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ABSTRACT 

Robotic arms can be controlled by human operators using different types of controllers or 

manipulators. For example, a Titan IV robot arm can be mounted on a ROUV (remotely 

operated underwater vehicle) for seafloor operation and can then be remotely controlled 

by a sophisticated manipulator, a “Master Controller”. An operator needs a lot of training 

with this type of controller before they could apply their skills manipulating real robot 

arms in the field. There are, however, simulators like GRI Simulations Inc.’s manipulator 

trainer which help a user train virtually on a particular robotic arm using either a master 

controller or a joystick. Compared to joysticks, master controllers are much more 

sophisticated and expensive devices. On the other hand, joysticks are not as convenient as 

controller mechanisms, since they are more generic products and do not map the 

functionalities of master controllers as well as the custom master controllers. 

   This thesis presents a new technique to manipulate a robotic arm which uses an 

inexpensive depth-camera to capture the user input and inverse kinematics to define the 

motion of the robotic arm. Along with the easier manipulation of the robotic arm, the 

presented technique also adds some gesture commands to control the end-effector which 

makes the interaction more intuitive. To test the efficacy and efficiency of the proposed 

method, a user study was conducted in which 18 participants were asked to perform two 

placement tasks using a keyboard, a joystick and the depth-camera based interface. The 

presented technique is inexpensive and the results of the study suggest the technique is a 

good option for controlling robot arms with configurations similar to that of the Titan IV.  
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Chapter 1 

Introduction 

In recent years there have been significant developments in the field of HCI, where the 

focus of the research has been on providing a natural, easy and intuitive means for 

humans to manipulate or control robots. There has been a significant increase in the usage 

of robotic arms that require human manipulation, in industrial, medical and offshore 

applications. One of the earliest manipulation problems studied in the field of robotics 

was the insertion of a peg into a hole using a robotic arm while preventing the wedging or 

jamming of the peg in 1982  [1]. Since then there has been a significant advancements in 

manipulation techniques and robot control.  Robotic arms can be controlled by human 

operators using different types of controllers or manipulators. For example, a Titan IV 

robot (Fig. 1a) arm, which can be mounted on a ROUV (remotely operated underwater 

vehicle) for seafloor operation, can be remotely controlled by a sophisticated manipulator, 

a “Master Controller” (Fig. 1b). An operator needs a lot of training with this type of 

controller before they could apply their skills manipulating real robot arms in the field. 

There are, however, simulators like GRI Simulations Inc.’s[2] manipulator trainer which 

help a user train virtually on a particular robotic arm using either a master controller or a 

joystick. Compared to joysticks, master controllers are much more sophisticated and 

expensive devices. On the other hand, joysticks are not as convenient as controller 

mechanisms, since they are more generic products designed for gaming, and do not map 

the functionalities of master controllers as well as the custom master controllers. 
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Figure 1(a) Titan IV robotic arm by FMC technologies (b) Master controller for Titan 

IV robotic arms. Image courtesy: fmctechnologies.com 

1.1 Problem Statement 

Over the last two decades there has been a significant development in robot control 

strategies. Most of the robot control mechanisms use a master controller (such as Titan 

IV’s master controller in Fig. 1b) to control the robot which might be hard to learn for the 

operators and could also be expensive (thousands of dollars). The existing control 

mechanisms which use the master controller are expensive and require a lot of training. 

To counter this, an easy to learn and a cost effective control mechanism needs to be 

developed. 

1.2  Motivation 

As discussed in section 1.1, the aim of this research is to make an easy to learn and cost 

effective control method for robot arms. Since the advent of depth-cameras like 

Microsoft’s Kinect [3] or Intel’s Creative™[4] gesture camera, several applications have 

been developed where users interact with applications using gestures and speech 
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commands. However, most of these applications are related to gaming or simulations 

which are used for training purposes.    To solve the problem mentioned in section 1.1, we 

decided to use the recently developed depth-sensing technology to make an easy to use 

interface which will help operators control the robot with much less training as compared 

to the conventional approaches.  

1.3  Approach 

Depth-cameras provide some essential information about the user such as the hand 

position, which can be used to control the robot. This thesis presents a new technique to 

manipulate a robotic arm in which an operator uses an inexpensive depth-camera to 

capture the user input and inverse kinematics to define the motion of the robotic arm. To 

test this technique, an articulated arm (Fig. 6) type robot simulator was developed in 

OpenGL. This simulator can be controlled by a keyboard, a joystick, and a depth-camera. 

For the keyboard and the depth-camera based input, the user was expected to control a 

target ball to point to an object which needs to be picked up. The inverse kinematics 

algorithm takes care of the rotation of the joints of the arm. However, for the joystick 

interface the user was expected to control the angular rotation of each joint manually 

using forward kinematics. Along with the easier manipulation of the robotic arm, the 

presented technique also adds some gesture commands to control the end-effector which 

makes the interaction more intuitive.  
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1.4 Research Questions 

The objective of this research was to develop an easy and intuitive interface to control a 

robotic arm and compare it to the existing controllers such as keyboard control or joystick 

control, to answer the following research questions.  

 

1. How will the presented approach of using a depth–camera to control a robotic 

arm perform compared to a current approach?  

As the depth-camera based input uses inverse kinematics to calculate the rotation 

angles and the joystick based control uses the forward kinematics in which the 

users control the rotation angles on its own, these two approaches of interaction, 

one is automatic (uses inverse kinematics) and second is manual (forward 

kinematics), are different and therefore, these two approaches need to be 

compared. 

 

2. Which approach would be harder to learn for the users? 

The depth-camera based input method is new to the users as compared to the 

keyboard and the joystick based input methods. We need to find out whether the 

users will take a longer time to learn a new device as compared to the older, 

known devices. 

3. What will be the user preference for an input method? 

As each input method has its pros and cons, we wanted to find out which input 

device would be preferred by the users. As the depth-camera was the newest 
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device for users, it was necessary to find out whether the users will prefer a new 

method and device or a more commonly used input method like joystick or a 

keyboard. 

 

4. Would there be a preferred input method for a particular task? 

Two tasks were created which each user was supposed to perform using each 

input method. The objective of the first task was to reach to the randomly 

generated object and pick it. The objective of the second task was to pick the 

randomly generated object and drop it into the bin. Since the two tasks are 

different and require a different level of user control, we wanted to know if the 

users will prefer a particular input method for Task 1 and a different input method 

for Task 2. 

 

1.5  User Study 

A user study was necessary to test the efficacy and efficiency of the presented approach. 

Also, to answer the research questions mentioned above, a user study was important. We 

recruited 18 participants for the user study and each user was asked to perform two 

placement tasks using each input interface (keyboard, joystick and depth-camera). Each 

task was repeated 10 times. Statistical analysis was performed on the results which will 

be discussed in later part of the thesis. 
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1.6  Organization of the Thesis 

The remainder of this thesis is organized as follows: An overview of the related work in 

the field of robot manipulation is provided in the next chapter, Chapter 2. Chapter 3 is the 

system overview and it explains the implemented system in detail. It also talks about the 

alternate approaches we tried to control the robot, using the depth camera, which didn’t 

work, and Chapter 4 presents the details of the user study and the results from the user 

study. It also talks about the users’ overview of the system as a whole. Chapter 5 talks 

about the conclusions obtained from this research and the user study. It also talks about 

future work related to this research as well. 
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Chapter 2 

Related Work 

This section briefly discusses similar work in robot manipulation and control techniques. 

