0.346 0.112 0.533 0.098

TopLeftY 0.145 0.829 -0.105 0.182 1 0.154 0.933 0.106 0.62 0.128 0.642

TopRightX 0.777 0.15 0.2 0.656 0.154 1 0.17 0.645 0.182 0.484 0.148

TopRightY 0.126 0.843 -0.097 0.108 0.933 0.17 1 0.096 0.642 0.114 0.621

BottomRightX 0.772 0.17 0.173 0.346 0.106 0.645 0.096 1 0.316 0.661 0.194

BottomRightY 0.226 0.749 0.178 0.112 0.62 0.182 0.642 0.316 1 0.205 0.882

BottomLeftX 0.731 0.14 0.054 0.533 0.128 0.484 0.114 0.661 0.205 1 0.244

BottomLeftY 0.176 0.745 0.17 0.098 0.642 0.148 0.621 0.194 0.882 0.244 1
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Similar to results obtained for SDSC, the AUC was the highest when all available

features were considered for all classifiers (LR, LDA and QDA). The AUC perfor-

mance measure obtained by each classifier for each subset of features is given in

Table 4.8. An interesting thing to note is that it seems selection of features does not

matter for LR and LDA as AUC is nearly the same for both. Similarly, other perfor-

mance measures like accuracy (given in Table 4.9), sensitivity (given in Table 4.10)

and specificity (given in Table 4.11) were highest when all features were considered.

These results prove that selecting all features in training a classifier provides the best

possible classifier performance irrespective of smartphone’s size or position in which

a user can hold a smartphone. The ROC curve for each features subset selection

method is given in Figure 4.6.

Table 4.8: Area under the curve (± SD) for each feature selection method

Feature Selection Method LR LDA QDA

Remove Redundant Feature 0.802 ± 0.01 0.757 ± 0.01 0.866 ± 0.01

All available features 0.801 ± 0.01 0.758 ± 0.01 0.892 ± 0.01

Table 4.9: Accuracy (± SD) performance measure for each feature selection method

Feature Selection Method LR LDA QDA

Remove Redundant Feature 0.736 ± 0.02 0.688 ± 0.03 0.787 ± 0.02

All available features 0.736 ± 0.02 0.684 ± 0.03 0.814 ± 0.01
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Table 4.10: Sensitivity (± SD) performance measure for each feature selection method

Feature Selection Method LR LDA QDA

Remove Redundant Feature 0.816 ± 0.04 0.764 ± 0.04 0.813 ± 0.03

All available features 0.811 ± 0.03 0.782 ± 0.04 0.837 ± 0.02

Table 4.11: Specificity (± SD) performance measure for each feature selection method

Feature Selection Method LR LDA QDA

Remove Redundant Feature 0.722 ± 0.03 0.675 ± 0.03 0.782 ± 0.02

All available features 0.722 ± 0.02 0.667 ± 0.03 0.809 ± 0.02

4.3.2 Classifier Selection

Using all 11 features, we again evaluated the performance of LR, LDA and QDA

using 10-fold cross-validation. Table 4.12 gives the performance measures averaged

out over the ten folds for each classifier. Figure 4.7(a) depicts the ROC curve for each

of the classifier. In this case, QDA has higher AUC, and higher or comparable recall

at the same level of false positive rate (1 - specificity) than LR and LDA (4.7(b)).

The result indicates that QDA remains the best classifier even after including dataset

from 10 new users.
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Figure 4.6: Average ROC curve for a) Remove Redundant Features (RRF) selection

method b) all available features used

4.3.3 Comparison of SDSC against SDGSC

After integrating the new generalized smartphone detector (SDGSC), we compared

the performance of the previously obtained SDSC with that of SDGSC with a val-

idation data set that was captured from a new user who was not a participant of

the data collection study. A dataset of 1,200 records was recorded. Out of the 1,200

instances, there were 126 (or 10.5%) instances where SDSC considered incorrect edges

to be part of smartphone. In comparison, SDGSC considered incorrect edges only in

two such instances. Figure 4.7(d) shows the comparison made between SDSC and

SDGSC. SDSC‘s total error rate was 14.7%, while for SDGSC it was 8.8%. Com-
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Figure 4.7: (a) Comparison of LR, LDA and QDA based on ROC curve across var-

ious probability thresholds (b) Comparison based on recall (sensitivity)(c) Compar-

ison based on false positive rate (1 -specificity) (d) Comparison between SDSC and

