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Abstract

For many years, researchers have made great contributions in the fields of augmented

reality (AR) and stereo vision. One of the most studied aspects of stereo vision

since the 1980s has been Stereo Correspondence, which is the problem of finding the

corresponding pixels in stereo images, and therefore, building a disparity map. As

a result, many methods have been proposed and implemented to properly address

this problem. Due to the emergence of different techniques to solve the problem

of stereo correspondence, having an evaluation scheme to assess these solutions is

essential. Over the past few years, different evaluation schemes have been proposed

by researchers in the field to provide a testbed for assessment of the solutions based

on specific criteria. Middlebury Stereo and Kitti Stereo benchmarks are two of the

most popular and widely used evaluation systems through which a solution can be

evaluated and compared to others. However, both of these models take a general

approach towards evaluating the methods, that is, they have not been designed with

an eye to the particular target application. In our proposed approach, steps are taken

towards an evaluation design based on the potential applications of stereo methods,

which enables us to better define the criteria for efficiency, that is, the processing

time, and the required accuracy of the disparity results. Since AR has attracted

more attention in the past few years, the evaluation scheme proposed in this research

is designed based on outdoor AR applications which can take advantage of stereo

vision techniques to obtain a depth map of the surrounding environment. This map

can then be used to integrate virtual objects in the scene that respect the occlusion

effects that are expected to occur based on the depth of the real objects.
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Chapter 1

Introduction

Augmented reality (AR) systems combine standard video inputs with computer-

generated objects and usually provide real-time interaction for the users. In general,

an augmented reality system can be defined with the following properties [1, 34] :

• Combination of real and virtual environment

• Registration (alignment) of real and virtual objects

• Real-time interaction

This concept was pioneered in the 1960s by an American computer scientist named

Ivan Sutherland who created the first head-mounted augmented reality system with

the help of one of his students [1].

Combining virtual objects and annotations with real world scenes has proved to

be an effective way of conveying information about the surrounding environment to

the user and can be useful in many applications such as gaming, medical surgeries,

tourism, and other entertaining, informative or instructional tasks.
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Many mobile augmented reality systems have been built over the past decades,

from the Touring Machine in 1997 by Feiner et al. [11] to Google AR glasses which was

announced in 2013 [24]; however, most of these prototypes have remained experimen-

tal due to certain difficulties and constraints of using them in practical applications

[10, 29]. To name two of the most important constraints we can refer to:

1. Human factors in augmented reality

2. High demand of computational resources in order to provide a real-time inter-

action between the user and the system

1.1 Image Registration in Augmented Reality

AR systems overlay 2D or 3D virtual objects on real scenes. Therefore, depending

on the application, certain accuracy is required for registration of the virtual and

real objects in the scene, for which certain knowledge of the location of the user and

different objects is essential [1, 34]. In an AR system, different techniques can be used

to obtain the user’s location and the position of other objects in the environment. In

many AR systems, fiducial markers are used in the environment with computer vision

tracking methods to find the actual position of the objects within the scene. This

method, however, is more useful in prepared, indoor AR environments. Tracking sen-

sors such as gyroscope and accelerometer along with video sensors can also be used as

complementary techniques to provide information on the user’s position and viewing

orientation [1]. However, for unprepared, outdoor environments, especially in mobile

AR applications, it is not practical to use markers in various locations in the scene
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and, therefore, a markerless technique, such as obtaining a dense depth map of the

surrounding environment, must be considered as an alternative to find the position of

the objects in the scene. To obtain the depth of the surrounding environment several

depth sensing technologies can be used such as 3D laser scanner, depth cameras or

regular cameras. However, in order to have a mobile AR system that is easy to carry

around, the weight of the whole system will be more of a concern, hence, 3D laser

scanners and depth cameras are not proper choices for such systems. Depth cameras,

such as Kinect, or DS325 have a strong limitation in the viewing range; Kinect, 0.8m

to 4m [33]; and DS325, 0.15m to 1m [43]. On the other hand, 3D laser scanners

can generate very accurate depth maps; however, they are normally expensive and

their price ranges from $3,000 to $300,000 or more, depending on their accuracy and

range. Therefore, among all these technologies, using several cameras to generate a

depth map of the surrounding environment seems to be a more practical approach

for outdoor mobile augmented reality systems.

However, using several cameras to get the depth map of the scene requires certain

conditions to be met, geometrically and computationally. Many researchers have al-

ready looked into this particular problem, i.e, finding the 3D position of the points in

the scene from two or multiple views using regular cameras [46]. Attempts of these

researchers have resulted in certain techniques in computer vision to find the depth of

different points in an environment using one or more stereo pairs taken from slightly

different points of view of the same scene. These techniques are known as Stereo Cor-

respondence or Stereo Matching in computer vision [46]. Stereo matching has been

one of the most studied subjects in computer vision for many years now and there

are many solutions proposed by researchers to address this problem using different
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techniques; however, finding the corresponding pixels in stereo pairs with certain level

of accuracy and in real-time for practical applications still remains a challenging task.

1.2 Motivation

Due to the emergence of different techniques to solve the problem of stereo correspon-

dence, having an evaluation scheme to assess these solutions is essential. Over the

past few years, different evaluation schemes have been proposed by researchers in the

field to provide a testbed for assessment of the solutions based on specific criteria. For

instance, the Middlebury Stereo [40] and the Kitti Stereo benchmarks [15] are two of

the most popular and widely used evaluation systems through which a solution can

be evaluated and compared to others. However, both of these models take a general

approach towards evaluating the methods, that is, they have not been designed with

an eye to the particular target application. In other words, they mainly focus on the

fundamental aspects of designing a stereo algorithm as a solution per se to generally

find the best matches of corresponding pixels in stereo pairs.

In this study, we take steps towards an evaluation design which is based on the

potential applications of stereo vision methods. This enables us to better define and

adjust the criteria for efficiency and the best correspondence matches while doing

the evaluation. Since AR has attracted more attention in the past few years, the

evaluation scheme proposed in this study is designed based on outdoor AR applica-

tions which take advantage of stereo vision techniques to obtain a depth map of the

surrounding environment. This map will then be used to integrate virtual objects in
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the scene that respect the occlusion property and the depth of the real objects in the

scene.

In other words, our motivation in this research is to study the possibility of com-

bining stereo vision approaches with AR systems considering the most important

constraints that AR systems normally encounter in outdoor environments. In fact,

our fundamental research question is:

“Can the combination of stereo matching techniques with aug-

mented reality meet the requirements of an AR system in out-

door environments?”

To provide an informed answer to the previous question, we believe that the following

more fundamental questions need to be answered first:

“How does the human visual system (HVS) perceive depth?”

“What is the standard angular disparity for the human visual

system and how would it affect an AR system?”

“How can we evaluate stereo vision in an augmented reality

framework and what are the important factors we need to con-

sider for this type of evaluation?”

“In a combination of augmented reality with stereo vision, what

is considered an accurate depth result?”

“How can a three dimensional model be built from stereo images

using computer vision techniques?”
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“What are the requirements to maintain an interactive aug-

mented reality application for the user?”

To answer these questions, we have designed and implemented a testbed for eval-

uation of the stereo matching solutions based on specific criteria which will be thor-

oughly described in the following chapters.

As a starting point for our AR system, the depth map generated from two or

multiple camera views will be used as the depth source to determine the position of

the objects in the scene when overlaying virtual objects at different locations and

depth levels in the real environment. For our research, we decided to narrow down

our study to the effect of using stereo vision techniques on two of the most important

constraints of an AR system mentioned earlier in this chapter: human factors and

real-time interaction.

Human perception of depth can vary depending on the environment and under dif-

ferent circumstances. Many studies have focused on the evaluation of human per-

ception of depth within different frameworks and in different applications, such as

virtual reality and augmented reality, which have recently attracted more attention

[47, 10, 29, 26, 45, 28]. These studies show that the viewer perception of depth is in-

versely proportional to his/her distance from the object [28, 45, 26, 29]. For instance,

in [45] some experiments are designed to study and evaluate human perception of

distance, which is the absolute depth of the objects from the observer, for an outdoor

augmented reality application in urban settings. However, in this research we are

more interested in the human perception of relative depth in stereo vision, which is
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the ability to perceive and distinguish the depth of different objects relative to each

other. In binocular vision, the minimum depth difference between two points that

can be detected in the visual system is known as Stereoscopic Acuity or Stereoacuity

[36]. More detail about this metric will be provided in the following chapters. We

have investigated the standard stereoacuity in the human visual system and applied

it to our evaluation in order to obtain the smallest detectable depth of objects in

human binocular vision based on their distance from the observer.

Providing real-time interaction in an AR system for the user requires the process-

ing time and update rate of the whole system to keep up ideally with the standard

video frame rate, between 24fps and 30fps, or higher. However, studies show that in

practice to build a reasonable interactive augmented world the processing rate should

not be less than half of the video frame rate [17]. There are different approaches to

speed up a system:

1. Using more advanced technology and hardware

2. Achieving a more sophisticated and efficient software design

However, having access to advanced technology and hardware is not always feasible

and even the most advanced technologies have some limitation in their memory space

and computational capability which may not meet the requirement for some real-time

applications. Therefore, we have decided to focus more on the second approach while

designing our evaluation system which also looks into one of the key properties of an

AR system mentioned earlier, that is, the real-time user interaction.

One of the most important features that makes our evaluation unique and different

from the others is that we have designed the evaluation process of the stereo matching
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solutions with an eye to augmented reality applications in outdoor environments. In

order to address the speed factor, we evaluate the results based on the requirements of

providing an interactive AR system for the user. In addition, to address the constraint

of computational resource, we have integrated a module in our design that focus on the

evaluation of particular regions in the scene rather than the whole image. It is known

that distinctive features such as edges, either in RGB or depth images from a scene,

play an important role in many computer vision applications, such as object detection

and tracking, determination of a set of reliable correspondences to build a 3D model

that helps with better perception of object locations in 3D space [30, 46]. Therefore,

in an augmented reality application, wrong depth results, especially in those regions,

which will lead to erroneous registration of virtual and real objects, can be perceived

easier by the human visual system. This can lead to poor performance of the system

and possibly faulty interaction between the user and the augmented world. Figure

1.1 shows an accurate and faulty registration of objects (the lamp, the head and the

synthetic triangle) in a 3D environment that results from an accurate and wrong

disparity map in a specific area of depth discontinuity.
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(a) Accurate registration of objects (b) Erroneous registration of objects

Figure 1.1: Integration of objects in a 3D environment

Therefore, we focus the evaluation in our model on the depth edges in the scene

and their surrounding regions [29, 28]. Our hypothesis is that salient edges caused by

depth discontinuities, which can also represent the object boundaries and occlusion,

and their surroundings are one of the most important depth cues for the observer

to perceive the depth of different objects in the scene [46]. Furthermore, the regions

of depth discontinuity and occlusion are known as two of the most challenging parts

in the image for the stereo correspondence algorithms [41]. Finding correct depth

values in these regions can lead to a higher quality combination of the virtual and

real objects in the scene, thus providing a more reasonable augmented world for the

user to interact with.
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1.3 Methodology

To achieve our objectives in this research, we have surveyed some of the existing

approaches to solve the problem of stereo correspondence and the geometrical princi-

ples of the 3D reconstruction from stereo pairs, which will be explained more in the

next chapters. In order to investigate the benefits of our proposed model, we have

evaluated two sample stereo matching algorithms in our system. These algorithms

are:

1. Semi-global block matching, also known as SGBM, which is a modified version

of the semi-global matching by Hirschmuller [18].

2. Our implementation of the solution proposed by Mei et al., “On building an

accurate stereo matching system on graphics hardware” [32], also known as

ADCensus.