One of the earliest manipulation problems studied in the field of robotics in 1982 was the 

insertion of a peg[1] into a hole using a robotic arm while preventing the wedging or 

jamming of the peg. Since then, the complexities of manipulation tasks have increased 

and contemporary robots can perform complex manipulations tasks. To aid these 

manipulation tasks several control techniques for manipulating a robot arm have been 

proposed, involving variety of position-controlled manipulators [5, 6, 7] closed loop 

manipulator control [8], joystick-based controllers [9, 5], speech [10, 11] and gesture 

based controller [12, 11, 13, 14] and sensor based interfaces[15]. 

2.1 Position-Controlled Manipulators 

Position controlled manipulation (PCM) is probably the most common control method in 

robotics in which the robot is either controlled in a joint space or in Cartesian space [16, 

17, 18, 6]. Since the inception of robotics, and its usage in industrial applications such as 

assembly, packaging and loading, many position controlled manipulators have been 

proposed. A.M. Sharaf presented a fuzzy logic based position controller for a single link 

manipulator[19]. Fuzzy logic was introduced in 1965 and is a form of a many valued 

logic which means that there are more than two truth values. The most famous form of 

fuzzy logic is the three valued logic, in which the truth table contains “true”, “false” and 
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“unknown” values [20]. The fuzzy logic based controller[21] is motivated by the system 

uncertainties and variable load excursions. Sharaf’s experimental results indicated that the 

fuzzy logic position controller is an effective and robust controller. However its 

performance needs to be evaluated for a multi jointed, articulated robotic arm [21]. There 

are position and force controllers such as [22, 23, 24] in which a dynamic system is 

implemented to control both the position and force . In some position based control 

methods, a PID (proportional-integral-derivative) control [25] is used to control the 

position of a robot [26, 27, 28], J.Jafar presented a PID based position control for a 2-

DOF (degrees of freedom) robotic finger [29] which had two joints and two links. The 

PID control loop was used to control the position. The PID control parameters were used 

to tune the performance of transient response, overshoot, among others. PID parameters 

helped reduce the noise and vibrations from the mechanical part of robot. The study 

concluded that the PID control method improves the performance of the robotic finger for 

object manipulation. However, PID control systems are expensive and require special 

training to perform object manipulation. Also, it was not designed to perform the complex 

manipulation tasks which an articulated arm can perform. 

     Position controlled methods are also being used in controlling more than one 

manipulator. H. Carroll provided an adaptive position controlled method of  dual-arm 

manipulators [17] in which two robot arms cooperate with each other in performing a 

task. This is a unique method as two robots communicate with each other to transfer a 

load from a point to a target position. Although controlling more than one manipulator is 

a relatively new topic, significant research has been done in that area such as the works of 
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Tarn T.J and X Yun in 1986[30] and C.Alford [31] in 1984. This could be an important 

addition to the presented research, whereby the operators of the robotic arm can 

manipulate two or more robotic arms together, to perform complex manipulation tasks.  

One of the industrial position-controlled manipulators such as Titan IV (Fig. 1a)  are 

operated by a master controller (Fig. 1b), are used for training of remotely operated 

underwater vehicles (ROUVs) and are quite expensive [33, 2]. Also, for people who 

suffer from motor impairment, joystick or position based controller may not be a suitable 

method as it requires quite precise movements of the hand. However, the technique 

presented in this thesis provides an easy interaction method in which the operator just 

needs to point towards the target position and the robot rotates on its own to reach the 

target.  

2.2 Voice Based Manipulation 

    There are other methods to control a robotic arm in which the users can interact with 

the robotic arm using speech, such as the VoiceBot presented by Brandi. H and Jonathan. 

M [11]. It uses the non-verbal voice such “ck” and “ch” sounds to control the gripper and 

it helps people with motor impairment. Similar to the VoiceBot there is another system 

which is known as the “The Vocal Joystick” presented by J. Blimes [33, 34]  and is 

designed to help people with motor impairment to make use of voice commands to 

control objects generated on the computer screen and to control a robotic arm. Other non-

verbal voice, such as humming-based control [35] and whistling based [36] control could 

be useful for people with some motor impairment, however these voice based solutions 
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are not best suited for longer durations, as after a while the system could become 

inconvenient to use.  

2.3 Sensor Based Manipulation  

  In recent years, there has been a lot of development in sensor based robot control 

techniques [37, 38, 39, 40]. Sensor based control methods employ sensors to gather the 

state of the robot. Without the sensors, the robot end-effector would have to go through a 

path without any feedback, and that may cause limitations to the kind of tasks a robot can 

perform. Using sensors can give adaptability to the robots.[41, 38]. R. Das and A. Pandey 

presented a dual sensor based robot control system[37] in which a MEMS 

(Microelectromechanical systems) sensor [42] and an ultrasonic sensor were used to 

detect hand motion of the user and the gestures from the user. The use of these sensors 

provides a low-cost gesture recognition based robot as compared to the systems which 

use stereo cameras for feature extraction and gesture recognition[43, 44], however these 

sensors have a limited range and are not robust for commercial applications and they can 

only perform in a controlled environment. In another sensor based approach, Y. Song and 

C. Wusheng presented a sensor based control of a telerobotic system [40] in which 

multisensors are used to obtain the robot’s position, velocity and force. This sensory 

information is then sent over LAN/internet for the human operator. The robot was also 

equipped with an intelligent control algorithm which based on the robot state, selects 

whether to operate by human control or local autonomous control. This method improves 

the accuracy of teleoperation and it can also be applied to some intelligent robot system, 

however it might not be suitable for under water applications as some of the sensors, such 
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as the infra-red sensors and the force/torque sensors, might behave differently under 

water (because of the buoyancy of water the force/torque sensors would have to be 

calibrated), therefore the performance of this system would have to be evaluated for 

underwater applications. S. Ma and X. Wu presented a sensor driven neural controller for 

a snake like robot which was self-adaptive and collision free [41]. Three IR (Infra-red) 

sensors were deployed to obtain the information about the obstacles in front of the snake 

locomotive. The neural network was designed after analyzing the motion of the snake 

locomotive which drives the CPG (central pattern generator) oscillators [41]. This 

approach however, is more suited for locomotive robots and its suitability for 

manipulating a robotic arm like a Titan IV arm will not be part of this research.  

2.4 Vision & Stereo Camera-Based Manipulation 

In vision based robot manipulation the users generally deploy a camera based sensor like 

Microsoft’s Kinect[14] or other stereo or RGB camera to obtain the information about the 

environment. Since the inception of depth cameras many vision based control approaches 

have been researched [43-49]. One such method called perception by proxy [43], uses 

stereo cameras to obtain the information about the surroundings, which allows the 

operators of the robots to perform their tasks faster. It uses stereo cameras instead of 

depth cameras to obtain the accurate depth information about the obstacles in the 

environment. There are existing methods which use stereo cameras[49, 50, 51] or depth 

cameras like Microsoft Kinect to control a robot, for example H.B Suay’s approach to 

control a humanoid using depth cameras [49]. This method uses depth images and 

skeletal tracking software to track the user movements and controls the humanoid robot 
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based on user input. This method is mostly suited for humanoids where the hand and leg 

gestures are mapped to the appropriate part of the humanoid; however for a robotic arm 

we need a different type of controller and an intuitive interface. There are other vision 

based approaches in which multiple cameras [52] or stereo cameras [53] are used to 

obtain information such as depth and position, of the objects used for pose correction and 

estimation, but these methods are effective only when the target object is small in size and 

the workspace of the end effector is large such as in assembly related industrial tasks [52, 