SDGSC.
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Table 4.12: Average performance measures AUC (± SD), Sensitivity (± SD), Speci-

ficity (± SD) and Accuracy (± SD) of LR, LDA and QDA over 10 folds. Sensitivity,

Specificity and Accuracy of LR, LDA and QDA for each of the 10 folds were calcu-

lated for the optimal probability cutoff. The average optimal cutoff for LR, LDA and

QDA was 0.194 ± 0.01, 0.157 ± 0.0 and 0.959 ± 0.01 respectively

Performance Measure LR LDA QDA

AUC 0.801 ± 0.01 0.758 ± 0.01 0.892 ± 0.01

Sensitivity 0.811 ± 0.03 0.782 ± 0.04 0.837 ± 0.02

Specificity 0.722 ± 0.02 0.667 ± 0.03 0.809 ± 0.02

Accuracy 0.736 ± 0.02 0.684 ± 0.03 0.814 ± 0.01

paring SDSC and SDGSC, we found that SDGSC rejects 98% of the cases that were

falsely considered to be smartphone by SDSC. Another point worth noticing is that

while SDGSC nearly eliminates all false positives (wrong edges considered as smart-

phone), the false negative rate increased. That means the new classifier model is more

strict in accepting edges to be a part of smartphone. The reduction in the proportion

of false positives increases the stability of the designed VR system when displaying

the virtual smartphone in the correct position. Our evaluation of the system, after

integrating with SDGSC, gave us reduced jumpiness effect which facilitated use of

smartphone for typing activities.

Similar to SDSC, SDGSC also works as an additional filter which discards false
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smartphone edges detected by IBSD. Therefore, it will still be limited by the inability

to detect a smartphone when the speckle is missing. On the other hand, it will

perform much better than SDSC at discarding false positives when the wrong speckle

is identified.

4.4 Smartphone detection after SDGSC

By combining traditional image processing techniques with statistical classifiers, we

designed a system that can successfully detect the presence of the smartphone and

reject false positive cases 98% of the time. Our empirical assessment indicates that

the system is more stable and the virtual smartphone aligns properly with the smart-

phone present in the leap motion image. The system is also able to map the images

obtained from the smartphone’s screen to the smartphone displayed inside the VR

space, and our initial testing showed that user can operate their smartphone device

without having to remove their HMD device. Some instances where the user was able

to launch an App, able to read text displayed and attempt to type a message on the

smartphone’s screen in VR environment are shown in Figure 4.8. These images show

that, although limitations exist, the method proposed can bring modern communi-

cation devices like smartphones inside the VR space. It also shows that users can

operate their smartphones from inside the VR space and no longer have to remove

their HMD’s each and every time they need to check their social networks or talk

with friends and family over the phone.
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(a) (b)

(c) (d)

Figure 4.8: Some instances where users were able to interact with the smartphone in-

side VR environment. (a) User can check weather updates (b) Read news in ’InShorts’

app (c) Create an appointment (d) Initiate a phone call
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Chapter 5

Conclusions and Future Work

The visual isolation from the real world while wearing an HMD makes the task of

using a smartphone difficult. This may in turn lead to temporary isolation, where

users are not able to get in touch with their friends and family or check out important

notifications when immersed in the VR space. To address this issue, we present a

novel method that allows people wearing VR HMDs to use their smartphones without

removing their HMDs. The devised method combines traditional image processing

techniques with a statistical classifier to accurately detect the presence of the smart-

phone in the user’s real-world surrounding. An additional camera such as the Leap

Motion device is used to capture the user’s real-world immediate surroundings. Once

the smartphone is detected, we augment the scene inside the VR HMD with a view of

the user’s device so that the user can interact with the device without removing the

headset. This setup allows the users to interact with the smartphone or tablet device
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from within the virtual space and be in touch with their friends and family through

it. Although the proposed system has some limitations and the human visual system

is quite sensitive to these, achieving a satisfying solution is within reach, and the

presented results are encouraging. The proposed system can be further explored for

use in application areas where the use of traditional input devices can be challenging

and smartphones may come in handy. Through user studies, activities that rely on

the smartphones touch screen as an input device, such as text entry, game control,

internet browsing, and drawing gestures can be further explored.