SGBM is now integrated in the Open Source Computer Vision Library (OpenCV)

[25] and, therefore, we have used this implementation in our evaluation. On the

other hand, since no implementation of ADCensus is available in the public vision

libraries, we have used our own implementation of it which we refer to as ADCensusB

in this thesis. Although ADCensus is originally proposed as a GPU-based solution,

we have used the CPU implementation of it in our evaluation, as no public GPU-

implementation was also available.

SGBM is selected as it has shown to generate acceptable results within 1-2 seconds

on the typical test images [18]; moreover, its integration within the OpenCV library

has made its usage more common in different applications. ADCensus is also currently
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ranked as one of the best solutions for solving the problem of stereo correspondence in

terms of general accuracy, regardless of the running time, according to the Middlebury

evaluation table [40]. In addition, AdCensus does not currently exist in the KITTI

evaluation table which motivates us to evaluate our implementation of it under real

world circumstances with outdoor stereo images.

1.4 Organization of Thesis

This report is organized in the following structure. We discuss a background of

the related work and concepts in Chapter 2 where the geometry of stereo vision,

stereo correspondence problem, and a survey of the stereo solutions will be reviewed.

Moreover, we will introduce some of the key computer vision techniques employed

during this research work. Chapter 3 introduces some of the most relevant concepts in

binocular vision to this study. In Chapter 4, we will explain our system and its design

and components in detail. Chapter 5 discusses the experiments conducted for the

evaluation of the proposed system in the framework of an outdoor AR application. In

Chapter 6, we discuss the shortcomings and benefits of our system based on the results

from Chapter 5. Consequently, a discussion of the potential aspects for improvement

and future research will also be provided.
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Chapter 2

Background and Related Work

In this chapter, we introduce the relevant concepts and review the techniques used in

this research.

2.1 Stereo Vision

Stereo vision is the concept of viewing a scene (object) in the real world from slightly

different viewpoints at the same time which results in stereo image pairs that are

used by the human visual system or computer vision techniques to convey depth in

a scene.

Using computer vision techniques, it is possible to extract depth information from

stereo images. This process is called Stereo Matching or Stereo Correspondence in

computer vision, which in fact leads to the construction of a 3D model of a scene

from two or multiple views by finding corresponding pixels and, therefore, their spatial

displacement within various views of the same scene [46].

Corresponding pixels in stereo images are the ones that are originated from the
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same point in the real world. In most cases, the corresponding pixels are represented

by the same color emanating from the same point. However, some pixels may not

have a corresponding pixel in the other image for a number of reasons. For example,

pixels may have become occluded or may have appeared as the result of the change

in the position of the viewpoint. As it will be seen shortly in more detail, the amount

of horizontal motion of such pixels in stereo pairs, which is referred to as disparity,

is inversely proportional to the distance from the observer, i.e., depth; however, es-

timation of the exact depth of the points requires some other information as well,

such as the position, and the calibration data of the cameras that were used to take

the pictures. While the physical and geometrical approaches to this problem are well

understood by researchers in the field, the process of finding the corresponding pixels

correctly, yet efficiently, and measuring the disparity to generate a dense depth map

still remains a challenging task.

2.2 Epipolar Geometry

Understanding the fundamentals of the underlying geometry of stereo matching helps

to better understand the principal idea behind all the methods designed to address

this problem, thus facilitating the comprehension of 3D model reconstruction from

stereo image pairs. Therefore, we will thoroughly describe the basic geometry of

stereo matching in this section.

If we consider two cameras that are looking at a particular scene from slightly different

view points, a back projection of any point in the 3D space via rays passing through

each camera centre, C
′

and C”, would result in two distinct points on each image
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plane. For simplicity, we will refer to the point in space as P , and its projection on

the first (left) and second (right) image planes, as P
′

and P ” respectively.

As a result of P ’s back projection on the image planes, an important property will

emerge between the points and the camera centres, which is coplanarity of all these

points. This plane, also referred to as epipolar plane, passes through P
′

, P ” and

the camera centres, thus intersecting each image plane. It should be noted that this

property, from which the consequent properties are derived, is the building block of

stereo matching methods. Let us denote the specified plane by S for further reference.

Since S passes through the camera centres, it clearly traverses the line that connects

two camera centres. This line, which is known as the baseline, intersects each image

plane at a point called the epipole; denoted by e
′

and e” in Figure 2.1. Consequently,

the intersection of the plane S and each of the image planes, creates a line called

epipolar line [16]. The epipolar line always passes through the epipole in the image

plane. These concepts, illustrated in Figure 2.1, constitute the important components

of the stereo correspondence geometry.
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P

P"
P'

e' e"

baseline

C' C"

Figure 2.1: Epipolar geometry

Now, we can define the problem of stereo correspondence as a case in which the

location of P
′

in the image plane is known, while the corresponding point P ” is un-

known; therefore, the problem can be stated as an attempt to find the correspondence

of P
′

in the second image plane. Based on the aforementioned properties, we know

that P ” is located somewhere on the line, the epipolar line, created by the intersection

of the plane traversing the ray that goes through P
′

and the first camera centre and

the baseline. This line is in fact, the projection of the ray going through P
′

and the

first camera centre, on the right image plane. Therefore, the search for the corre-

sponding point, P ”, will be limited to merely scanning the corresponding epipolar

line on the second image plane rather than the whole image.

It is now apparent that in order to find the correspondence of a particular point P
′

,

in the second image plane the corresponding epipolar line, must first be sought. The
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projection from a point to its corresponding epipolar line can be obtained through

certain transformations in space; normally a rotation and translation, Figure 2.2.

For further geometrical calculations, these transformations can be represented with a

matrix that is only dependent on the camera’s properties, not the scene [16]. However,

dealing with these transformations while looking for the corresponding points, can

increase the complexity of stereo matching algorithms to certain levels [46]; therefore,

in order to avoid this issue, many stereo matching approaches are proposed based

on the assumption that image pairs are first warped [46]. This process is known as

image rectification which is basically achieved by first having the cameras rotated in

a way that their optical axis, the line passing through the camera centre which is

perpendicular to the image plane, are parallel to each other, that is, their optical axis

is perpendicular to the baseline. As a result of this transformation, the epipoles are

sent to infinity. Furthermore, it might be necessary to have the cameras tilted so that

their y axis also becomes perpendicular to the optical axis. After these two steps,

corresponding epipolar lines actually become horizontal scanlines; Figure 2.2. This

pre-processing step significantly constrains the process of searching for corresponding

points and eliminates certain complications in stereo matching algorithms [46].
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P

f f

C' C"

Z

XL XR

Figure 2.2: Rectified image pairs and disparity geometry

Sample stereo images taken using two regular webcams are displayed in Figures

2.3 and 2.4, before and after rectification. The red line shows how features get aligned

in the left and right image after the rectification process.
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(a) Left image unrectified (b) Right image unrectified

Figure 2.3: Sample stereo image before rectification

(a) Left image rectified (b) Right image rectified

Figure 2.4: Sample stereo image after rectification

Using the rectification model and epipolar geometry described earlier, derivation

of the geometrical relation through which the depth of a certain point in 3D space

can be obtained, will be straightforward [46]. This relation is presented as follows:
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Z
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f
(2.1)

−XR

Z
= −

xr

f
⇒

B −XL

Z
= −

xr

f
(2.2)

(2.1) + (2.2) =⇒
B

Z
=

xl − xr

f
(2.3)

if xl − xr = d, we will have:

d =
Bf

Z
(2.4)

where f is the focal length measured in pixels, B is the baseline, Z is the 3D depth,

and d is the disparity. The relationship between corresponding pixels in the left and

right images according to disparity d is also as follows:

P ”
x = P

′

x + d(x, y) (2.5)

P ”
y = P

′

y (2.6)

where d(x, y) is the disparity function dependent on variables x and y that can be

chosen based on the coordinate of the pixel from which the displacement is calculated.

This function, in fact, indicates the transformation between the corresponding pixels

in the stereo images and if stereo images are aligned, then the function only indicates

horizontal displacement of corresponding pixels between the two images. Therefore,

based on the aforementioned formulas, the depth of points in 3D space can be easily

calculated after finding the corresponding pixels in multiple views and consequently

their disparities [3, 35, 41].
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2.3 Stereo Correspondence Algorithms

A survey of the field shows that the algorithms which address stereo correspondence

problem can be roughly divided into two main classes [41]. These classifications are

commonly known as:

1. Sparse Correspondence Algorithms

2. Dense Correspondence Algorithms

Regardless of the category, stereo matching algorithms normally include specific

steps in the process of finding the corresponding pixels in the stereo images. According

to the taxonomy by Scharstein et al. these steps are as follows:

1. Calculation of matching cost

2. Aggregating the costs

3. Disparity computation

4. Disparity refinement

Depending on each algorithm, these steps and their sequence may change.

In this section, we are going to briefly describe the important specifications of the

algorithms belonging to each of these two categories.

2.3.1 Sparse Correspondence Algorithms

Sparse correspondence algorithms, also known as feature-based algorithms, are the

early stereo matching methods. In the 1980s, this class of algorithms received consid-

erable attention by many researchers in computer vision [9]. In this type of methods,
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particular features in an image, such as edges, points, line segments, or other dis-

tinctive features are extracted; therefore, the search for corresponding pixels is only

applied to these regions. Consequently, algorithms of this sort result in a sparse

disparity map [31, 23, 46]. The introduction of feature-based algorithms has mainly

been motivated by three important factors [7, 46]:

• Lack of advanced hardware and technology for exhaustive computational tasks.

• Constraint of the search area in order to find more reliable matches.

• Stability of particular features to look for correspondences under certain cir-

cumstances when the image pairs are affected by external factors, such as il-

lumination variations; in other words, when there is a considerable difference

in photometric properties between the images, particular features, such as the

edges, may be more reliable to start the correspondence search.

However, the requirement of having dense depth maps for many applications and

also the emergence of efficient dense correspondence algorithms, have diverted the

attention away from this class of algorithms in the last 20 years.

2.3.2 Dense Correspondence Algorithms

Unlike feature-based methods, dense correspondence algorithms try to find the cor-

respondences for all the pixels in the image and, therefore, result in a dense disparity

map. Most recent algorithms and studies have focused on this class of algorithms

since many applications nowadays, such as graphical rendering, 3D model construc-

tion, or augmented reality require a dense depth map of the scene. However, these
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algorithms face many challenges that need to be properly addressed, such as find-

ing the depth values in occluded regions, depth discontinuities, and textureless areas

[41, 7].

Dense correspondence algorithms are usually classified in two groups based on how

they assign disparities to pixels [46]:

1. Local approaches

2. Global approaches

2.3.2.1 Local Approaches

Local methods tend to find the disparity of each pixel based on its neighboring pixels.

In other words, the disparity of a pixel is calculated in a finite window containing its

neighboring pixels, based on a particular metric, e.g. the intensity values [41].

These methods make an implicit smoothness assumption for the pixels in the

search window and, therefore, assign the same disparity to all the pixels belonging to

the same window which could result in incorrect disparity values in slanted surfaces

or depth discontinuities [19]. This assumption can be considered as one of the major

drawbacks of local methods. Another drawback of local methods is their dependency

on the window size [41]. A fixed window size can raise certain problems in these

algorithms:

1. If too large of a window size is considered, due to aforementioned smoothness as-

sumption, the algorithm may result in blurry object boundaries and inaccuracy

near depth discontinuities.
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2. If the selected window size is too small, the disparity values will be less accurate

and harder to find since little information has been considered for finding the

correspondences of pixels in the image.

However, a significant advantage of using local approaches is their high speed in

finding disparity results.

2.3.2.2 Global Approaches

Unlike local approaches, in global methods the disparity of a pixel depends on the

information in the whole image. Global methods usually include an optimization

step of a global energy function[38, 2, 6, 21]. In this class of algorithms, an optimal

disparity value for each pixel is sought that leads to minimization of a global cost

function that normally combines a data term with an explicit smoothness assumption.