54]. Y. M Zhao proposed a solution which utilizes multiple cameras and multiple target 

points to overcome this problem[54], the multiple cameras and the LEDs used  help in 

improving the performance of the robot. Shirwalkar’s approach in [110] provides a means 

for tele-manipulation of a robotic arm using a Kinect camera and hand gestures. The 

gestures were developed to open and close the grip of the end-effector and to map the 

hand movements to move the robot arm. The user controls the arm manually using a 

mapping method which maps the user’s hand velocity to the robot movement. This 

approach is more suitable for techniques where haptic feedback from the arm is available; 

also this approach mainly focuses on controlling the gripper or the end-effector of the 

robot. A similar approach was also proposed by Raheja in [111] in which gestures were 

used to control a robotic arm. This approach uses a simple RGB camera to obtain the 

gesture information and matches it against the gestures stored in a database. This method 

provides a limited number of movements for the robotic arm which can be controlled by 

the gestures, which limits the workspace of the robot. In this research the depth camera 

can control the robotic arm in 3D as long as the constraints of the arm are met.      The 
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above mentioned approaches use the stereo camera, or multiple cameras for feature 

extraction of the robot and obstacles. Based on the data obtained from the stereo or 

multiple cameras, a control strategy is devised to manipulate the robot. In the approach 

presented in this thesis the depth-camera acts as an interface between the robot arm and 

the operator and users interact with the robot arm using the depth-camera. The user 

specifies the target position using the depth-camera interface and the motion of the robot 

is defined by inverse-kinematics. 

2.5 Robot arm configurations and Kinematics 

The goal of this section is to provide the reader an insight into basic robot configurations 

and robot kinematics. This section provides an overview of the background needed to 

understand some aspects of the thesis, such as simulator design and control.  

2.5.1  Robot arm configurations 

One of the most common ways to classify robotic arms is by the arm configuration. There 

are five important arm configurations as explained below. 

Cartesian coordinate robot: As the name suggests, Cartesian coordinate robots are 

rectilinear robots which  move in the Cartesian coordinate frame along the X, Y, Z 

axis[55]. Figure 2 shows a basic structure of a Cartesian robot. Cartesian robots are 

commonly used for positioning applications such as cutting, dispensing and routing. The 

payload capability is dependent on the axis length and support structure [56].  
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Figure 2:  Basic Configuration of Cartesian coordinates Robot, 

image courtesy: nptel.ac.in [109] 

Cylindrical Coordinate Robots: Unlike the Cartesian coordinate robots these robots 

have a rotational axis as well as two translational joints. Figure 3 shows the basic 

configuration of the cylindrical robot. As shown in the figure, the arm can move 

vertically, closer and farther and it can also rotate around its base which makes a 

cylindrical workspace for the robot [57, 58]. The vertical axis of the robot can rotate 

about 270 degree; because of its rigid structure the payload capability of cylindrical 

coordinate robots is higher than Cartesian coordinate robots[59]. 

 

Figure 3: Basic configuration of cylindrical coordinate robot. Image 

courtesy: nptel.ac.in [109] 
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Spherical Coordinate robots: Spherical coordinate robots have two rotational joints and 

one linear joint. As shown in Figure 4 the robot can rotate around its base and around he 

Z axis, it can also move linearly. The robot’s arm pivots can provide short rotary vertical 

strokes of about 60 degrees. The robot’s base arm can swing horizontally around its base 

by about 210 degrees. Spherical robots are used in industrial tasks like material handling 

and welding .[60] 

  

 

Figure 4: Basic configuration of spherical coordinate robot. 

image courtesy: nptel.ac.in [109] 

SCARA Robots: SCARA stands for Selective Compliance Assembly Robot Arm, 

SCARA robots have become very popular in the last decade in industrial applications 

such as painting, welding and packaging. [61, 62]. They are a combination of the 

cylindrical and the articulated robotic arm (discussed below) configurations. As shown in 

Figure 5, the arm has several revolute joints. SCARA robots have high speed and 

flexibility because of their precise angular controls. 
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Articulated or Jointed arm:  The articulated or the jointed arm is the most commonly 

used arm configuration. These robots resemble human articulations design-wise, and have 

similar joint structures. As shown in Figure 6, the arm has number of revolute joints. 

andare connected with a rigid segment. Similar to the human arm and also 

have angular constraintsFor this research we are developing a simulation of an 

articulated jointed arm. The main advantage with articulated robotic arms is that they 

minimize the floor space requirements. These arms are widely used for offshore 

applications such as sea floor excavation and sea bed engineering. As this research tries to 

provide a simpler control technique of Titan IV and similar types of articulated arms,  we 

will focus on articulated arms for this research.[61] 

 

Figure 5: Basic configuration of a SCARA robot 

image courtesy: nptel.ac.in [109] 
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Figure 6: Basic configuration of articulated robot 

image courtesy: nptel.ac.in [109] 

2.5.2 Robot Kinematics 

Kinematics is the study of motion of bodies or system of bodies without considering the 

cause of motion[63]. Robot kinematics is defined as the analytical study of the motion of 

the robot arm manipulator; it studies the relationship between the joints and the position 

of the kinematic chain of the robot. Robot kinematics can be divided into forward 

kinematics and inverse kinematics. 

2.5.3 Forward Kinematics 

In simple terms the forward kinematics problem can be stated as   “given the joint angles, 

what will be the position of the end-effector (the gripper or the grabber mounted at the 

end of the robot)”. Figure 7 shows a 2 link manipulator, where the forward kinematics 

problem is: given the link lengths l1 and l2 and the joint angles 𝜃1and𝜃2, what will be the 

position of the end-effector E (Fig. 7)? 
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This problem can be solved by two methods. The first method is the geometric approach 

which uses simple trigonometry to calculate the end-effector position. For the 

manipulator shown in Figure 7, let’s assume that the end-effector is located at (Xend, Yend) 

then Xend, and Yend can be expressed in terms of l1 and l2 and the joint angles 𝜃1and 𝜃2as 

shown in equations 1 and 2. 

𝑋𝑒𝑛𝑑 = 𝑙1 cos 𝜃1 + 𝑙2 cos (𝜃1 + 𝜃2)                           ( 1 ) 

𝑌𝑒𝑛𝑑 = 𝑙1 𝑠𝑖𝑛𝜃1 + 𝑙2 𝑠𝑖𝑛(𝜃1 + 𝜃2)                             ( 2 ) 

The geometric approach works fine for 2 or 3 link manipulators, however, for a higher 

number of links the approach becomes tedious to formulate. There are however some 

algebraic methods to evaluate the forward kinematics  which gives better and efficient 

solutions [64]. To understand these methods it is essential that we understand the simple 

matrix transformations associated with rigid body transformations such as rotation and 

translation. 

Figure 7: A simple two link manipulator. 
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2.5.4 Forward Kinematics Using Matrix transformations 

Forward kinematics problem can also be solved using simple matrix operations. Figure 8 

shows a 3 link chain with link lengths as 𝑙1, 𝑙2 and 𝑙3. As shown in the Figure 8, each link 

has its own coordinate frame. E.g. link 1 is in the coordinate frame X1 Y1 similarly link 2, 

3 also have their own coordinate system. As shown in Figure 8, the point P which is in the 

coordinate frame X4 Y4, is the end-effector of the whole arm and O is the origin at the 

base in X0 Y0 coordinate frame. 

 

 

 

 

 

 

 

 

 

Using the matrix transformations we can express the position of the end-effector P based 

on the coordinate frame X0 Y0. For example, the end-effector of link 1, P1, can be 

obtained from a rotation in frame X0 Y0. Similarly, the position of P2 can also be obtained. 

The following equation gives us the relationship of the end-effector of the entire arm, P 

with respect to the base frame, X0 Y0. 

𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑅𝑧(𝑌1)  ×   𝑇𝑋1
(𝑙1)   × 𝑅𝑧(𝑌2)  × 𝑇𝑋2

(𝑙2)  ×  𝑅𝑧(𝑌3)  ×  𝑇𝑋3
(𝑙3)       ( 3 ) 

 

Figure 8: A simple 3 link manipulator 
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Where Rz means rotation along Z axis and Tx means translation along X axis. Rotation and 

the translation matrix are mentioned below in equation number (4) and (5) [65]. Equation 

3 takes us to the coordinate frame X4 Y4, which is the end-effector P’s local coordinate 

frame, to obtain the coordinates of P w.r.t to the base frame we need to multiply the 

Result matrix with P’s coordinates as showed in equation number (6).  

𝑅𝑧 = [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
]                 (4) 

 

𝑇𝑥 = [
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

]                                 (5) 

 

[
𝑋
𝑌
1
] =  [𝑅𝑒𝑠𝑢𝑙𝑡]  × ⌈

0
0
1
⌉                       (6) 

2.5.5 Denvit and Hartenberg (DH) Parameters 

The robot manipulators consist of several joints, these joints could be Cartesian controls 

(also called prismatic) (Figure2), revolute (Figure 5 and Figure 6) or spherical (Figure 4). 

To obtain the position of the end-effector based on these joints, it is important to know 

how each joint is connected to a previous joint and to the next joint.  

There is a manual way to keep track of the coordinate transformation from joint to joint, 

however that is a recursive process and is mathematically tedious. Denvit and Hartenberg 

(DH) presented the DH parameters in 1955 [66, 67], which provides an easy presentation 

of joint connection and makes it easier to understand the coordinate transformation 
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moving from one joint to other. Normally, to represent a link correctly, 6 parameters are 

needed out of which 3 are for position and 3 are for rotation. Using the DH table these 6 

variables can be converted into 4 linked parameters[67]. However, there are certain rules 

one must follow to represent DH coordinate frames. These rules are mentioned below.  

2.5.6 Rules for Assigning Frames. 

In the following discussion we will use the canonical axes X, Y and Z, as a set of three 

perpendicular vectors in 3D space.  

Rule 1: Zi-1 is the axis of actuation (where the actuator is) of joint number i. In case of a 

revolute joint the axis Zi-1 becomes the axis of rotation, and if it is a prismatic joint, the Zi-

1 is the axis for translation. 

 

Figure 9:  Axis of actuation is assigned to Z0 

Figure 9 shows a simple robot which rotates around its base, as the base is the axis of 

actuation, we assign Z0 to the base. X0 and Y0 axis can be assigned as per user’s choice.  

Consider a right hand rule where the thumb is Z0 and X0 and Y0 could be assigned any of 

the index or the middle finger [66]. 
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Rule 2:  To apply the rule 2 to assign the coordinate frames, the following 3 cases need to 

be considered. 

I. The axes Zi-1 and Zi are not coplanar: If the axes Zi-1 and Zi are not coplanar, then 

there exists only one line possible for Xi which will be perpendicular to both Zi-1 

and Zi. As shown in the Figure 10, the point of intersection where the line Xi 

intersects with Zi is defined as the origin Oi. The axis Yi is then chosen based on 

the right hand rule.[66, 59, 68] 

 

Figure 10:  Axis Xi is assigned to the line perpendicular to Zi-1 

II. The axes Zi-1 and Zi are parallel: Figure 11 shows a case where the axes Zi-1 and Zi 

are parallel to each other there could be infinite number of possibilities for 

assigning Xi from Zi-1 and Zi . In this case usually it is the best practice to choose 

Xi such that it will pass through Oi-1. The origin Oi is located at the intersection of 

Xi and Zi.[69, 59] 



23 

 

 

 

Figure 11:  Axis Xi is assigned to the line which crosses Oi-1 ( or where 

Oi is parallel to Oi-1) 

III. The axes Zi-1 and Zi intersect: If the axes Zi-1 and Zi are intersecting with each 

other, then the Xi is assigned to a normal to the plane of Zi-1 and Zi. The origin Oi 

can be anywhere on the axis Zi. As shown in Figure 12, origin Oi is located at the 

intersection of Xi and Zi [70, 66, 59]. 

 

 

Figure 12:  Axis Xi is assigned to the line which is normal to Zi-1 and Zi 

2.5.7 Finding the DH parameters 

The four DH parameters are ai, di,i and i. Figure 13 shows the DH parameters.  
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Figure 13:  Example of DH parameters. 

The parameter ai is the distance between Zi-1 and Zi measured along Xi. i is the angle 

between Zi-1 and Zi measured about Xi. di is the distance between Xi-1 and Xi measured 

along Zi-1. i is the angle between Xi-1 and Xi measured about Zi-1. After obtaining the DH 

parameters we can obtain the forward kinematics model using the homogenous 

transformations as shown in equation (7) [68], which can be used to obtain the position of 

the end-effector. 

𝑨𝒊 = 𝑹𝒛,𝜽  × 𝑻𝒛,𝒅  × 𝑻𝒙,𝒂 × 𝑹𝒙,𝜶                                                     (7)

2.5.8 Inverse Kinematics 

Inverse kinematics problem can be stated as “given the target end-effector position what 

will be the joint parameters ?” [69]. Figure 14 shows a simple 2 link manipulator. To 

Figure 14:  Simple 2 link manipulator 
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solve the inverse kinematics problem for the manipulator, shown in Figure 14, when the 

target position coordinates for the end-effector “Target(X, Y)” are given, 𝜃1and 𝜃2 need 

to be calculated. Simplest way to obtain the joint angles 𝜃1and 𝜃2 is to use trigonometry. 

Using the equations 1 and 2 we can see the relationship between the joint angles and the 

target positions. Using equations 1 and 2 we can write equations for target position (Tx, 

Ty) 

𝑻𝒙 = 𝒍𝟏 𝐜𝐨𝐬 𝜽𝟏 + 𝒍𝟐 𝐜𝐨𝐬 (𝜽𝟏 + 𝜽𝟐)                                        (8) 

𝑻𝒚 = 𝒍𝟏 𝐬𝐢𝐧𝜽𝟏 + 𝒍𝟐 𝐬𝐢𝐧(𝜽𝟏 + 𝜽𝟐)                                          (9) 

After solving the simultaneous equations 8 and 9 for𝜃1and 𝜃2, we can write 𝜃1and 𝜃2 in 

terms of target coordinates and the link lengths as given below. 

 

𝜃2 = 𝑐𝑜𝑠−1 (𝑇𝑥
2+𝑇𝑦

2−𝑙1
2−𝑙2

2)

(2𝑙1𝑙2)
                        (10) 

                                                               

   𝜃1 =
(− 𝑇𝑥 𝑙2 sin𝜃2+ 𝑇𝑦(𝑙1 +𝑙2 cos (𝜃2)))

(− 𝑇𝑦 𝑙2 sin𝜃2+ 𝑇𝑥(𝑙1 +𝑙2 cos (𝜃2)))
              (11) 

 

This trigonometric solution is simple to understand and implement. However, for a higher 

number of links the formulation becomes tedious and more computationally expensive as 

Figure 15:  Multiple solutions for the same target position 
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it involves a lot of floating point calculations [71]. Along with the computational 

complexity there is another ambiguity in the trigonometric approach. For same target 

positions there could be multiple solutions which can lead to some erroneous state. For 

instance, Figure 15 shows an ambiguous state of the solution where there are two possible 

positions of the arm which lead to same target point, which might introduce 

computational errors (as the joint angles for both positions are different) and lead to 

vibration of the robotic arm around both solutions. Although the geometric solutions for 

forward and inverse kinematics are easy to understand and implement, they can get quite 

tedious and computationally expensive if there are more than 3 links. In addition, the 

geometric method would not work for a structure where the joints can move in different 

planes. For example, the joints in the arm in Fig. 15 rotate along Z axis but if the joints 

could also rotate along Y or X axis, the equations 10 and 11 would not be valid  [72, 64] . 