5.1 Statistical classifiers in Image Processing

We assessed the accuracy of three statistical classifiers (LR, LDA and QDA) and three

feature selection approaches (RRF, RFE, and all features available) for detecting a

smartphone in real-time from an image captured by the Leap Motion device. From

the three statistical classifiers, QDA showed approximately 13% higher AUC, and

higher recall at the same level of false positive rate (< 0.2) than LR and LDA for

the initial dataset used. QDA had also the lowest standard deviation for each of the

performance measurements, a strong indication of a more robust classifier for this ap-

plication domain than LR and LDA. Based on these performance measures, we used

QDA to classify whether the detected smartphone edges belonged to the smartphone

or not at run-time.
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From the feature selection approaches, QDA’s AUC was statistically significantly

higher when all available features were considered (p-value ≤ 0.001, Mann-Whitney

test) than when using the features subsets selected by the other feature selection ap-

proaches. Based on the results obtained, we decided to use all available features to

construct the run-time classification model of the smartphone detector with general-

ized statistical classifiers (SDGSC). The original smartphone detector (IBSD) had a

high false positive rate, incorrectly identifying edges of surrounding objects as smart-

phone edges. When applying the QDA classifier trained with all available features

on the images produced by the image-based smartphone detector, we observed that

SDGSC rejects almost 98% of the false positive cases. This demonstrates that statis-

tical classifiers can be effectively used to build a reliable system. In our case we can

reliably overlay the smartphone screenshot to the real-world smartphone displayed in

VR environment. A reliable smartphone display enables the users to perform differ-

ent operations like reading text, answering calls or checking the weather from their

smartphone from within the VR environment.

5.2 Publication of this Research

The research described in this thesis has been published in the following conference:

• A Window to your Smartphone: Exploring Interaction and Communication in

Immersive VR with Augmented Virtuality

Amit P. Desai, Lourdes Peña-Castillo and Oscar Meruvia-Pastor
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Proceeding of the 14th Conference on Computer and Robot Vision (CRV), May

17-19, 2017, Edmonton, Alberta, Canada.
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[27] D. Böhning, “Multinomial logistic regression algorithm,” Annals of the Institute

of Statistical Mathematics, vol. 44, no. 1, pp. 197–200, Mar 1992. [Online].

Available: https://doi.org/10.1007/BF00048682

[28] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Mullers, “Fisher

discriminant analysis with kernels,” in Neural Networks for Signal Processing

IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat.

No.98TH8468), Aug 1999, pp. 41–48.

80

http://dx.doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1007/BF00048682


[29] S. Srivastava, M. R. Gupta, and B. A. Frigyik, “Bayesian quadratic discriminant

analysis,” Journal of Machine Learning Research, vol. 8, no. Jun, pp. 1277–1305,

2007.

[30] P. Milgram and F. Kishino, “A taxonomy of mixed reality visual displays,” IEICE

TRANSACTIONS on Information and Systems, vol. 77, no. 12, pp. 1321–1329,

1994.

[31] P. Milgram and H. Colquhoun, “A taxonomy of real and virtual world display

integration,” Mixed reality: Merging real and virtual worlds, vol. 1, pp. 1–26,

1999.

[32] Microsoft, “Kinect for Xbox One,” http://www.xbox.com/en-CA/xbox-one/

accessories/kinect, 2017, accessed: 2017-04-29.

[33] H. Regenbrecht, T. Lum, P. Kohler, C. Ott, M. Wagner, W. Wilke, and

E. Mueller, “Using augmented virtuality for remote collaboration,” Presence:

Teleoperators and Virtual Environments - Special issue: Advances in collaborative

virtual environments, vol. 13, no. 3, pp. 338–354, Jul. 2004. [Online]. Available:

http://dx.doi.org/10.1162/1054746041422334

[34] F. Steinicke, G. Bruder, K. Rothaus, and K. Hinrichs, “Poster: A virtual body

for augmented virtuality by chroma-keying of egocentric videos,” in 3D User

Interfaces, 2009. 3DUI 2009. IEEE Symposium on, March 2009, pp. 125–126.

81

http://www.xbox.com/en-CA/xbox-one/accessories/kinect
http://www.xbox.com/en-CA/xbox-one/accessories/kinect
http://dx.doi.org/10.1162/1054746041422334


[35] F. Tecchia, G. Avveduto, R. Brondi, M. Carrozzino, M. Bergamasco, and

L. Alem, “I’m in vr!: Using your own hands in a fully immersive mr system,”

in Proceedings of the 20th ACM Symposium on Virtual Reality Software and

Technology, ser. VRST ’14. New York, NY, USA: ACM, 2014, pp. 73–76.