E(d) = Edata(d) + λEsmooth(d) (2.7)

The term Edata is normally defined as the difference of a common metric, e.g. the

photometric property, between the corresponding pixels and is denoted as follows:

Edata(d) =
∑

(x,y)

C(x, y, d(x, y)) (2.8)

where C is a matching cost. The matching cost function can have various definitions

depending on the algorithm; however, as mentioned above, it is normally defined as

sum of absolute difference between the intensity of the corresponding pixels in two

images [41].

The term, Esmooth, is the smoothness assumption based on which the disparity values
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in different regions are refined. The definition of this term can also vary in different

solutions. λ is also a weighting factor, by which the effect of the smoothness assump-

tion in the global function can be controlled in the algorithm [46]. In order to find the

minimum of the global function, certain approaches in computer science have proved

to be particularly useful. To name some of these approaches, we can refer to dynamic

programming [27], graph cut [5, 6, 4], and belief propagation [44]. Many researchers

have studied and addressed the problem of stereo matching by applying one of these

approaches.

The major drawback of global approaches is normally their high usage of com-

putational resources and low speed. However, they usually result in more accurate

disparity values [19, 46].

It is also worthwhile to mention that in the past twelve years, another group of

algorithms have emerged which cannot be explicitly classified in any of the previ-

ously mentioned groups. These methods, which are known as Segmentation-based

techniques, first segment the image into regions and then, rather than searching for

correspondences per pixel, they attempt to find the corresponding disparity for each

region. A more detailed review of these methods can be found in chapter 11 of [46].

2.4 Edge Detection

As mentioned earlier in the “Introduction”, salient edges in the scene are one of the

important features that can be used in many applications, such as object detection,

image stitching, or 3D model reconstruction. Due to their importance and application

in this research, we review some of the relevant concepts and techniques to edge
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detection in computer vision in the following section.

2.4.1 Edges

When looking at a scene, an edge is defined whenever the visual system can perceive

a distinguishable variation in color, intensity or texture between different regions

[46]. Therefore, a reasonable mathematical approach to detect the edges in an image

would be calculating the gradient of the intensity image and then looking for the

maximum values. Another alternative would be getting the second derivative of

the image and then looking for zero values. However, since an image is normally

affected by a certain amount of noise which intensifies at higher frequencies, taking

the derivatives of the image can lead to significant noise amplification, as it makes

high frequency signals more prominent to others. Therefore, it is better to attenuate

high frequencies prior to applying any edge detection approach. There are a variety

of filters for image smoothing (blurring); however, since we want to attenuate high

frequencies, it is better to use a low-pass filter, which only passes low frequencies. A

widely known class of image blurring filters in computer vision are called linear filters,

whose output is a linear function of their input. In linear filtering operators, for each

pixel a weighted summation of its neighboring pixels is used in order to estimate its

final value [46]. In mathematics, this process can be modelled by convolution of the

input signal with a particular function, known as kernel.

g(i, j) =
∑

k,l

f(i+ k, j + l)h(k, l) (2.9)

which is denoted as:
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g = f
⊗

h (2.10)

where f and g are the input and output signals respectively, and h is the kernel

function which varies depending on the type of filter.

Therefore, each filter can modify the input signal differently based on its corre-

sponding kernel function. The Gaussian filter is a filter commonly used for attenuating

higher frequencies in an image and filtering out the noise [48]. Since edges in an im-

age may be oriented along any arbitrary direction, applying a filter which is biased

towards a particular direction in filtering out the noise, would not be a prudent deci-

sion. Instead, a better choice would be choosing a filter with a circularly symmetric,

i.e. isotropic, 2D kernel function such as the Gaussian filter, which is normally used

in most edge detection algorithms as a pre-processing step. The Gaussian kernel has

the following form [46]:

G(x, y) =
1

2πσ2
e−

x
2
+y

2

2σ2 (2.11)

where σ is the standard deviation. Figure 2.5 shows the Gaussian filter that has been

applied to the right half of a sample image.
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Figure 2.5: Gaussian filter with kernel size of 5px (on the right side)

A more thorough description of the Gaussian and some other types of filters can

be found in chapter 3 of [46].

After smoothing the image with the Gaussian filter, the gradient of the smoothed

image should be taken in order to detect the edges. This can be done by convolving

the signal with a pair of convolution masks in each direction in order to detect the

edges, both horizontally and vertically. An edge extracting operator called Sobel

is normally used for this purpose [42]. Sobel convolution kernels for both x and y

directions are defined as follows [42]:

Gx =















−1 0 +1

−2 0 +2

−1 0 +1















(2.12)

Gy =















−1 −2 −1

0 0 0

+1 +2 +1















(2.13)
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Following the estimation of image gradients in each direction, the magnitude and the

direction of an edge element can then be found by [46]:

|G| =
√

G2
x +G2

y (2.14)

θ = arctan(
Gy

Gx

) (2.15)

The process of applying the Sobel operator mask to the smoothed image, is in fact

equivalent to getting the first or second order directional derivative of the smoothed

image and then looking for the maximum values or the zero values, respectively [46].

As a result of this process, edge elements are detected throughout the image. After

finding the edge points, the next step would involve moving along the edge direction

and suppressing, setting to zero, any point which is not an edge; a pixel with the

gradient less than a specified threshold is a non-edge element.

The Canny edge detector, proposed by John F. Canny in 1986 [8], is one of the

most commonly used edge detection approaches. In addition to the process described

above for detecting the edges in the image, two different thresholds are defined in

the Canny edge detection. This additional property makes Canny preferable to other

techniques since it reduces the error in edge detection, that is, it attempts not to

miss any edges in the image and not to mistakenly label any non-edge elements as

edges. The purpose of having the two specified thresholds is, in fact, the elimination

of streaks, which are the breakage along an edge contour. If an image is affected

by certain amount of noise, the operator outputs values that fluctuate around the

single defined threshold, thus causing many streaks along an edge. However, by using
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two thresholds in the process of edge detection, any value above the higher threshold

will be output as an edge element and while inspecting other pixels along the edge

direction, only those values above the lower threshold will be accepted as neighboring

edge elements. This process has shown to reduce the streaking effect to a significant

amount [8].

Figure 2.7 shows the detected edges obtained by applying the canny operation on the

image in Figure 2.6.

Figure 2.6: Disparity image

Figure 2.7: Canny edge detection on Figure 2.6
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2.5 Morphological Operations

In addition to linear filters, there is another type of filters known as non-linear filters,

whose output is a non-linear function of their input. In this type of filtering, unlike

linear filters, the final value of a pixel is not necessarily a weighted combination of its

neighboring pixels [46]. Median filter, Bilateral filter, and anisotropic diffusion are

all different types of non-linear filters. Non-linear filters are used for certain image

manipulation and enhancement tasks, and are commonly used with a particular type

of image called binary image [46]. Binary images, as their name indicates, consist of

merely two pixel values, 0 or 1. These images are usually the outcome of filtering the

values in an image by a certain threshold, thus changing each value to 0 or 1 based

on the comparison against the threshold. Binary images are widely used for masking

operations in image processing [46]. Due to extensive application of binary images,

certain operations are usually employed to manipulate them. These operations are

known as morphological operations [49]. In morphological operations, the original

image is convolved with a structuring element, also known as kernel. The structuring

element is a mask (a binary image), normally smaller than the original image, with

which different structures can be defined for later modification of the image. Dilation

and Erosion are two of the most basic and widely used morphological operations

in binary image processing. These two operations are normally used for expansion

and erosion of the shapes in the original image. In dilation, the structure element

which is usually in form of a circle or square with the origin located at its centre, is

superimposed on top of the original binary image. By moving the structure element

over the background pixels, each pixel belonging to the background, that is overlain
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by the centre of the structuring element, is replaced by foreground value if at least one

of the pixels of the structuring element coincide with any pixel marked as foreground.

Erosion, which can be considered as the complementary operation of dilation, follows

a similar process, with only the difference that the structuring element is moved

over foreground pixels and any foreground pixels will be replaced by the background

value if at least one pixel of the structuring element overlaps with a pixel marked

as background. Hence, we can state that dilation of the foreground is equivalent to

erosion of the background [49]. The dilation and erosion operations are illustrated in

Figures 2.8 and 2.9, respectively.

Figure 2.8: Dilation operation with a 3x3 structuring element [12]
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Figure 2.9: Erosion operation with a 3x3 structuring element [13]

The sample image shown in Figure 2.7 is presented below after applying dilation

on the detected edges in the image to expand the detected regions.

Figure 2.10: Dilation of the detected edges in Figure 2.7 with a 10x10 structuring

element

In the next chapter, we will describe the key concepts in the human visual system

that are related to the perception of the depth.

32



Chapter 3

Binocular Vision and Stereopsis

Binocular vision is a term used for the visual system of animals with two eyes [22]

and, therefore, applies to the human visual system as well. Possessing binocular

vision not only leads to a better perception of depth of the surrounding environment,

but also helps to better perform many visual tasks such as reading, object detection,

interaction with surrounding objects such as grabbing and other manipulative tasks

[22]. The most significant advantage of possessing binocular vision is its influence on

how the 3D environment, that is, the depth of surrounding objects relative to each

other, is perceived by the visual system. This visual perception of depth in binocular

vision is referred to as Stereoscopic Vision. In the visual system, depth perception is

a phenomenon that normally occurs though different types of cues and information

existing in the surrounding environment. These pieces of information, known as depth

cues in stereo vision, can be either monocular or binocular depth cues [22]. To name

a few instances of monocular depth cues, we can refer to motion parallax, lighting

and shading, and apparent size. However, as previously mentioned, binocular cues
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which can only be perceived by stereo vision, play a major role in the perception of

depth. One of the most important binocular cues is binocular disparity, or binocular

parallax. It should be noted that the effect of binocular parallax and motion parallax

on depth perception are very similar to each other. In motion parallax, which is a

monocular depth cue, the scene is viewed at different times by the observer moving

from one side to the other, whereas in binocular parallax, the scene is viewed from

slightly different viewpoints at the same time by the visual system, while the observer

is standing at a fixed position [22].

Motion
t = t₀ t = t₀ + Δt

(a) Motion Parallax

t = t₀

(b) Binocular Parallax

Figure 3.1: Motion parallax and binocular parallax difference

Binocular disparity, which in fact arises from the spatial difference between the

images of the same scene in the visual system, provides a relative perception of depth

from the surrounding environment. This perception is known as binocular stereopsis

[22]. Another important binocular depth cue is the eyes vergence, which is the simul-

taneous movement of the pupils in opposite directions in order to obtain a unified
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view of an object in the visual system. When focusing on an object, the optical axes

of the eyes intersect on the object of interest resulting in an angle called vergence an-

gle. The human visual system is capable of adjusting this angle based on the distance

from the object [22]. In stereo vision, the locus of the points that yield a unified view

of an object in the visual system is known as the horopter, and any point located

on the horopter is usually called a fixation point [37, 22]. An important property

of an object on the horopter is that no spatial difference exists between the images

of the fixated object between the two eyes, that is, the binocular disparity is zero

[22]. Exploiting this property, the disparity of any other object in the scene can be

estimated relative to the fixated object by inspecting two important factors: whether

the object of interest is closer or further than the fixated object and then how much

closer or further it is relative to the fixated object. As a result, the binocular dispar-

ity provides a relative perception of depth of the surrounding environment. In the

geometry of stereopsis, the relative disparity between two objects is usually presented

as angular disparity in degrees, radians, minutes of arc (arcminute), or seconds of arc

(arcseconds). The relation between these measurements is as follows:

1arcmin =
1

60
degree =

π

10800
radians (3.1)

1arcsecond =
1

60
arcmin =

1

3600
degree =

π

648000
radians (3.2)

3.1 Stereopsis Geometry and Angular Disparity

In the following section, we will describe how the angular disparity can be calculated

utilizing the geometry of stereopsis [37].
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Figure 3.2: Binocular disparity

According to Figure 3.2, we have:

tan
α

2
=

a

2Z ′
(3.3)

tan
β

2
=

a

2Z
(3.4)