2.6 Inverse Kinematics Based Manipulation 

Inverse kinematics is extensively used in manipulation techniques for humanoid [73–77] 

robots or animated robots [78]. T. Uzunovic presented a neural network based inverse 

kinematics method to control a Delta robot [51] in which  the robot’s inverse kinematics 

model was developed using the neural networks. It was stated that their method provides 

a significant improvement in mapping the task space coordinates to joint space 

coordinates, which improved the accuracy of the manipulation tasks. Similar neural 

network based inverse kinematics has also been proposed in [79,26, 80]. The advantage 

with neural network based inverse kinematics module is that it reduces the ambiguities 

(section 2.5.8) in the Inverse Kinematics (IK) solution and returns a solution which 
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doesn’t have the problems discussed in section 2.5.8 (Fig. 15). However, for this research 

CCD (Cyclic coordinate descent) algorithm [81, 82] was used since it is efficient to 

implement and is computationally inexpensive [71, 83]. Fedor in his comparative analysis 

in [84] reported that the CCD algorithm was a good compromise between speed and 

accuracy. Also, the simulator developed for this research has physical constraints, which 

shortens the solution space. The CCD algorithm returns a direction to rotate as well, 

which avoids the ambiguous solution problem mentioned in section 2.5.8 [71, 84, 85 ]. Y 

Kung presented a FPGA [86] implementation of Inverse kinematics and servo controller 

for a robot manipulator. Because of the FPGA implementation the computation time of 

inverse kinematics was really efficient. Also, digital control logic was implemented 

within the FPGA logic. Similar work has also been done in [87, 88, 89]. The FPGA 

implementation makes the computation faster, however the solution would be specific to 

a particular robot arm, as the arm configuration is hard coded and cannot be changed after 

deployment, so the control method might not be portable.  

2.7 Brief Overview of Inverse Kinematics Algorithms 

There are several algorithms for solving IK, coming originally from robotics applications. 

The most popular ones include CCD (Cyclic Coordinate Descent methods) [82, 90] 

pseudo-inverse methods [91], Jacobian transpose methods[91, 69, 92], damped-least 

squared methods [91, 93] and  Triangulation methods [83]. The pseudo-inverse methods 

when used for robots with large number of links can be computationally demanding [84] 

as they produce large matrices to obtain the kinematic model of the system, and matrix 

operations consume a significant amount of processing power. Jacobian methods which 
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are more common than the pseudo-inverse methods, also require tedious matrix 

operations and hence are inefficient as compared to CCD [83, 90]. Jacobian transpose 

methods [91], overcome the drawbacks of Jacobian method by simply transposing the 

Jacobian matrices instead of finding its inverse or pseudo-inverse, however, Jacobian 

transpose methods lack in performance [94] . The triangulation method is as efficient as 

the CCD algorithm, it utilizes the properties of the triangles to accurately rotate the 

kinematic chain to make the end-effector closer to the target, and it makes a triangle 

between the end-effector and the target position using the length of the joint as the third 

point. Using the law of cosine it obtains the angle of rotation. The Triangulation method 

doesn’t guarantee optimal rotations and tedious formulations might be needed for robots 

with a large number of links [83]. For this research we chose the CCD algorithm as it is 

easy to implement and is computationally inexpensive, as it does not involve calculating 

DH matrices, matrix inverse, transpose or partial derivatives which would involve a lot of 

floating point calculations. 

2.8 Summary 

This chapter discussed the various manipulation techniques, such as position control 

manipulation, sensor based manipulation, voice based manipulation and vision & stereo 

camera based manipulation.  The position control techniques are based on user input, 

which means that a user controls the position of the robot. However, other discussed 

techniques employ sensor, voice and stereo images in conjunction with user input to 

control the robot. The presented research uses the depth-sensing camera as a user input 

device as compared to other vision based approaches discussed in section 2.4. 
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The chapter also provides and insight into robot kinematics in which forward and inverse 

kinematics was discussed. DH parameters and its rules for assigning coordinate axes were 

discussed. A brief overview of inverse kinematics algorithms was presented, out of which 

the CCD algorithm was chosen because of its simplicity and ease of implementation. 

CCD is efficient when compared to other algorithms, since it does not involve complex 

matrix and vector calculations. 
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Chapter 3 

System Overview 

The block diagram in Figure 16 shows the overall system. The system consists of four 

essential components.  The user specifies the target position by moving his/her hands in 

front of a depth sensing camera. The user input processing module accepts the user input 

from the depth-camera, processes it, and passes it to the hand driven command module, 

where the processed user input is converted into 3D coordinates which can be passed to 

the inverse kinematics module as input.  The inverse kinematics module calculates the 

joint angles for the robot arm simulator.  

 

Figure 16:  System Overview 

After the joint angles have been calculated the robot arm simulator module applies the 

calculated rotations and the end-effector reaches the target. Once the target position has 

been reached the user can issue a gesture command to interact with the end-effector 

control module to open and close the grabber at the end-effector. The output display 

visualizer updates and displays the robot simulator along with other information such as 



31 

 

 

the depth-camera status, user’s hand position, task iteration ID and task number. Each 

module has been discussed in detail below. 

3.1 User Input Processing Module 

The user input is captured using the depth sensing camera. For this research Intel’s 

Creative depth-sensing camera was used to capture the user’s hand motion. Intel’s camera 

runs on Perceptual computing SDK (PCSDK) [4] which returns the user information such 

as hand information and the distance from the depth- camera. It returns the hand 

coordinates in Cartesian coordinates. Using the PCSDK, the right (or left) hand 

coordinates can be obtained. PCSDK also returns the coordinates of each finger’s top, 

which is used to draw a skeletal view of the user’s hand (as shown in Figure 19). 

 

Figure 17:  User interacting with the depth camera interface. 

The creative depth sensing camera is designed for short ranges unlike Microsoft’s Kinect 

which performs better for medium to long ranges [95]. For this research, a short range 

camera is more suitable, which is why Intel’s creative depth camera was chosen. Figure 

17 shows a user interacting with the depth camera.  The camera is mounted on top of a 

desktop monitor and the user interacts with the robot arm simulator by moving his/her 
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hand in front of the camera. Users' hand motions are then processed and sent to the next 

module which is the hand driven command module. 

3.2  Hand Driven Command Module. 

 Intel’s Creative depth camera was used to get the data about the user‘s hand position. 

The depth-camera SDK [4] provides the hand position and its distance from the camera, 

which is used to control a target ball which can move in a 3D input space; this target ball 

specifies the target position for the end-effector of the robotic arm to go to. The camera 

field of view is mapped to the user’s hand as shown in Figure 18 where the user controls 

the ball in 3 dimensions using his/ her hand. Placing the hand at the center of the grid 

stops the motion of the target ball. The grid cells Up, Down, Left, Right, Near and Far 

show the direction of motion. For example, if the hand is in the Up cell then the ball’s Y 

coordinate will be incremented by 1 as long as the hand is in the Up grid cell. Similarly, if 

the hand is in Down grid cell then the ball’s Y coordinate will be decremented by 1 for as 

long as the hand is in Down grid cell. The user interacts with X and Z coordinates in a 

Figure 18: The 3D input space for user 
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similar way. Figure 19 shows the various positions of the target ball with respect to the 

user’s hand. The grid shown in Fig. 19 shows the hand skeleton of the user and the grid is 

the implementation of what is shown in Fig. 18.   