[Online]. Available: http://doi.acm.org/10.1145/2671015.2671123

[36] T. Ha, S. Feiner, and W. Woo, “Wearhand: Head-worn, rgb-d camera-based,

bare-hand user interface with visually enhanced depth perception,” in 2014 IEEE

International Symposium on Mixed and Augmented Reality (ISMAR), Sept 2014,

pp. 219–228.

[37] G. Bruder, F. Steinicke, K. Rothaus, and K. Hinrichs, “Enhancing presence

in head-mounted display environments by visual body feedback using head-

mounted cameras,” in Proceedings of the 2009 International Conference on

CyberWorlds, ser. CW ’09. Washington, DC, USA: IEEE Computer Society,

2009, pp. 43–50. [Online]. Available: http://dx.doi.org/10.1109/CW.2009.39

[38] T. Gnther, I. S. Franke, and R. Groh, “Aughanded virtuality - the hands in

the virtual environment,” in 2015 IEEE Virtual Reality (VR), March 2015, pp.

327–328.

[39] G. Bruder, F. Steinicke, D. Valkov, and K. Hinrichs, “Immersive virtual studio

for architectural exploration,” in 2010 IEEE Symposium on 3D User Interfaces

(3DUI), March 2010, pp. 125–126.

82

http://doi.acm.org/10.1145/2671015.2671123
http://dx.doi.org/10.1109/CW.2009.39


[40] L. P. Fiore and V. Interrante, “Towards achieving robust video selfavatars un-

der flexible environment conditions,” International Journal of Virtual Reality,

vol. 11, no. 3, pp. 33–41, 2012.

[41] D. Nahon, G. Subileau, and B. Capel, “Never blind vr - enhancing the virtual

reality headset experience with augmented virtuality,” in 2015 IEEE Virtual

Reality (VR), March 2015, pp. 347–348.

[42] C. Choi and H. I. Christensen, “3d textureless object detection and tracking: An

edge-based approach,” in 2012 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, Oct 2012, pp. 3877–3884.

[43] F. Tombari, A. Franchi, and L. Di, “Bold features to detect texture-less objects,”

in 2013 IEEE International Conference on Computer Vision, Dec 2013, pp. 1265–

1272.

[44] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab, “Dominant orientation

templates for real-time detection of texture-less objects,” in 2010 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, June

2010, pp. 2257–2264.

[45] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit,

“Gradient response maps for real-time detection of textureless objects,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 5, pp.

876–888, May 2012.

83



[46] C. Steger, “Occlusion, clutter, and illumination invariant object recognition,”

International Archives of Photogrammetry Remote Sensing and Spatial Informa-

tion Sciences, vol. 34, no. 3/A, pp. 345–350, 2002.

[47] M. Ulrich, C. Wiedemann, and C. Steger, “Combining scale-space and similarity-

based aspect graphs for fast 3d object recognition,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 1902–1914, Oct 2012.

[48] C. F. Olson and D. P. Huttenlocher, “Automatic target recognition by matching

oriented edge pixels,” IEEE Transactions on Image Processing, vol. 6, no. 1, pp.

103–113, Jan 1997.
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Informed Consent Form 

 

Title: Data collection to explore communication and interaction in immersive 

VR environments using smartphones   

Researcher(s): Amit Desai 

 Department of Computer Science 

 Memorial University of Newfoundland 

 apd525@mun.ca  

Supervisor(s):   Dr. Oscar Meruvia-Pastor 

Department of Computer Science 

Office of the Dean of Science 

Memorial University of Newfoundland 

St. John’s, Canada 

oscar@mun.ca 

 

 Dr. Lourdes Peña-Castillo 

Department of Computer Science 

Department of Biology 

Memorial University of Newfoundland 

St. John’s, Canada 

lourdes@mun.ca 

 

You are invited to take part in a research project entitled “Data collection to explore 

communication and interaction in immersive VR environments using smartphones.” 

 

This form is part of the process of informed consent.  It should give you the basic idea of what 

the research is about and what your participation will involve.  It also describes your right to 

withdraw from the study. To decide whether you wish to participate in this research study, you 

should understand enough about its risks and benefits to be able to make an informed decision.  