It is known that for small angles, when the angle approaches zero, the tangent of

an angle is approximately equal to the angle in radians. Therefore, we will have the

following relations:

θ = 2φ = β − α (3.5)

α

2
≈

a

2Z ′
(3.6)

β

2
≈

a

2Z
(3.7)

Z
′

= Z +∆Z (3.8)

⇒ θ ≈
a

Z
−

a

Z ′
=

a

Z
−

a

Z +∆Z
(3.9)

⇒ θ ≈
aZ + a∆Z − aZ

Z(Z +∆Z)
=

a∆Z

Z(Z +∆Z)
(3.10)
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When ∆Z is a small value compared to Z, the term ∆Z in the denominator can

be neglected without significant loss of accuracy. This results in the approximate

formula as follows:

θ ≈
a∆Z

Z2
(3.11)

Here, a is the distance between the center of the pupils of the two eyes, which

is known as interpupillary distance. It should be noted that a, Z and ∆Z must all

have the same units in this formula. This equation estimates the angular disparity

in radians; in order to convert θ to arcseconds, according to the conversion rules

presented in Equation 3.2, it should be multiplied by:

648000

π
= 206, 265

arcsecs

radians
(3.12)

Studies show that the visual system capability to distinguish two objects at dif-

ferent depths relative to each other is limited to certain thresholds [37, 22]. This

threshold, which is defined as the minimum detectable depth between two objects at

difference distances, is known as stereoacuity which varies in different visual systems

[37, 22]. According to standard stereo tests [37], the finest detectable disparity in

the human visual system is approximately 10-15 arcseconds. However, a more re-

cent study on 60 subjects [14] at different age groups, from 17 to 83 using standard

stereotests, shows that the average stereoacuity for different age groups is as follows:
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Table 3.1: Average stereoacuity for subjects of age 17 to 83

Age Range Stereoacuity (arcsecs)

17-29 32

30-49 33.75

50-69 38.75

70-83 112.5

As can be seen, the stereoacuity for the the human visual system increases with

age, that is, the amount of error in the depth results is less perceptible in the visual

system of the elders than the youths. Using these values in Equation 3.11 along with

the average interpupillary distance in the human visual system that is reported to

be approximately 64mm [22], we can estimate the threshold for minimum detectable

depth between two objects based on their distance from the observer.

We have employed the concepts introduced in this chapter in the design of our

evaluation model for an augmented reality system in outdoor environments. In the

next chapter, we will describe the design of our system and its components in more

detail.
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Chapter 4

Design of the Evaluation Scheme

This chapter walks through the steps taken in order to build our evaluation system

and describes its keys components in detail.

4.1 Design Criteria

Since outdoor AR applications are the focus of this research, we have designed our

evaluation model within this framework. Moreover, all the proposed evaluation met-

rics are measured based on the relevant factors described earlier in the previous chap-

ters.

4.2 A Comprehensive Evaluation Scheme

In an augmented reality system, there are certain factors that would affect the func-

tionality and effectiveness of the system [29, 28] and, therefore, should be carefully

considered when designing and evaluating the system. These factors, which cor-
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respond to different components of an AR system, are related to the surrounding

environment, human factors in AR, or technology and hardware constraints. Figure

4.1 illustrates the key components of a high level design we propose for a stereoscopic

AR system.

Depth Camera

Left Camera

Right Camera

Rectification

Stereo 

Algorithm

Color/Texture

Depth

 Stereo Image 

Processing

Real world Image

+

Depth
Registration Rendering

Augmented 

World

Integration of Synthetic 

and Real world

See-through 

display

Synthetic 

Objects

(3D Model) User

Outdoor 

Environment

AR System

Depth

Figure 4.1: Proposed design of the high-level architecture of a stereoscopic AR system

In our design, unlike the Middlebury or Kitti benchmarks, we label a pixel in the

disparity results as an outlier if the angular measurement, that is in form of stereoacu-

ity, corresponding to the depth error between the ground truth and the estimated

depth value by the algorithm is more than the minimum perceptible stereoacuities

for the human visual system as determined by standard stereo tests [37, 14]. More-

over, we use the average stereoacuity for different age groups [14] in our design to

evaluate the performance of the algorithm for users at different ages; this makes

the evaluation results more reliable and applicable to practical applications of AR.
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In order to evaluate the efficiency of an algorithm and investigate whether it meets

the requirements for being part of a real-time AR application, we have integrated a

module in the evaluation process that reports on the average execution time of the

algorithm for the input data. The average outliers based on the specified stereoacuity

thresholds and the average disparity error are also estimated during the evaluation

process.

In addition, our model employs a particular approach which can be of specific

value to practical AR applications. In this approach, we suggest that it is prudent

to focus the evaluation process on the particular regions of the disparity map rather

than the whole image. The main hypothesis is that salient edges caused by depth

discontinuities, which also represent object boundaries and occlusion, are important

depth cues for the human visual system to better perceive the location of different

objects in the 3D environment [46]. Based on this hypothesis, we argue that more

accurate depth results in these regions allows for a higher quality combination of the

depth map of the real world with the virtual depth of the synthetic objects that are

part of the AR scene.

4.3 Design Overview

Our evaluation model consists of the following key components:

• Stereo pairs, calibration data, and ground truth disparity (occluded or non-

occluded) as inputs

• Edge region masks generated from the ground truth disparity maps
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• Masked ground truth disparity

• Full and masked disparity maps generated by the stereo algorithm

• Main evaluation module

• Evaluation metrics output as data files and plots

It should be noted that some of these components, such as the masked ground

truth, or the masked disparity maps can be optionally built during the process de-

pending on the specific parameters set at the run time of each step. Figure 4.2 shows

the high level block diagram of our design.

Images
(stereo pairs, 

ground truth,

calibration files)

Settings

Evaluation

System

Output
(evaluation metrics)

Input

Plots

Data files

Figure 4.2: High-level block diagram of the evaluation system

A lower level architecture of our evaluation system is shown in Figure 4.3. This figure

illustrates the sequence of the operations during the whole process.

As can be seen in Figure 4.3, first the input data consisting of the stereo images,

the ground truth disparity, and the calibration data are passed to the system. After-

wards, the specified masks are created using a Canny edge detector and a Dilation

operation with the appropriate parameters selected separately for each image. After

the corresponding disparity maps have been generated by the stereo algorithm and
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stored on the disk, they are passed to the evaluation module with the specified ar-

guments. Finally, the evaluation metrics are estimated and output as data files and

plots to facilitate the evaluation of the stereo algorithm in the application of interest,

outdoor AR systems.

Input

Stereo 

images

Ground truth 

disparity

Calibration

data

Evaluation

Masks
Masking

(Dilation, Canny)

Stereo Correspondence
(stereo algorithm)

Disparity 

maps

Avg_Outliers

Avg_StAc

Avg_DispErr

Avg_ExecTime

Comprehensive Evaluation System

Output
(evaluation metrics)

Figure 4.3: Low-level architecture of the evaluation system

4.4 Evaluation

In this section, we break down the main evaluation component to its underlying

modules. We will then look at the functionality of each module in more detail.

As previously mentioned in this chapter, the results of the evaluation are presented

through specific metrics which are as follows:

• The average execution time

• The average disparity error
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• The average outliers

• The average stereoacuity

The analysis of these metrics in the framework of an outdoor AR application will

then allow for a practical evaluation of the stereo algorithm performance. We will

now explain how each of these metrics is measured in each module that builds up

together the evaluation component in the system.

4.4.1 Average Execution Time

For each image pair, the time spent on generating the disparity results is estimated

using the C++ function, clock(). This function returns the number of clock ticks

elapsed since a program starts running. A division by the system-specific value

CLOCK PER SECOND, the number of clock ticks in a second, converts the value

returned by the clock function into the time consumed by the CPU in seconds. Get-

ting the difference between the clock values before and after a function call results

in the execution time of the particular function. We have applied this method in our

implementation to estimate the execution time of the algorithm for each image pair.

In the end, the mean of all the values corresponding to different image pairs is taken

to obtain the average execution time of the algorithm for the input dataset.

4.4.2 Average Disparity Error

Two average disparity errors are calculated in our evaluation. One corresponds to the

valid pixels in the ground truth, depending on what value is considered valid in the

ground truth disparity, and the other to the valid pixels in the generated disparity
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which depends on the implementation of the stereo algorithm. The valid ground truth

disparity for the Kitti disparity maps, is a value greater than 0 and in the selected

algorithms, SGBM and ADCensusB, values equal to or greater than 0 are considered

valid. To this end, for each validity criteria, the mean difference between the ground

truth disparity and the one found by the algorithm is estimated for all the pixels in

the image or merely the masked pixels depending on the availability of a mask. The

pseudocode for this operation is as follows:

ADE Estimation; START

DispErrtotal = 0;

for all pixels p in the image:

if (masked)

if(!mask[p])

continue;

end if

end if

pix count + = 1;

Disperr = |dispgt − dispgen|;

DispErrtotal + = Disperr;

end for

Avg DispErr = (DispErrtotal)/(pix count);

ADE Estimation; END

45



4.4.3 Average Outliers

Similar to the average disparity error, based on the validity criteria for disparity, two

values are reported for this metric as a result of the evaluation. For this measurement,

the relative depth error is first calculated by finding the corresponding depth values for

the ground truth disparity and the disparity generated by the algorithm in Equation

2.4. This value is then compared to the relative detectable depth threshold for the

human visual system that is estimated using equation 3.11. If the relative depth

error is equal to or more than the detectable threshold in the human visual system,

the corresponding pixel is labelled as an outlier. Since we are using four different

thresholds of stereoacuity corresponding to different age groups in our evaluation,

the estimated error is compared against each of these thresholds and, therefore, four

different values are eventually calculated. This process is repeated for all the pixels

in the image or merely the pixels in the masked regions depending on the availability

of a mask. Considering the two validity criteria of pixels and the four identified age

groups, eight values are reported at the end of the evaluation for the average outliers.

AO Estimation; START

Total Outliers = 0;

for all pixels p in the image:

if (masked)

if(!mask[p])

continue;

end if

end if
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pix count + = 1;

depthgt = focal length ∗ baseline

dispgt
;

depthgen = focal length ∗ baseline

dispgen
;

deptherr = |depthgt − depthgen|;

stAcerr = pupil distance∗deptherr

depth2
gt

;

if (stAcerr ≥ stActhreshold)

Total Outliers + = 1;

end if

end for

Avg Outliers = (Total Outliers)/(pix count);

AO Estimation; END

4.4.4 Average Stereoacuity

The estimation of the average stereoacuity can be broken down into 3 steps:

1. Stereoacuity estimation based on the generated disparity for each image pair

and the ground truth

2. Averaging the stereoacuity results over certain depth ranges in each image

3. Averaging the results from the previous step over all the images

Corresponding plots are generated after the third step based on the final results.

According to the specific age ranges, different values are reported for the average

stereoacuity at the end of the evaluation. In order to estimate this metric, the depth
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values corresponding to both ground truth and the generated disparity by the algo-

rithm are first calculated using Equation 2.4. Subsequently, the difference between

these values is used in Equation 3.11 to calculate the corresponding stereoacuity, as

mentioned in the estimation of the average outliers. This process is done for all the

pixels in the image; or if a mask has been provided, it will be only applied to the

pixels in the masked areas. Finally the results are output and stored in a separate

data file for each image. After conducting the first step on all the disparity maps cor-

responding to input image pairs, the second step starts by building a histogram of the

stereoacuity values over specific depth ranges. Using the output file containing the

stereoacuity values from the first step for each disparity image, the corresponding his-

togram is constructed by defining the number of bins and their width. In our design,

the width of each bin determines the aforementioned depth range and is kept constant

for all the bins. Moreover, the number of bins along with their corresponding width

determine the total distance over which the results are estimated and subsequently

examined, Equation 4.1.