 

3.2.1 Coordinate Processing 

The position of the users’ hand can be obtained from the depth-camera using the 

following code. The code shown below initializes the camera, makes an instance of the 

UtilPipeline class (defined in the C++ header file “util_pipeline.h” in the PCSDK), which 

gives us access to the gestures and alert functions defined in the class. The member 

functions OnGesture() and OnAlert() functions are built-in and return important 

information about the user. The OnGesture() function can loop the camera frames for 

built-in gestures. We use this function later to issue commands to the robot simulator to 

Figure 19: Ball position with respect to the user’s hand. 
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pick and drop an object. The function OnAlert() provides information about an active 

node (Nodes are user’s hand). 

 

/* Step by step walk through of setting up the depth camera*/ 

Step 1: Include cameras headers. 

Step 2: Declare variables to collect user’s hand position 

Step 3: Make a class which implements the UtilsPipeline class 

from SDK. 

Step 4: Set up the OnGesture() and OnAlert() functions. 

Step 5: Assign the gestures to the camera control, “Peace” for 

pick and “Thumbs_UP” for dropping an object. 

Step 6: Declare global variables for camera tracking and active 

node tracking. 

The following code snippet obtains the user’s active hand 

information. 

void handController() 

{ 

pipeline.Init(); // Initialize the Camera 

// acquire a frame to check for data 

pipeline.AcquireFrame(true); 

// Query the users hand position. 

pipeline.QueryGesture()->QueryNodeData(Hand_data); 

xCoordinate=Hand_data.positionImage.x; 

yCoordinate=Hand_data.positionImage.y; 
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zCoordinate=Hand_data.positionWorld.y;} 

 

As the depth-camera X, Y, Z coordinates at a rate of 35 samples per second, even a slight 

change in the hand position leads to unwanted movement of the target ball. To avoid the 

unnecessary flickering and displacement of the target ball, we decided to average out the 

last n coordinates, where n is a variable and can be kept between 5-10 to get smoother 

hand movement, so at any given instant the X, Y and Z coordinates would be the average 

of the last n coordinates. 

  The depth-sensing camera has a resolution of 320x240 which makes the returned 

xCoordinate anywhere from 0 to 320. Similarly, the returned yCoordinate is from 0 to 

240. We inserted a buffer zone as shown in Figure 20, so the user can complete the 

interaction with the simulator without the risk of going out of the field of view of the 

camera. After adding a buffer zone in the field of view the X coordinate ranges from 10 to 

290 and the Y coordinate ranges from 10 to 210. The Z value, zCoordinate, ranges from 0 

to 1. As shown in Figure 18, the camera field of view is divided in a 3x3x3 cube or 27 

cells. The central grid is for stopping any movements. 
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Figure 20:  Camera field of view with the buffer zone. 

The pseudo-code below shows the logic for the control function of the hand driven 

command module by which the user interacts with the simulator. The following pseudo-

code explains how the 27 cells are formed and the target ball is controlled with each grid 

cell.  

//Obtain the hand coordinate from handController() function. 

xCoordinate=Hand_data.positionImage.x; 

yCoordinate=Hand_data.positionImage.y; 

zCoordinate=Hand_data.positionWorld.y;  

Vect3D targetBall; // where targetBall is a 3D vector.  

targetBall(0)// X Coordinate of the target ball 

targetBall(1)// Y Coordinate of the target ball 

targetBall(2)// Z Coordinate of the target ball 

Function gridSetter(): 

// only one control is active at one time, hence, separate if and 

// elif  statements are used 

if (xCoordinate is between 0 to 90): 
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 targetBall(0)--;   // Move Left 

elif (xCoordinate is between 200 to 290): 

  targetBall(0)++;   // Move Right 

elif (yCoordinate is between 0 to 70): 

 targetBall(1)--;   // Move Up 

elif (yCoordinate is between 140 to 210): 

  targetBall(1)++;   // Move Down 

elif (zCoordinate is between 0.1 to 0.3): 

  targetBall(2)--;   // Move Far 

elif (zCoordinate is between 0.6 to 1): 

  targetBall(2)++;   // Move Near 

elif (Camera tracking is On && hand node is detected): 

 stopMovingBall= true; 

The coordinates obtained from the hand controller module are sent to the inverse 

kinematics module where the joint angles for the robotic arm are calculated using the 

inverse kinematics algorithm. 

3.3 Inverse Kinematics Module 

This module is the core of the system and is responsible for applying the rotations to the 

joints of the robotic arm. As mentioned in section 2.5, the inverse kinematics problem can 

be stated as “given the target location, determine the joint angles”[59]. Figure 21 shows 

the robot arm simulator developed for this research. The figure also illustrates the target 

ball (orange ball) which specifies the target position, and joints 0, 1, 2 and 3. Joint 0 is the 

base of the robot and it can rotate 360
ο
 around Y axis, which enables the robotic arm to 
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grab any object within its workspace. For this research, the CCD algorithm was used to 

solve the inverse kinematics problem. The CCD algorithm was chosen because of its 

computational efficiency[83, 96]. Also, the CCD algorithm is easier to implement as 

compared to Jacobian and pseudo-inverse methods, as it doesn’t involve tedious matrix 

operations and floating point calculations [91, 94].    

 

Figure 21:  The simulator developed for this research. The base can rotate 360 

degrees around Y axis. 

3.3.1 Cyclic Coordinate descent (CCD) 

CCD is the recursive algorithm we used. It solves the inverse kinematics problem through 

mathematical optimization. It loops from the last joint to root joint (the base joint in a 

kinematic chain). Each joint gets adjusted in a way that will bring end-effector as close to 

the target position as possible. As shown in Figure 22, the algorithm starts by measuring 

the difference between the two vectors formed between the effector position, E to C and 

from C to target position T. It then calculates the rotation and direction to reduce the 

angular distance between two vectors to zero (see Figure 22). It does this for each joint, 

iterating from the end-effector to the root joint of the kinematic chain. The rotation is 
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calculated by the dot product of two vectors and the direction is calculated by the cross 

product of two vectors defined in pseudo-code 1 for the CCD algorithm. To reach the 

target the equations 12 and 13, shown below, are solved for each joint until the distance 

between the end-effector and target is zero or the number of iterations has reached its 

limit. 

 

Figure 22: CCD algorithm, the vector formed by C, E rotates to make θ zero

 

                            cos 𝜃 =
(𝐸−𝐶)

(‖𝐸−𝐶‖)
 ⋅  

(𝑇−𝐶)

(‖𝑇−𝐶‖)
                      (12) 

 

                       dir⃗⃗⃗⃗  ⃗ = 
(𝐸−𝐶)

(‖𝐸−𝐶‖)
 ×  

(𝑇−𝐶)

(‖𝑇−𝐶‖)
                          (13) 

 

The basic pseudo-code of the 2D CCD algorithm is shown below:  

Pseudo-code 1: CCD_2D_InverseKinematics 

(Tx ,Ty) : Target coordinates  

(Ex, Ey) : End Effector coordinates 
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(Cxi, Cyi) :Position of i-th link 

Ti: Target vector for i-th link = (Tx-Cxi, Ty- Cyi) 

Vi: End Effector vector for i-th link = (Ex-Cxi, Ey-Cyi) 

θi: Angle between Ti and Vi 

FOR  i = n to 1: 

// Where n is the number of joints. 