This is the informed consent process.  Take time to read this carefully and to understand the 

information given to you.  Please contact the researcher, Amit Desai, if you have any questions 

about the study or would like more information before you consent. 

 

It is entirely up to you to decide whether to take part in this research.  If you choose not to take 

part in this research or if you decide to withdraw from the research once it has started, there will 

be no negative consequences for you, now or in the future. 
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Introduction: 

I, Amit Desai, am conducting this research as the Principal Investigator, under the supervision of 

Dr. Oscar Meruvia-Pastor & Dr. Lourdes Peña-Castillo. This research is part of my Master’s 

Program. 

 

Virtual Reality headsets like Oculus Rift have visual and social isolation problems, preventing 

users from seeing and sometimes hearing their surrounding environment when immersed in the 

virtual environment. The focus of this research is to enable the users to use their smartphones 

without leaving the virtual environment.  

   

Purpose of study: 

Collection of the data to train the designed VR system to improve its reliability to correctly 

identify the smartphone and to account for variations in the way users use their smartphones at 

different positions and orientations.  

 

What you will do in this study: 

The users will be asked to perform following steps: 

1. Wear Oculus VR Head-mounted display 

2. Pick up the smartphone placed on table or handed to you 

3. Place the smartphone in 5 different regions (center plus corners, clockwise from the 

top left) and at 3 different depths/distances for each region designated in the VR 

space for a test run. 

4. Place the smartphone in 5 different regions (center plus corners) and at 3 different 

depths/distances for each region designated in the VR space for actual data collection. 

5. The previous step will be repeated with the phone in two basic orientations analogous 

to the portrait and landscape printing orientations. At each designated position, data 

points from the captured smartphone image will be recorded. 

 

Length of time:  

The total amount of time that we expect each user to spend on data collection is 15 minutes.  

 

Withdrawal from the study:  

Participation is entirely voluntary and participants can withdraw anytime. At the time of 

withdrawal, if the data gathered upon that point is not complete, it will be purged. However, the 

data cannot be removed from the study if a participant withdraws after the training of the system 

is complete. 

 

Possible benefits: 

a) For participants: The students participating in the study will have a firsthand exposure to 

Virtual Reality systems. 

b) For the scientific community: This research focuses on addressing some of the isolation 

problems suffered by users of immersive VR with the help of smartphones.  
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Possible risks: 

Use of Head Mounted Displays (HMDs) for extended period of time may cause some 

participants to experience motion sickness or simulation sickness. Participants suffering with 

motion sickness can feel fatigue, headache, discomfort, difficulty in focusing, dizziness or 

nausea. To ensure that participants do not experience severe motion sickness symptoms, the 

participant will be asked to answer Simulator Sickness Questionnaire (SSQ) at various points. If 

Simulator Sickness symptoms persist, participants will be instructed not to drive back home and 

rest in the lab or remain on campus until the symptoms subside. If the symptoms still persist 30 

minutes after completing the study, participants will be instructed to visit the Student Health 

Service at the university.  

  

Confidentiality: 

During this study no information about the identity of participants will be used either during the 

analysis of the data or the release of the findings. The participants’ names or identifying 

information will be recorded only in the informed consent form and will be kept confidential. 

The participants will be assigned random identification numbers in the internal computer 

systems, statistics analysis and in the release of the findings. 

 

Upon completion of the study the informed consent forms will be archived in the office of the 

Principal Supervisor. These forms will be kept for a minimum of five years and will be destroyed 

after that.  

 

Anonymity: 

Participant’s identity will be kept anonymous. Participants will not be mentioned in the thesis or 

publication. 

 

Storage of Data: 

Upon completion of the study, the informed consent forms will be archived in the office of the 

Principal Supervisor. All data collected in the study will be kept for a minimum of five years, as 

required by Memorial University’s policy on Integrity in Scholarly Research.  

 

 

Reporting of Results: 

The results, observations and conclusions of the study will be included in the thesis and 

associated publications. Since the data collected from the participants will be anonymous, none 

of the personal identification details of the participants will be mentioned anywhere in the thesis. 

 

Sharing of Results with Participants: 

The results, observations and conclusions of the study will be included in thesis report and will 

be available for public viewing. After the results are published, an email with a link to the 

published results will be sent out to only those participants who had provided their emails in the 

consent form. 
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Questions: 

The participant is welcome to ask questions any time before, during, or after participation in this 

research. If the participant would like more information about this study, please contact: Amit 

Desai, Email: apd525@mun.ca or Dr. Oscar Meruvia-Pastor, Email: oscar@mun.ca. 