Total distance = Number of bins ∗Width (4.1)

For outdoor applications of AR, these parameters are normally set to certain values

so that the total distance can cover the medium to far depth fields; extending from

1.5 meters to more than 30 meters [45]. The results of the previous step, which are

all stored in a single data file, are then passed to the last step. At this point, a

histogram is built over the data from all the disparity images, which results in the

average stereoacuity values within each specified depth range over all the images. It

should be noted that the number of bins and their corresponding width at this point,
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are similar to the histogram constructed in the the previous step.

ASA Estimation; START

// STEP1:

for all images:

for all pixels p in the image:

if (masked)

if(!mask[p])

continue;

end if

end if

pix count + = 1;

depthgt = focal length ∗ baseline

dispgt
;

depthgen = focal length ∗ baseline

dispgen
;

deptherr = |depthgt − depthgen|;

stAcerr = pupil distance∗deptherr

depth2
gt

;

Append(stActFile,stAcerr);

end for

end for

// STEP2:

/**Histogram over depth ranges for each image**/

width = depth range;

for each stActFile:

Avg StAc img = histogram.build(bins,width);
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Append(img histFile,Avg StAc img);

end for

// STEP3:

/**Histogram for final stereoacuity over all the images**/

Avg StAc = histogram.build(bins,width);

Write(Avg StAcFile,Avg StAc);

plot(Avg StAcFile);

ASA Estimation; END

4.5 Platform

The evaluation system was implemented on a Linux platform, Ubuntu 12.04 distribu-

tion, with 12GB RAM and Intel Core(TM) i7 960 3.20GHz CPU. No optimizations

have been used in the evaluation. We have used g++ as the compiler and C++ as

the high level language for implementing the core functions within the system, such

as the main evaluation function, the masking process, and the other fundamental

operations that are the building blocks of the system. Furthermore, the Tool Com-

mand Language (TCL) has been used for all the scripts that wrap around the C++

functions, to facilitate and accelerate the execution of each step in the process.

In this chapter, we described the main components of our proposed model. Next,

we will discuss the functionality of our system through different experiments.
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Chapter 5

Evaluation

In this chapter, we will go through our experimental hypotheses, testing scenarios,

experiments conducted on two sample stereo matching algorithms, SGBM and AD-

CensusB, and the results with our proposed evaluation system to assess the benefits

of using our evaluation model for outdoor AR applications over the general-purpose

evaluation models; the Middlebury and Kitti Stereo Evaluation.

5.1 Stereo Dataset

It should be noted that the stereo images we have used to conduct the experiments

on stereo algorithms in our system, are selected from the Kitti Stereo Dataset. In

contrary to the Middlebury dataset, the Kitti Stereo Project provides stereo im-

ages and ground truth disparity maps that are taken from outdoor scenes under

real circumstances. These properties make them more appropriate for evaluating the

performance of the algorithms in outdoor AR applications, thus better meeting the

objectives of this study. We have selected fifty-two image pairs from the Kitti Stereo
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dataset based on different photometric and visual properties that are important in

stereo vision and an AR application, as observed by the human visual system. Some

of these properties are listed as follows:

• Variation in light and shading, that is, the scenes including bright, dim, and

dark regions.

• Various depth ranges, that is, including near field, medium field and far field

objects.

• Various degrees of depth discontinuity and occlusion, as observed in the images.

• Well textured and not properly textured regions.

5.2 Methodology

Before going through the explanation of the experiments to assess our evaluation

model, we restate our main research question in this study to better justify our hy-

potheses and the experiments defined for their validation. As mentioned earlier in

Chapter 1, our main objective is to investigate whether using stereo matching tech-

niques to generate the depth map of the surrounding environment in an outdoor AR

application can meet the requirements of the AR system. Therefore, our experiments

focus on assessing those aspects of our evaluation model that assist to better answer

this question. As a result, our first attempt towards evaluating our model is to in-

vestigate and demonstrate whether the results of the evaluation process are properly

measured and presented in the framework of the important factors in an outdoor AR

application. After confirming this property, which is the key property of our model,
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we investigate the effect of our proposed masking approach on the evaluation results.

Moreover, we present how the methods are evaluated in the framework of real-time

interactive AR systems. We also explain how the evaluation and comparison of the

methods is done in our model with some experiments on the sample stereo matching

algorithms.

5.3 Hypotheses

We have defined a set of hypotheses to evaluate our proposed design. These hypothe-

ses are as follows:

• Hypothesis 1: Our model is more suitable than other approaches to evalu-

ate and demonstrate the performance of the stereo matching algorithm in the

framework of outdoor augmented reality applications. Unlike the Middlebury

and Kitti benchmarks which are considered general-purpose evaluation models,

our system can particularly evaluate the algorithms in the framework of an out-

door augmented reality application to facilitate the process of determining the

proper method for using in the AR system for a high quality real-time genera-

tion of the depth map of the surrounding environment from the user’s point of

view.

• Hypothesis 2: Observing, evaluating, and consequently refining the areas near

the depth edges in an image are more important in an AR application.

Salient edges caused by depth discontinuities, which can also represent the ob-

ject boundaries and occlusion, are one of the most important depth cues that
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helps the observer to better perceive the depth of different objects in the scene.

In other words, the areas near the edges corresponding to depth discontinuities

in a scene are more important to the human visual system for perception of

depth in an AR application and, therefore, the disparity errors in these regions

can be detected easier by the HVS. Therefore, we argue that in our model,

which has the property of masking and evaluating the results for these par-

ticular regions, the evaluation results can be of great value to an outdoor AR

application.

• Hypothesis 3: Our system is better than other evaluation models for assessing

the performance of the algorithm in real-time AR applications.

Other evaluation models, the Kitti and Middlebury benchmarks, do not evaluate

and report on the efficiency of the algorithms with respect to their execution

time. On the other hand, our system is capable of examining and evaluating an

algorithm based on its execution time and, therefore, can report on its efficiency

for real-time AR applications.

• Hypothesis 4: The trade-off between the accuracy and the running time of the

stereo algorithms can be effectively evaluated in the framework of an outdoor

AR application through our system.

Nearly all the solutions to the problem of stereo correspondence have been

dealing with the trade-off between the accuracy of the results and the running

time. Therefore, most of the solutions focus only on improving one of these

aspects in the final results. Some methods use certain post processing techniques

to refine the disparity results in the end, thus improving the accuracy, whereas
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the others propose particular approaches that can be implemented on the GPU

to reduce the processing time. Due to the importance of both metrics in an

outdoor AR application, we argue that the trade-off between these metrics can

be effectively analyzed in our evaluation system.

• Hypothesis 5: The ability to detect the difference in depth in stereo correspon-

dence methods not only depends on their accuracy in estimation of the disparity

values, but is also affected by other factors, such as the environmental noise,

the resolution of the capturing device and its robustness to noise.

According to different studies [10, 28, 1], some other factors such as issues

associated with the environment, display devices, or capturing devices can also

affect the perception of depth in the visual system. As a result, we hypothesize

that the ability to detect the difference in depth in an outdoor AR system, does

not merely depend on the accuracy of the stereo correspondence algorithm, and

other factors should also be taken into account.

The experiments designed to validate these hypotheses are explained in the following

sections.

5.4 Experimental Environment and Settings

Experiments were carried out on a Linux machine with Intel Core(TM) i7 3.20GHz

CPU. We have evaluated two sample stereo matching algorithms in our system: First,

Semi-global block matching, also known as SGBM, which is a modified version of

the semi-global matching by Hirschmuller [18]. Second, our implementation of the

55



solution proposed by Mei et al. [32], known as ADCensus.

SGBM is now integrated in the Open Source Computer Vision Library (OpenCV)

[25] and, therefore, we have used this implementation in our evaluation. On the

other hand, since no implementation of ADCensus was available, we have used our

own implementation of it which we refer to as ADCensusB. Although the GPU-based

approach to both algorithms are proposed in the literature, we have used their CPU

implementations in this research, since none of the GPU implementations is publicly

available. Before moving forward with other experimental settings, we provide a brief

description of our implementation of the ADCensus algorithm in the following section.

5.4.1 ADCensusB Implementation

ADcensus proposed by Mei. et al. is one of the top ranked algorithms in the Middle-

bury benchmark [40] which is proved to efficiently generate highly accurate disparity

results for Middlebury dataset. The main reason for its superior performance, in

terms of both accuracy and processing time, is the combination of various computer

vision techniques that can be properly mapped to GPU for acceleration and result in

accurate matches of pixels in stereo images [32]. Various cost functions are estimated

through these techniques which, in the end, are used for finding the corresponding dis-

parity values. As suggested in the paper [32], our implementation of ADCensus also

includes various cost estimations at different steps of the algorithm that are computed

by separate functions in the code; as a result of each function call, specific arrays of

type float corresponding to various costs are filled in and used by the subsequent

functions in the algorithm. The main cost estimations are as follows:
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1. AD-Census Cost: The initial matching cost which consists of the average

intensity of pixel values in the left and right images, and the census cost that

is formulated based on the relative ordering of the pixel intensities within a

specific window size [20], defined as a 9 × 7 window in the implementation.

This step is accomplished by three functions in our implementation which are

named costAD(), c census() and initCost().

2. Aggregated Cost: The aggregated matching cost of each pixel over a specified

support region, which is defined as a cross-based region in [32] and originates

from the method proposed by Zhang et al. [50]. This cost is computed by a

function called aggregatecost() in our implementation

3. Path Cost: The path cost that is estimated from the aggregated cost of each

pixel by scanline optimization from different directions. The idea of multi-

direction cost optimization originates from Hirshmuller’s semi-global matching

solution [18]. This step is accomplished by a function called scanline() in our

implementation.

We have followed the approach in each of the referenced papers for the imple-

mentation of each cost estimation. As a result of the aforementioned steps a three-

dimensional cost volume with the size of image width×image height×disparity range

is generated as the final cost of type float. After this step, disparity values are se-

lected by following the “winner takes all” approach, that is, the disparity with the

minimum cost is selected as the final disparity value of each pixel [41]. After the

main body of the method is implemented, the algorithm proceeds with a multi-step

refining process. This step, which is one of the unique features of ADCensus method,
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attempts to detect the outliers, that is the wrong matches of pixels, and refines the

disparity results based on the detected outliers. For the detection of outliers, we fol-

low a common approach known as left-right (L-R) consistency check. In this check,

the disparity map for both the left and right images is first calculated. Then, if a

pixel in the left image, based on its disparity value, corresponds to a pixel in the

right image that does not map back to it, it will be labeled as an outlier [32]. This

description can be formulated as follows:

DL(p) 6= DR(p− (DL, 0)) (5.1)

Where DL(p) is the disparity function for the left image and DR is the disparity

function for the right image.

In our implementation of ADCensus, we have the L-R check and its subsequent refine-

ment steps triggered with a flag. Therefore, when the flag is not set, neither the check

nor the refining steps are triggered in the algorithm. Following the proposed approach

in the paper, we also have multiple steps of refinement in our implementation, which

occurs through different function calls. These functions are as follows:

1. findOutliers(), which tends to find the outliers by conducting the L-R check.

2. regionVoting(), which iteratively updates the disparity value of each outlier

pixel based on a histogram of its reliable neighboring pixel values in its cross-

based support region; the disparity with the most votes in the neighboring

region is chosen as the final disparity value of the outlier pixel.

3. interpolate(), which follows an interpolation strategy to find the remaining
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outliers disparity value based on their 16 reliable neighboring pixels. In this

strategy, mismatch pixels are interpolated differently from occluded pixels. If

a pixel is occluded, its disparity is taken from the background, that is, the

minimum disparity of its neighboring pixels is selected as the disparity value

of the outlier pixel. On the other hand, if the pixel is a mismatch point, the

disparity of the pixel with the most similar color to the outlier pixel, is selected

from the neighbors.