Ti = (Tx-Cxi, Ty-Cyi) 

Vi = (Ex-Cxi, Ey-Cyi) 

θi = (Ti).(Vi) 

dir = (Ti)x(Vi) 

//Rotate ith link by θi in direction dir such that Vi 

aligns with Ti 

END FOR 

3.3.2 Obtaining a 3D solution using a 2D solution and a rotation 

The algorithm mentioned above can solve the inverse kinematics problem for 2D.  To 

obtain the 3D solution for the robotic arm, firstly, a 2D solution is obtained using the (X, 

Y) coordinates of the target ball, along the plane where the arm’s joints are found then the 

baseAngle is calculated to find the rotation of the arm on the X-Z plane. The user 

specifies the target position T’ on the plane#1 as shown in Figure 23. Plane #1 is the 

vertical plane that intersects the controller and passes through the axis of rotation of the 

arm. This target position is then transformed to the plane #2 (the arm’s plane) to T. Using 

the Z coordinate of the target ball the baseAngle between plane #2 and plane #1 is 
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calculated. The solution is obtained on plane #2. The pseudo-code of the algorithm is 

mentioned below. 

 

 

 

Figure 23: Obtaining a 3D solution using the 2D IK algorithm and a rotation

 

Pseudo-code for obtaining a 3D solution using the 2D IK solution: 

Pseudo-code 2: 2Dto3D_IK algorithm. 

Tx, Ty, Tz: Target ball’s coordinates. 

Ex, Ey, Ez: end-effector coordinates. 

jointAngle[3]: Array containing joint angles corresponding to 

each joint of the robot. 

Tx = targetBall (0) 

Ty = targetBall (1) 

Tz = targetBall (2) 
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baseAngle = atan2(Tz/ Tx) // Angle between two planes. 

// Obtain the target point on plane #2      

T= RybaseAngle(T’)  // Transform the target point. 

               //Where Ry is rotation by baseAngle along Y axis. 

jointAngle[3]= CCD_2D_InverseKinematics(T, E) 

// calculate the joint angles using the pseudo-code 1 

Rotate all the joint angles. 

After the jointAngles are calculated using the algorithm mentioned in pseudo-code 1, the 

robot simulator applies these rotations and the end-effector reaches the target. The user 

can then issue a command to open or close the grabber. 

3.4 End-Effector control module  

The task that we are implementing with this IK system is a picking and dropping task, 

where objects are picked from the vicinity of the robot arm, and the user can drop them at 

different locations. This module uses the Intel SDK’s image processing APIs [4] to let the 

user interact with the end-effector using gesture commands like “Thumbs up” or 

“Thumbs down” for pick and drop commands. The user is recommended to issue these 

gestures from the center part of the grid (Fig. 18), where no displacement is specified. 

Once the joint angles have been applied the user can interact with the End-effector and 

grab/ release the objects by hand gestures, keyboard input or joystick command. This 

module also checks for any possible collisions of end-effector and obstacles. Following is 

a basic outline of the collision detection algorithm.  
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Algorithm for collision detection: 

Pseudo-code 3: Collision detection algorithm. 

(Ex, Ey): Position of End-effector  

(Ox,Oy) : Position of Obstacle 

 Re: Radius of Sphere surrounding End-effector 

 Ro: Radius of sphere surrounding obstacle 

 d: Distance between obstacle and end-effector  

 Calculate d; 

 d = 𝑠𝑞𝑟𝑡 ((𝐸𝑥 − 𝑂𝑥)
2 + (𝐸𝑦 − 𝑂𝑦)

2
)  

 IF d <= (Re + Ro) THEN: 

       Collision with Object 

 ELSE 

        No Collision 

 END IF 

The above mentioned collision detection function is called along with 

CCD_2D_InverseKinematics() function to check if the end-effector made a contact with 

an object. There is just one object in the scene which is randomly generated with each 

iteration. 

3.5 Interfaces 

The user is provided with 3 types of input methods to control the robotic arm. The first is 

the option to control the target ball using a standard keyboard and camera movement 

using mice. The second option is to control the robotic arm with an Extreme 3D Pro(tm) 

joystick in which the user selects a joint and rotates it (this approach is based on forward 
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kinematics). The third option is where the user controls the target ball with his/her hand 

as described in section 3.2.   

Keyboard interface + Inverse Kinematics: This enables the user to use the standard 

keyboard as an interacting device to perform manipulation of the target ball, while the IK 

module takes care of moving the arm’s end effector towards the target ball. The user 

controls the target ball in 3D using the keys W, S, A, D, Z, X following the standard 

convention for keyboard interfaces for games (where the keys W and S control forward 

and backward movement and keys A and D control left and right movement of the player. 

We added keys Z and X control near and far movements). As shown in Figure 24A, the 

user controls the UP and Down movement of the target ball with the keys W and S, Right 

and Left movements with keys A and D, near and far movements with keys Z and X. 

Figure 24A shows the direction control for the target ball, whereas Figure 24B, shows the 

camera controls used to move the camera around the robot, KeyUP and KeyDown move 

the camera in a vertical direction, LeftKey and RightKey move the camera in a horizontal 

direction. The user can also move the camera across Z axis by using the PageUP and 

PageDown keys. The keyboard interface makes use of the Inverse Kinematics module to 

obtain the joint angles automatically based on the target ball movements. 
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Figure 24 : (A) the directional keys (B) The camera control keys 

The Joystick Interface + Forward Kinematics: Unlike the keyboard or the depth camera 

interface, the joystick module (Figure 25) uses forward kinematics, in which the user 

needs to control the robot by selecting a joint and then applying rotation. We chose 

forward kinematics for the joystick interface, because it is common practice when 

controlling most mechanical devices and simulators such as GRI Simlations Inc’s 

manipulator trainer also use forward kinematics when using a joystick controller and we 

wanted to compare the inverse kinematics based approach with it, having it represent the 

baseline or control for the experiment. The direction X controls the rotation of the robot 

around its base around Y axis. The direction Y controls the rotation of the joints 1, 2 and 

3. When the joystick is moved forward in Y direction (as shown in Figure 25) the 

rotations are closing the robot arm and when the joystick is moved towards the back the 

rotations are opening the robotic arm. The joystick interface was designed to follow the 

human finger analogy, which can be described as, when the root joint (joint 1 of the 

robot, see Figure 21) has reached its angular limit the next joint starts to rotate 

automatically. For instance, if a user selected joint number 1 and rotated it up to its 

angular limit, then the control will be transferred to joint number 2 and similarly when 
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joint number 2 has reached its limit, joint 3 gets selected automatically. This goes until all 

the limbs are stretched and the robot arm looks like a one straight inclined limb. If a user 

wants to control individual joints apart from the finger analogy, then the user needs to 

select a joint using the numbered keys 1 to 3 as shown in Figure 25, and then move the 

joystick across the Y direction (Figure 25) to obtain the desired rotation. The user can 

also pick and drop objects using the joystick button (4) as a toggle button. 

 

 

 

 

 

 

 

 

 

The Depth camera interface + Inverse Kinematics: As discussed in section 3.2, hand 

driven commands are used to move the target ball in 3D as shown in Figure 26.  Figure 

26 shows the hand skeleton in the right cell of the input space. The user moves the hand 

in up, down, right, left, near, far directions to control the target ball. The Inverse 

kinematics module calculates the angles based on the target position and applies it to the 

robot arm simulator, as previously explained in Section 3.3. 

Figure 25: Extreme 3D Joystick by Logitech™. 
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3.6 Other Control Approaches. 

Before finalizing the depth-camera interface mentioned above we tried the following 

methods to control the robot simulator. Initially, we wanted to design the interface in such 

a way that the target ball would follow the user’s hand directions continuously instead of 

the grid based approach mentioned in section 3.2. To implement this method we need to 

solve two important problems. Firstly, as the depth-camera returns 35 frames per second, 

even a minute change in the hand position will displace the target ball, because of that the 

target ball would flicker, which causes vibrations in the robot arm.  To avoid this 

vibration of the robotic arm we needed to discard the small changes in the hand position 

to get a smooth movement of the target ball.  Secondly, to control the end-effector and to 

stop and start the motion of the target ball gesture commands were needed.  