 

The proposal for this research has been reviewed by the Interdisciplinary Committee on Ethics in 

Human Research and found to be in compliance with Memorial University’s ethics policy.  If 

you have ethical concerns about the research, such as the way you have been treated or your 

rights as a participant, you may contact the Chairperson of the ICEHR at icehr@mun.ca or by 

telephone at 709-864-2861. 

 

 

Consent: 

Your signature on this form means that: 

 You have read the information about the research. 

 You have been able to ask questions about this study. 

 You are satisfied with the answers to all your questions. 

 You understand what the study is about and what you will be doing. 

 You understand that you are free to withdraw participation in the study without having to 

give a reason, and that doing so will not affect you now or in the future.   

 You understand that if you choose to end participation during data collection, any data 

collected from you up to that point will be destroyed. 

 You understand that your data is being collected anonymously and therefore cannot be 

removed once data collection has ended. 

 

By signing this form, you do not give up your legal rights and do not release the researchers from 

their professional responsibilities. 

 

Your signature confirms:  

       I have read what this study is about and understood the risks and benefits.  I have had                

adequate time to think about this and had the opportunity to ask questions and my 

questions have been answered. 

  I agree to participate in the research project understanding the risks and contributions of 

my participation, that my participation is voluntary, and that I may end my participation. 

 

      A copy of this Informed Consent Form has been given to me for my records. 
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Email Consent 

Would you like to receive a copy of the published result of this research?   Yes    No 

If yes, please provide your email address ________________________________________ 

 

 

 

 

 

 

 _____________________________   _____________________________ 

Signature of participant     Date 

 

Researcher’s Signature: 

I have explained this study to the best of my ability.  I invited questions and gave answers.  I 

believe that the participant fully understands what is involved in being in the study, any potential 

risks of the study and that he or she has freely chosen to be in the study. 

 

 

 

 

______________________________   _____________________________ 

Signature of Principal Investigator    Date 
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Participants Needed 

for a VR Study!  

 

• We need 10 enthusiastic volunteers to collect important data for 

our research 

• Total time required to complete: approximately 15 minutes 

• Live demonstration on how to perform the task will be provided to 

all participants 

• Participants can withdraw from experiment at any time 

• Identifiable info won't be collected from participants 

• Contact: Amit Desai (apd525@mun.ca or 709-682-6617) 
 

Details: 

 This Master’s program research focuses on allowing the use of 

smartphones while wearing Head Mounted Displays (HMDs) like the 

Oculus Rift.  

Volunteers will help me train the system to make it robust against 

different smartphones of various sizes, and holding positions.  

Supervisor: Dr. Oscar Meruvia-Pastor (oscar@mun.ca)  

 Dr. Lourdes Peña-Castillo (lourdes@mun.ca) 

The proposal for this research has been reviewed by the Interdisciplinary Committee on Ethics in Human 

Research and found to be in compliance with Memorial University’s ethics policy. If you have ethical 

concerns about the research, such as the way you have been treated or your rights as a participant, you 

may contact the Chairperson of the ICEHR at icehr.chair@mun.ca or by telephone at 709-864-2861 
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 No______________      Date____________________  

 

SIMULATOR SICKNESS QUESTIONNAIRE 

 
Instructions: Circle how much each symptom below is affecting you right now.  

 
1. General discomfort  None  Slight  Moderate  Severe  

 
2. Fatigue  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
3. Headache  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
4. Eye strain  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
5. Difficulty focusing  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
6. Salivation increasing  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
7. Sweating  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
8. Nausea  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
9. Difficulty concentrating  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
10. Fullness of the Head  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
11. Blurred vision  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
12. Dizziness with eyes open  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
13. Dizziness with eyes closed  

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
14. *Vertigo  

 

 

None  

 

Slight  

 

Moderate  

 

Severe  

15. **Stomach awareness  None  Slight  Moderate  Severe  

 
16. Burping  

 

 

None  

 

Slight  

 

Moderate  

 

Severe  

 
 * Vertigo is experienced as loss of orientation with respect to vertical upright.  

** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of nausea. 
 
Source:  
Kennedy, R.S., Lane, N.E., Berbaum, K.S., & Lilienthal, M.G. (1993). Simulator Sickness Questionnaire: An enhanced 
method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3), 203-220. 
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