4. discAdjust(), which first attempts to find the edges in the disparity map, that

is, finding the depth discontinuities, and then, for each pixel on any detected

edges, the disparity values of its neighbors on the both sides of the edge are

sought. Next, the disparity value of the pixel of interest is updated with the

disparity of any of the adjacent pixels with the least matching cost.

5. subpxEnhance(), which applies a quadratic polynomial interpolation on the

estimated disparity values to decrease the discretization error and is followed

by a 3× 3 median filter for smoothing the results.

We have attempted to carefully follow and implement the strategies described in

ADCensus solution as explained in [32]; however, measuring the extent to which our

implementation has come close to the proposed method is a matter we could not

truly investigate, due to unavailability of any actual disparity image to compare our

results with or the original source code of ADcensus. It should also be noted that we

could not proceed with porting our implementation to GPU due to time constraint

and inadequate description about it in the published paper.
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The disparity results from our implementation of ADCensus corresponding to

Tsukuba and Venus images from Middlebury dataset, Figure 5.1, are shown in Figure

5.3, which nearly resemble the results published in the paper [32], presented in Figure

5.2. Since we could not find access to the original disparity images generated by

ADCensus to make a solid comparison with our disparity results from ADCensusB,

we leave it to the reader to judge the similarity between these images.

(a) Tsukuba image (b) Venus image

Figure 5.1: Sample images from Middlebury stereo dataset [39]
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(a) Tsukuba (b) Venus

Figure 5.2: Disparity images by ADCensus for Middlebury images in Figure 5.1

(a) Tsukuba (b) Venus

Figure 5.3: Disparity images by ADCensusB for Middlebury images in Figure 5.1

Next, the set of parameters used at different steps of the evaluation are presented.

It should be noted that these parameters were kept constant for all the images and

experiments. However, if a parameter is changed during an experiment for specific

reasons, it will be explicitly mentioned in the description of the experiment.
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5.4.2 Masking

In order to test our hypothesis for the benefit of evaluating the disparity results in

the areas of depth edges and their surroundings in AR applications, we build the

corresponding masks using the OpenCV Canny edge detector and Dilation. Canny

have been used to detect the depth edges in the ground truth disparity map, and the

dilation operation for expanding the detected edge regions in the masking process.

The extent to which the regions are expanded is determined by the number of itera-

tions in the dilation operation. Table 5.1 shows the parameters used in the Dilation

and the Canny edge detection. However, the minimum threshold in Canny is tuned

and selected separately for each image since the threshold should change depending

on the scene.

Table 5.1: Masking parameters

Dilation iterations 10
Canny apertureSize 3

The ground truth disparity maps in the Kitti stereo dataset are generated by a

3D laser scanner, thereby resembling a point cloud map of discrete disparity values.

This property of the disparity images can be problematic for the masking process

since it can result in many small streaks as the edges. Therefore, before applying any

edge detection on the image, we need to first fill the gaps by interpolating the values

and obtain a smoothed ground truth disparity. This can be achieved by applying

a dilation operation. In our implementation, we have used the OpenCV dilation

operation with different number of iterations for each image, that is set depending

on the scene and the original ground truth disparity, to obtain a fully dense disparity
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map. The new disparity images are then stored on the disk for further use. However,

it should be noted that the dilated disparity images are only used in the construction

of the edge masks while detecting the depth edges in the image.

5.4.3 Stereo Algorithms Settings

The parameters for each algorithm used in our experiments to generate the disparity

maps are kept constant over all the images in the dataset. These parameters are

presented in Tables 5.2 and 5.3 for SGBM and ADCensusB, respectively.

Table 5.2: SGBM parameters

SADWindowSize 9 disp12MaxDiff 2
uniquenessRatio 10 P2 3*9

speckleWindowSize 100 speckleRange 2

Other parameters not mentioned in the table are considered with their default values.

Table 5.3: ADCensusB parameters

λAD 10 λCensus 30 L1 34 L2 17
τ1 20 τ2 6 π1 1.0 π2 3.0
τSO 15 τS 20 τH 0.4

The minimum and maximum disparity values are also kept constant for each

image pair in both algorithms; however, the maximum disparity differ for each image

pair as the scenes are different and objects are located at different depth fields. The

minimum disparity is set to 0 for both algorithms. The maximum disparity for each
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image pair is selected based on the maximum value in their corresponding ground

truth disparity. The only restriction to consider here is to choose a value greater

than or equal to the maximum disparity of the ground truth that is a multiple of 16,

which is a constraint in the available implementation of the SGBM algorithm in the

OpenCV library.

5.4.4 Evaluation Parameters

In our evaluation model, due to the large amount of data which grows as more images

are added to the input selection, plots are generated by taking the average of the re-

sults over all the images. As mentioned in the previous chapter, this average results

from two steps; first, getting the average of the stereoacuity over specific depth ranges

for each image and then calculating the average of the values from the previous step

over all of the images. This operation finally results in a single plot that demon-

strates the average stereoacuity within specific distances. The averaging operations

at this step are implemented by building histogram over the resulting data. In our

experiments, we set the number of bins to 100 and the total range is from 0 to 50m.

Therefore, the first averaging is conducted over distances of 0.5m, the range of each

bin, in each image and the maximum distance over which the results are examined is

50m.

5.5 Experiments

In this section, we discuss the experiments conducted to evaluate the system and

investigate the validity of our hypotheses.
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5.5.1 Evaluation in Augmented Reality Framework

In this experiment, the disparity maps were generated for fifty-two image pairs with

both SGBM and ADCensusB algorithms. After generating the corresponding dis-

parity maps for all the images, the evaluation process was conducted on each map

separately.

Sample plots for the estimated average disparity error, converted to effective stereoacu-

ity, corresponding to one of the stereo pairs, shown in Figure 5.4, over the masked

areas are displayed in Figures 5.5 and 5.6, respectively.

(a) Left image (b) Right image

Figure 5.4: Sample stereo image from the Kitti dataset
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Figure 5.5: Average disparity error over distance by SGBM for Figure 5.4
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Figure 5.6: Average disparity error over distance by ADCensusB for Figure 5.4

The corresponding mask, Figure 5.7; masked ground truth, Figure 5.8; and the

66



masked disparity images generated by SGBM and ADCensusB, Figures 5.9 and 5.10

are shown below.

Figure 5.7: The mask of depth edges and their surrounding regions for Figure 5.4

Figure 5.8: Masked ground truth for Figure 5.4
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Figure 5.9: Masked disparity by SGBM for Figure 5.4

Figure 5.10: Masked disparity by ADCensusB for Figure 5.4

Figures 5.11 and 5.12 show the average results over all the disparity images for both

SGBM and ADCensusB, respectively.
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Figure 5.11: Average disparity error over all the images by SGBM
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Figure 5.12: Average disparity error over all the images by ADCensusB

As can be seen, the average results displayed in the previous plots contain sparse
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points and do not demonstrate any consistent pattern. When we investigated the

cause of this large variation, we found that in the results of both algorithms, there

are some disparity values which differ from the ground truth by a considerable amount

and yet have not been invalidated by the algorithm. We assume that these types of

outliers can be easily removed from the set by applying a post processing filter, or

they will be eventually culled out by the 3D renderer in the AR system. Based on this

assumption, we filter them out in our evaluation. In order to filter out the disparity

values which largely differ from the ground truth disparity, we have integrated another

step in our evaluation process. This step is similar to the strategy used in the Kitti

and Middlebury evaluation models. In this step, the estimated disparity error is

initially compared to a more generally defined threshold, for instance a threshold

of 3 pixels. This comparison allows only for those values of disparity with an error

less than or equal to the specified threshold to move on to the next steps of the

evaluation. It should be noted in our design, the specified threshold is defined as a

run-time variable.

The additional filtering had a significant impact on the evaluation results. In fact, a

consistent pattern was observed in the final plots after filtering out the outliers with

large differences. The results are displayed in figures 5.13 and 5.14.
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Figure 5.13: Average disparity error over all the images by SGBM after filtering large

outliers
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Figure 5.14: Average disparity error over all the images by ADCensusB after filtering

large outliers
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In these plots, a cross point below a stereoacuity threshold (straight lines) implies

that the average error in the disparity values estimated by the stereo matching al-

gorithm is imperceptible to the human visual system. However, a value higher than

the threshold indicates that the error cannot be ignored by the human visual system

and should be resolved to achieve a better alignment between the virtual and the real

world in the AR application of interest. Moreover, most of the errors fall below the

standard stereoacuity value corresponding to older ages; indicating that they are not

perceptible to the visual system of the people at these particular ages.

The zero values in the plots imply that either there is no object within the cor-

responding range or the disparity value estimated by the algorithm is equal to the

ground truth disparity; however, since the average of the results has been taken over

all the images, it is more likely that the zero values indicate that no object was found

within the particular range.

As can be seen in the results, SGBM performs better in finding more accurate

corresponding matches compared to ADCensusB, as most of the error points fall

below the standard stereoacuity lines. Moreover, the plots show that in both meth-

ods the significant amount of error corresponds to the near field objects, within the

first 5 meters. This range of the depth field can be considerably important in some

applications, such as the ones involving certain manipulative tasks.

5.5.2 Depth Edges and Occlusion

In order to examine the effect of evaluating certain regions of the disparity image

instead of the whole image, we estimated the average error both for the masked areas
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and the whole disparity map. Results of SGBM are shown in Figures 5.15 and 5.16.
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Figure 5.15: Average disparity error over masked areas by SGBM
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Figure 5.16: Average disparity error over the whole image by SGBM
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The plots show that the average error over the masked regions, that is near the

depth edges, is very similar to the results over the whole image. This may imply

that there is no additional benefit in the inspection of these regions. However, this

might be merely an indication of the performance of the selected algorithms and

can be better analyzed by evaluating more algorithms within our model. In either

case, we hypothesize that, due to the importance of occlusion and areas near depth

discontinuities to the HVS [46], it is reasonable to focus more on the depth edges and

their surroundings when designing or employing a stereo matching technique for an

AR application.

5.5.3 Average Outliers

In this experiment the average outliers were measured for both algorithms. The val-

ues for both validity criteria mentioned in chapter 4, valid pixels in the ground truth

and generated disparity, are presented in Tables 5.4 and 5.5 for each age group. For

simplicity, we have labelled the valid pixels in the ground truth and the generated

disparity with valid gtDisp and valid genDisp, respectively. Figure 5.17 presents

a comparison between all the results for one of these validity criteria, when the ground

truth disparity is valid.
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Table 5.4: Average outliers for the masked regions

Avg Outliers
Algorithm Age valid gtDisp valid genDisp

SGBM

17-29 0.12 0.16
30-49 0.11 0.15
50-69 0.09 0.12
70-83 0.0012 0.0016

ADCensusB

17-29 0.23 0.32
30-49 0.22 0.31
50-69 0.18 0.27
70-83 0.002 0.003

Table 5.5: Average outliers for the whole image

Avg Outliers
Algorithm Age valid gtDisp valid genDisp

SGBM

17-29 0.11 0.14
30-49 0.10 0.12
50-69 0.08 0.09
70-83 0.005 0.007

ADCensusB

17-29 0.27 0.39
30-49 0.26 0.37
50-69 0.22 0.32
70-83 0.002 0.003

Results in Figure 5.17 show that in both cases, the masked regions and the whole

image, SGBM has less outliers than ADCensusB, indicating that SGBM generates

a more accurate disparity map as perceived by the human visual system. Another

observation from Figure 5.17 is that in SGBM, the average outliers over the masked

regions are more than the outliers over the whole image, whereas in ADCensusB

the opposite behavior is observed. This implies that SGBM generates less accurate

results near the depth discontinuities and occluded regions compared to the other

areas in the image. On the other hand, ADCensusB generates more accurate disparity
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values near the depth edges compared to the other regions in the image and tends

to preserve the occluded regions. This indicates that, despite the better performance

of SGBM over ADCensusB according to the experimental results, it is important

to consider this behavior to employ the stereo correspondence method in the right

application based on the requirement of the target system for the accuracy of the

depth results in different regions; in other words, it is reasonable to first investigate

which regions in the image are more important in the context of the target application.

For instance, ADCensusB performs better in an application where the areas near the

depth discontinuities and occlusion are more important than the rest of the image,

such as image compositing for layering visual elements on the scene, compared to

application scenarios where obtaining an accurate, dense disparity map for all the

regions in an image is essential, such as constructing a 3D model of the scene or

preparing a model for 3D printing.
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Figure 5.17: Average outliers for SGBM and ADCensusB over the masked and

the whole image; each bin color corresponds to different age groups with specific

stereoacuity threshold

We should note that the reason the number of outliers for the valid pixels in

the generated disparity is more than the outliers for the valid pixels in the ground

truth is that in our implementation, the counter for the number of pixels in the

ground truth image is incremented whenever a disparity pixel in the ground truth is

labelled as valid, regardless of other conditions in the process; however, the counter

for the number of pixels in the generated disparity is only incremented whenever the

disparity value is valid and the amount of disparity error is less than the specified

pixel threshold in the evaluation process, thus resulting in a smaller denominator of

the fraction in the estimation of the average outliers for the criteria of valid pixels in

the generated disparity map and, therefore, a larger average value in the end.
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5.5.4 Average Disparity Error

The average disparity error has also been estimated in the evaluation process for both

pixel validity criteria. However, the resulting values were similar for both cases and,

therefore, only one value is reported in the following table for this metric.

Table 5.6: Average disparity error

Algorithm Region Avg DispErr

SGBM
Full 6.58

Masked 7.81

ADCensusB
Full 4.49

Masked 4.74

As can be seen, ADCensusB results in less average disparity error than SGBM.

This difference is likely caused by the various refinement steps implemented in the

ADCensusB algorithm which do not exist in SGBM. As a result, despite the larger

number of outliers in ADCensusB than SGBM as measured in the previous experi-

ments, ADCensusB attempts to decrease the difference between the resulting dispar-

ity value and the ground truth disparity, thus generating smoother disparity patches

within different regions of the images.

5.5.5 Real-time Execution

In another experiment, we estimated the average execution time for both algorithms.

Results show that the average execution time over all the images for SGBM and AD-

CensusB are 0.54 and 272.82 seconds, respectively. Considering the requirements of

having an interactive real-time AR system [17], the processing time of each frame
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should not be more than 0.06-0.08 seconds. Therefore, we need to get at least 6.75×

and 3410.25× speedup for each algorithm, respectively. Although the current im-

plementation of SGBM could be used when the real world scene remains stable for

approximately one second, it can be safely concluded that none of these algorithms

meet the requirements of a real-time interactive AR system. This suggests that GPU-

based solutions along with using more advanced hardware are more suitable to achieve

the processing speed required for the real-time interactive applications of AR. In [32],

it is stated that for the Tsukuba image of Middlebury dataset, the CPU implemen-

tation takes 2.5 seconds whereas the GPU implementation takes only 0.016 seconds.

Their evaluations on a PC with Core2Duo 2.20GHz CPU and NVIDIA GeForce GTX

480 graphics card show that their GPU implementation of ADCensus brings 140×

speedup in the processing speed. More speedup may be achieved using modern graph-

ics cards; however, we cannot make a numerical comment on the amount of speedup

as it depends on different specifications of the hardware and also the nature of the

algorithm. If we were to look at only the number of cores alone, current hardware has

5 times more cores than the hardware used by [32]. With a software implementation

that took advantage of the increase in the number of cores, we could in principle

expect an execution time of 0.0032 seconds.

5.5.6 Effect of Refinement

In this experiment, we studied the effect of the post processing steps, also referred to

as the refinement steps, in the stereo algorithms on the accuracy of the results in our

evaluation criteria.
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Refinement is usually the last step in a stereo correspondence algorithm because

it attempts to decrease the number of wrong matches or the error after the disparity

results have been found [41]. Therefore, this step must be applied after the outliers,

that is the wrong pixel matches, have been detected in the results. The detection of

the outliers occurs through a check known as left-right consistency check in a stereo

matching algorithm. In this check, the disparity map for both the left and right

image is first calculated. Then, if a pixel in the left image, based on its disparity

value, corresponds to a pixel in the right image that does not map back to it, it will

be labeled as an outlier [41]. This description can be formulated as follows:

DL(p) 6= DR(p− (DL, 0)) (5.2)

Where DL(p) is the disparity function for the left image and DR is the disparity

function for the right image.

For simplicity, we will refer to this check as L-R check in this report. In our imple-

mentation of ADCensus, we have the L-R check and its subsequent refinement steps

triggered with a flag. Therefore, when the flag is not set, neither the check nor the re-

fining steps are triggered in the algorithm. To investigate the effect of the refinement

on the final results, we used ADcensus in this experiment with the L-R flag set to

zero, generating the disparity results for the image pairs, and evaluating the results.

The results for both cases, not refined and refined, over the masked regions and the

whole image are shown in Figures 5.18 and 5.19, respectively.
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(b) Refinement on disparity results

Figure 5.18: Average disparity error by ADCensusB for the masked images; blue

circles show some sample values that have slightly changed as a result of refinement
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Figure 5.19: Average disparity error by ADCensusB for the whole images; blue circles

show some sample values that have slightly changed as a result of refinement
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As can be observed in the plots, the evaluation results in our specific criteria are

not significantly different from the results of the algorithm when L-R check and re-

finement were triggered and only a few average values have slightly changed. We have

marked a few of these values with blue circles in Figures 5.18, 5.19.

We also estimated the average execution time, the average disparity error, and the

average outliers in this experiment. The results for the average error and outliers are

shown in the tables below.

Table 5.7: ADCensusB average disparity error - unrefined

Region Avg DispErr
Masked 5.59
Full 5.29

Table 5.8: ADCensusB average outliers - unrefined

Avg Outliers
Region Age valid gtDisp valid genDisp

Masked

17-29 0.23 0.33
30-49 0.22 0.31
50-69 0.18 0.27
70-83 0.002 0.003

Full

17-29 0.27 0.39
30-49 0.26 0.37
50-69 0.23 0.32
70-83 0.001 0.002

Figure 5.20 shows a comparison between the average outliers by ADCensusB with

the effect of refinement and without it for the masked and the whole images in one

of the validity criteria, that is, when the ground truth disparity is valid. As can be

seen, no significant decrease is obtained in the number of outliers.
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Figure 5.20: Average disparity error by ADCensusB in refined and unrefined cases

for both masked and whole images; each bin color corresponds to different age groups

with specific stereoacuity thresholds

The average execution time was approximately 147.84 seconds which is nearly

half the running time of the algorithm with the L-R check and refinements triggered,

Table 5.9. Comparing these results to the ones presented in Tables 5.4, 5.5, and

5.6 a slight decrease in the amount of errors and nearly no change in the number of

outliers is observed. Analyzing the results in this experiment, we can conclude that

despite the considerable rise in the execution time of the algorithm, no significant

improvement in accuracy is achieved in our evaluation criteria through refinement of

the disparity results; therefore, the execution of ADCensusB without any L-R check

and refinement step is more beneficial to an AR application in outdoor environments,

since it requires less processing time.
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Table 5.9: ADCensusB average execution time - refined and unrefined

ADCensusB Avg ExecTime (secs)
refined 272.82

unrefined 147.84

5.5.7 Discretization Degree of Disparity Values

According to different studies [10, 28, 1], some other factors such as issues associ-

ated with the environment, display device, and capturing device can also affect the

perception of depth in the visual system. As a result, the ability to detect the dif-

ference in depth and to accurately estimate the depth of different points, in practice,

do not merely depend on the implemented discretization level of the disparity values

in the stereo correspondence algorithm. In order to investigate the validity of this

statement, we conducted the following experiment. In this experiment we defined

some stereoacuity thresholds. In order to find the minimum threshold to start with,

we attempted to find the minimum disparity change in the ground truth disparity

images. To this end, we move along horizontal scanlines in each image and compute

the difference between the values of consecutive pixels, which is, in fact, an indicator

of the detectable threshold of the changes in depth between different pixels, Figure

5.21.

scanline direction

P P+1

image width

Figure 5.21: The scanline pixels difference process
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After finding the minimum value in each image, a global minimum is sought

between all the computed values from different images. The value we found for a

group of twelve images selected from our dataset with the size of 1242 × 375 and

the focal length of 721 pixels, as reported by Kitti stereo [15], was 0.0022 arcmins.

After finding this minimum and defining our thresholds, we apply a nearly similar

operation on the disparity results of the same group of images from each of the sample

algorithms. In this process, while moving through each image, for those pixels whose

generated disparity is close to the ground truth disparity, within a specific pixel

threshold, we estimate their depth difference from their following pixel in the ground

truth and compare the value to each of the specified thresholds; if this value is less

than a threshold, then we check to see whether the stereo algorithm has also detected

different values for the corresponding pixels. In case of detection, we increment a

counter corresponding to each threshold that indicates the number of detected pixels.

This process is repeated for different images and, finally, the average of detected pixels

is estimated for each specified threshold.

ADP; START

define StAc thresh;

for all images; do

for all pixels p in the image:

if ( |dispgt − dispgen| < pix thresh)

pix count + = 1;

dispDiff = |dispgenp
− dispgenp+1

|;

depthgtp = focal length × baseline

dispgtp
;
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depthgtp+1
= focal length × baseline

dispgtp+1

;

depthDiff = |depthgtp − depthgtp+1
|;

stAc detected = pupil distance∗depthDiff

depth2
gtp

;

for each threshold thr in StAc thresh:

if (stAc detected < thr)

if (dispDiff > 0)

detected[thr] + +;

end if

end if

end for

end if

end for

for each threshold thr in StAc thresh:

Avg detected[thr] = detected[thr]/pix count;

Append(Avg pixFile, Avg detected[thr]);

end for

end for

/**Concatenate the files for all images into one **/

for each Avg pixFile:

Concat(AllimgFile,Avg pixFile);

end for

/**Getting the average over all images for each threshold**/

Calc Average(OutAvgFile, AllimgFile);

plot(OutAvgFile);
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ADP; END

The results for both algorithms are shown in Figure 5.22. As can be seen in these

plots, for both algorithms, the average detected pixels with detectable change in depth

values starts to converge at the value of approximately 0.4 arcmins. We also observe

that for the values below this threshold the average detected pixels are very small

and for some values, such as the minimum detectable threshold in ground truth, both

algorithms are not capable of detecting any change in depth values. This implies

that, regardless of the accuracy resolution of the algorithms, which is 1/8th of a

pixel for SGBM, approximately 0.6 arcmins, and 1/16th of a pixel for ADCensusB,

approximately 0.3 arcmins, for Kitti images based on the camera parameters and

the geometrical relation presented in Figure 5.23 and Equation 5.3, some changes in

depth in the real world still cannot be detected by the algorithm. This effect might be

due to the constraints of the sensor, that is, the errors associated with the capturing

device and its resolution, or the environmental noise.
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In Figure 5.23, w is the image width and f is the focal length of the capturing device.

θ = arctan(
pixel resolution

focal length
) (5.3)

For the image size of 1242 × 375 pixels and focal length of 721 pixels, and based

on the resolution of SGBM and ADCensusB in the estimation of the disparity values,

the minimum and maximum detectable disparity, that is, at the center and at the

boundary of the image, respectively, in terms of effective stereoacuity are as follows:

SGBM : θmax = arctan(
1
8

721
)

= 0.00993 degrees× 60
arcmins

degrees
= 0.596 arcmins

(5.4)

SGBM : θmin = arctan(
1
8
× (1242

2
)

721
)− arctan(

1
8
× (1242

2
− 1)

721
)

= 0.00982 degrees× 60
arcmins

degrees
= 0.589 arcmins

(5.5)

ADCensusB : θmax = arctan(
1
16

721
)

= 0.00496 degrees× 60
arcmins

degrees
= 0.298 arcmins

(5.6)

ADCensusB : θmin = arctan(
1
16

× (1242
2
)

721
)− arctan(

1
16

× (1242
2

− 1)

721
)

= 0.00495 degrees× 60
arcmins

degrees
= 0.297 arcmins

(5.7)

However, as can be seen, the minimum and maximum angular resolution in the image

are not considerably different.

As a result of this experiment, we can conclude that in order to achieve more

accurate depth results in the stereo algorithms and correctly detect the difference
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between depth values, that is, to obtain a lower threshold of depth changes closer to

the actual resolution of the implemented algorithm, using higher resolution devices

and considering their robustness to noise are also essential. Based on the information

provided in Chapter 3 about the average stereoacuity in the HVS, we can say that the

lower bound resolution of a capturing device with focal length of 721 pixels should

be 1
8
th of a pixel. In the end, we should note that the experimental results presented

earlier in this chapter show that despite various types of error relevant to the capturing

device, environmental noise, and the actual accuracy of the stereo correspondence

algorithm in the estimation of disparity values, the effect of such errors on the results

will still be imperceptible for most cases to the HVS in outdoor AR applications,

especially where objects are distant from the observer.

5.6 Overview

Table 5.10 shows an overview of the difference between our proposed evaluation ap-

proach and the other evaluation models, Middlebury and Kitti, in terms of the esti-

mated evaluation metrics.

It should be noted that although the average error and the average outliers exist in

the other evaluation schemes as well, the major difference which makes our evalua-

tion more appropriate than the other schemes for practical applications of AR, is the

approach employed during the design of the metrics and the analysis of the results

in the evaluation process. In fact, integrating the important factors related to the

human visual system and its perception of depth in the design of the metrics and

the insights they provide make the evaluation model more relevant and applicable to
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outdoor AR systems.

Table 5.10: Comparison of different evaluation schemes

Metrics Evaluation Models
Middlebury Kitti Comprehensive Evaluation

Avg StAc ✗ ✗ ✓

Avg Outliers ✓ ✓ ✓

Avg DispErr ✓ ✓ ✓

Avg ExecTime ✗ ✗ ✓

5.7 Hypotheses Validation

Next, we will review our hypotheses mentioned earlier in this chapter and discuss

their validity in light of our experiments and their results.

• Hypothesis 1: Our model is more suitable than other approaches to evalu-

ate and demonstrate the performance of the stereo matching algorithm in the

framework of outdoor augmented reality applications.

As can be seen in the results of the experiments, our system employs a system-

atic approach for the measurement and demonstration of different evaluation

metrics in the framework of an outdoor augmented reality application. In our

system, the disparity error, which is the most important metric for the accu-

racy of the disparity results, is converted to a certain measurement, stereoacuity,

that is relevant and applicable to the human visual system and its perception of

depth. We evaluated two stereo matching methods in our system and analyzed

their performance in terms of the accuracy of the depth map for an outdoor

AR application. Due to the application-oriented design of the system, we could
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comment on the suitability of each method for an AR application in outdoor

environments. As a result, we can argue that our evaluation model is more

appropriate for the evaluation of the solutions in an outdoor AR system than

the conventional evaluation systems.

• Hypothesis 2: Observing, evaluating, and consequently refining the areas near

the depth edges in an image are more important in an AR application.

The results of our experiments on two sample stereo matching solutions showed

no significant difference between the evaluation metrics corresponding to the

whole image and the regions of the depth edges and their surroundings, thereby

implying that there may be no specific benefit into the analysis of these par-

ticular regions in an outdoor AR application. However, due to the importance

of these regions as depth cues to the human visual system for the perception

of the 3D location of the surrounding objects in an environment [46], we argue

that more solutions should be tested within our evaluation model to be able to

certainly approve or disapprove this hypothesis.

• Hypothesis 3: Our system performs better than the the conventional evalu-

ation models for assessing the performance of a stereo algorithm in Real-time

AR applications.

As explained in the design of our model and demonstrated in the experimental

results, the execution time of the algorithms is estimated and evaluated in the

system based on the requirements of having a real-time and interactive aug-

mented reality application. In the experiments, we evaluated the running time

of the two sample stereo matching algorithms which proved to be inefficient in
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both cases for a real-time augmented reality application. Through this property,

we can claim that the evaluation results through our system is more beneficial

to AR applications than the conventional evaluation models which do not take

this important aspect of the solutions into account.

• Hypothesis 4: The trade-off between the accuracy and the running time of the

stereo algorithms can be effectively evaluated in the framework of an outdoor

AR application through our system.

In one of the experiments, we focused on the trade-off between the accuracy

of the results and the running time of the algorithm by studying the effect of

the post processing steps, also referred to as refinement steps, on the evalu-

ation metrics. Results on ADCensusB showed that integrating these steps in

the algorithm does not significantly improve the accuracy of the results in the

framework of an outdoor AR system; on the other hand, it causes a consider-

able increase in the execution time of the algorithm which is detrimental to a

real-time and interactive AR system. The results of this evaluation indicates

that the trade-off between the accuracy of the results and the execution time of

the algorithm, which normally exists in nearly all the stereo matching solutions,

can be effectively analyzed through our evaluation system. The other available

evaluation models lack this property which is of great importance to outdoor

applications of AR.

• Hypothesis 5: The ability to detect the difference in depth in stereo correspon-

dence methods not only depends on their accuracy in estimation of the disparity

values, but is also affected by other factors, such as the environmental noise,
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the resolution of the capturing device and its robustness to noise.

Our experimental results show that, regardless of the theoretical accuracy of

the implemented algorithm in the estimation of depth values and its resolvabil-

ity of depth changes, its effective stereoacuity threshold, that is, its ability to

detect the changes in depth values, can be different from its ideal detectability

threshold and is affected by other factors, such as the error associated with

the capturing device or its resolution. Therefore, in order to achieve a higher

quality depth map of the surrounding environment in outdoor AR applications,

in addition to a wise choice of stereo correspondence algorithm, considering the

resolution of the capturing device and its robustness to noise is also essential.

It should be noted that this conclusion is apart from the observation in other

experiments which show that in many cases the error in the estimated depth

values will not be perceived by the HVS.
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Chapter 6

Conclusion

In this chapter, we succinctly mention our contributions in this study and specify

some interesting paths for future research and improvement to our proposed system.

6.1 Contributions

Due to the emergence of various applications which combine different techniques

in computer vision to build a practical system, developing testbeds which are par-

ticularly designed for the evaluation of different components in the criteria of the

important factors in the target application is essential. Nowadays, building practical

AR applications is a challenging problem due to the various constraints that these

systems normally face. We believe that addressing these constraints and attempting

to find the efficient solutions are propitious research directions.

In this research, we suggest that stereo correspondence methods can be used in

outdoor AR systems as a practical alternative to conventional and inefficient tech-

nologies, 3D laser scanner or depth cameras, for obtaining the depth map of the
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surrounding environment, but only if a real-time implementation is used. This ap-

proach, that is, employing stereo correspondence solutions, requires an evaluation

scheme which can effectively evaluate the stereo correspondence methods while tak-

ing the target application into consideration. As a result, the available evaluation

models, Middlebury and Kitti, will not be sufficient for an effective evaluation of the

solutions. Therefore, our main contribution in this study, is proposing an application-

oriented evaluation scheme that is designed in the light of the most important factors

in an outdoor AR system. Since humans are the ultimate users of an AR system, we

have focused on the relevant factors in the human visual system that are important

for the real-time interaction with the augmented world and the perception of depth

of the surrounding environment. We have integrated specific metrics in our evalua-

tion system which are measured and subsequently evaluated in the framework of an

outdoor AR application, thus effectively analyzing the performance of the solutions

in terms of their accuracy and efficiency, that is its execution time, for the target

application. These metrics are the average stereoacuity over distance, the average

number of outliers, the average disparity error and the the average execution time.

We also suggest that some specific areas in a scene are of more importance to AR

applications in outdoor environments. Due to the importance of depth discontinuities

and occlusion as depth cues to the human visual system, we define these regions as

the depth edges and their surroundings in the scene. Although our experiments did

not prove to be sufficient to investigate the validity of this hypothesis, we would still

hypothesize that these regions are worthy of being studied in AR applications. In

addition, the trade-off between the accuracy and the running time of a stereo algo-

rithm can be studied through our system in the framework of an outdoor AR system,
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thus better determining the net benefit of certain post processing steps to the target

application.

In conclusion, the experimental results in most cases showed the effectiveness of

our approach for evaluation of the stereo solutions in outdoor AR applications, which

encourages further research in this particular direction to improve this model in more

useful aspects. Next, we will mention some aspects in which we believe the system

can be improved.

6.2 Future Work

This evaluation model can be improved in a few aspects that we will discuss here. As

seen in the experiments, we could not certainly determine the importance of the depth

edges in the scene to the outdoor AR application and subsequently their consideration

in the evaluation of the stereo algorithms. We believe that a solid conclusion can be

made by evaluating more stereo matching solutions within our model and observing

the results in the masked regions and the whole image. We had envisioned a user

study in which the user estimates the distance of a particular synthetically generated

object which is placed at different sections of the scene, we could ask the user to say

whether the synthetic object was in front of behind one of the objects in the scene.

We had also envisioned another user study in which we used Google Earth and the

maps of the campus to validate the objects we found in the real environment that

were added or removed from the 3D model of the campus.

Earlier at this research we thought to conduct a user study to observe the effect

of different weather conditions. Eventually, we decided to discard this evaluation
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since we thought that the only possible outcome would be deterioration on different

weather and illumination conditions. However, an interesting question to address in

later studies would be the degree of decrease in users performance and decrease of

the algorithms success when estimating the depth of various objects in the scene.

Another interesting aspect of improvement is a rigorous study on the effect of

other factors that can affect the effectiveness and usability of the outdoor AR system

and, therefore, are important to be considered in the evaluation of the method that

is used to obtain the depth map of the surrounding environment. To name some of

these factors we can refer to the resolution of the display devices in the AR system

and the effect of contrast and brightness. For this evaluation, different video streams

or stereo images can be captured using devices with different resolutions and from

different scenes where the effect of shadow and lighting is well depicted. A segmen-

tation algorithm can then be used to segment specific regions with different effects of

shadow and lighting and the depth results by the algorithm in these areas can then be

estimated and evaluated. A user study, similar to the ones mentioned previously, can

also be conducted here to observe and evaluate the effects of the depth results and

their errors on the HVS in each case. A more complete list of the important factors

in AR can be found in the survey on the perceptual issues in augmented reality by

Kruijff et al. [28].

There are different post processing techniques in computer vision that can be used

to refine the disparity results, such as color segmentation and plane fitting, anisotropic

diffusion, and common smoothing filters as Gaussian filter. However, most of these

techniques can considerably increase the execution time of the algorithm. A study of

different refining methods and their effect on the accuracy and the running time of

99



the algorithm in the framework of a particular application, such as an outdoor AR

system, is an interesting topic to investigate and can be a valuable asset to many

industrial applications.

Another interesting subject for studying is focusing on the evaluation of the ex-

isting GPU-based stereo matching techniques in our system. Investigating their suit-

ability for integration in an outdoor AR system based on their running time, which is

expected to be considerably less than many CPU-based solutions, and the accuracy

of their results in the light of the relevant factors to an outdoor AR system can be

an interesting subject for research.

Furthermore, we believe that it will be of specific value to assess the benefits of our

proposed model and its applicability to other applications of augmented reality, such

as underwater environments, in which the environmental noise is more significant and

is more challenging to address.

We certainly encourage the interested researchers to investigate these aspects as

we believe the increasing development of the hybrid systems in the fields of augmented

reality and stereo vision require a more systematic way of evaluation to effectively

investigate the usability and effectiveness of the system in the target application.
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