    To solve the first problem, a method was implemented in which the hand data was 

filtered to remove any noise. Also a sliding window buffer was implemented and at any 

given instant the coordinates would be the average of the previous n coordinates. The size 

Figure 26: The user’s hand skeleton view and the input space 
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of n could range from 1 to 10. As shown in Figure 27, the buffer stores n coordinates and 

keeps on popping the oldest coordinate out as soon as we get a new coordinate. 

 

Figure 27 : Buffer implementation to average the past n coordinates 

The buffer method improved the motion of the target ball, which resolved the vibration 

problem of the simulator. The next step was to design a gestural interface which can 

control the robot. The gestures for “Stop”, “Start”, “Left”, “Right”, “Pick” and “Drop” 

were needed to be implemented. To implement these gestures hidden Markov models 

were used[97][98] as described below. 

3.6.1 Hidden Markov Models 

A Hidden Markov model (HMM) is a statistical Markov model, and are the simplest case 

of a dynamic Bayesian network (DBN) [99]. HMM’s are widely used for gesture 

recognition[100] and speech recognition[99]. A hidden Markov Model could be described 

as a collection of states that are connected by transitions from one state to another state 

with a unique transition probability. Each state in a HMM has two sets of probabilities 

associated with it: a transition probability and an emission or output probability. 

A simple HMM can be described as shown in equation 14: 

                                                      𝜆 = (𝐴, 𝐵, 𝜋)                                     (14) 



49 

 

 

     If N is the number of states and  M is the number of distinct observation symbols per 

state,  A is the NxN state transition probability distribution, represented by the matrix 

A={aij}, B is the NxM observation symbol probability distribution and can be represented 

by the matrix B={bj(k)} and 𝜋 is the initial probability distribution.  

There are three problems associated with HMMs: 

a) Evaluation: The Evaluation problem is, given a HMM and a sequence of observations, 

evaluate the probability of the given output sequence. The Forward algorithm was used to 

solve this problem. The Forward algorithm [99] looks at the sequence of observations 

and calculates the probability that a sequence of states might have caused the 

observations.  

b) Decoding: The second problem is, given an output sequence, calculate the probability 

of the most likely sequence of states. This problem can be easily solved by the famous 

Viterbi algorithm [101]. This is how we identify what gesture the user must have had 

made. 

c) Learning:  

HMM is used for many things, among them as a training based model, which means it 

needs training data to make predictions. To calculate the HMM parameters (A,B,π), the 

HMM needs to be trained using training data. For this research, 15 instances of a 

particular gesture were recorded and added to the gesture database. This process is 

scalable, which means if a new gesture needs to be added then, just the training data 

needs to be entered in gesture vocabulary.  After obtaining the training data, Baum-Welch 

algorithm [102] was used to obtain the HMM parameters. 
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     The HMM  was trained on “Left”, “Right”, “Stop”, “Start” and “Circle” gesture 

commands. However, at the end HMM based gesture recognition  was not used to control 

the robotic arm,  different users draw gestures at a different speeds, which produces 

inaccurate results as the clustering algorithm (K-means) makes inconsistent clusters for 

the same gesture and because of that, the accuracy of gesture inference was low. 

Furthermore, controlling the entire robot arm with just gestures is a complex and 

unintuitive control interface for two reasons; first, it would need a lot of training for users 

to make the gestures correctly. Second, the users might not be able to make a gesture in 

time to control the robot. E.g. if the robot has been told to go left to  reach to an object 

and once the end-effector has reached near the object the user fails to issue a “stop” 

gesture. This might lead to frustration and the user might not finish the task. Considering 

all the issues mentioned above, the control module discussed in sections 3.1 and 3.2 were 

implemented. 

3.7 Summary  

This chapter discussed the modules of the system presented in this research. The system 

consists of four important modules, which are the user input processing module, the hand 

driven command module, the inverse kinematics module and the robot simulator module. 

The user input processing module captures the user input from the depth-camera and 

passes it to the hand driven command module, where based on the user input the target 

ball coordinates are obtained. The target ball coordinates are passed to inverse kinematics 

module where the joint angles for the robot are calculated, which takes the robot to the 

target position. The robot simulator module applies the joint angles calculated through the 
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inverse kinematics module. The user can also control the end-effector of the robot to pick 

or drop an object. 

The chapter also discusses the three interfaces which can control the robot simulator. The 

three devices are keyboard, joystick and the depth-camera. The keyboard and the depth-

camera interface use inverse kinematics to control the robot, whereas the joystick 

interface uses forward kinematics. The approaches which were unsuccessful and he 

reasons behind it are also discussed. 
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Chapter 4 

System Validation 

4.1 Purpose 

User studies are an important part of any user oriented research field such as human 

computer interaction, healthcare, medicine, or information systems. The researchers can 

verify their hypotheses and make comparisons between  different systems by conducting 

a user study [103]. In the last few decades, several methods have been proposed for robot 

manipulation that make the human robot interaction easy and intuitive [6, 16, 17, 18, 20]; 

therefore it is an essential and standard practice to compare the proposed manipulation 

method in this research with existing manipulation techniques.  

    The design and execution of the user-centered evaluation of the presented manipulation 

technique is a difficult process because of the potential complexity of the tasks. Also, the 

users need to understand how to use or control the robot arm simulator in detail before 

they can proceed with the tasks. To compare the proposed manipulation technique with 

other commonly used manipulation techniques such as keyboard manipulation and 

joystick based manipulation, we designed two tasks. The complexity of the tasks was 

carefully chosen as the participants would have to perform the task in limited time in a 

controlled environment and without prior training.  
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4.2  Hypotheses   

Based on the literature survey and understanding of the existing robot manipulation 

techniques the following hypotheses were proposed. 

 

H 1:  The keyboard based input method is the easiest to learn. 

  The keyboard based input uses a key mapping convention that is very similar to a 

gaming environment. We used the keys W, A, S, D, Z and X keys for 3D motion control 

of the target ball as these keys are widely used in gaming. We used the arrow keys for 

moving the camera around the scene. Considering many of the users may have had some 

experience using keyboard to either play a game or to perform computer-based tasks, we 

formulated the hypothesis that it will be the easiest input method to learn followed by the 

joystick and the depth-camera based input method. 

 

H2: The keyboard and the depth-camera based input methods will be easier to use when 

compared to the joystick based input.  

  As the keyboard and the depth-camera based input methods are powered by inverse 

kinematics, we hypothesized that the keyboard and the depth-camera based input method 

will be easy to use as the user just has to control the target ball in a Cartesian coordinate 

based frame. On the other hand, the joystick based input method is driven by forward 

kinematics so the user has to perform the manipulation by rotating the joints of the robot. 
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H3: Participants will find that depth-camera based input method is not as ergonomic as 

the other two interfaces.  

    As the depth camera is placed in a third-person perspective, i.e. the camera is mounted 

on top of the desktop monitor, the user has to lift his/her hand in front of the camera when 

interacting with the robot arm simulator and that might cause discomfort to the user when 

the depth camera interface is used for  longer duration.  

 

H4: Participants will find that the depth-camera based input and the keyboard based 

input methods perform better as compared to the joystick for completing a task. 

   As the user has to control the joints of the robotic arm manually, the joystick will take 

more time to complete the task. Also, learning the joystick may take longer than the 

keyboard based input and the depth-camera based input, which adds to the task 

completion time as well. As mentioned in H2 the depth-camera and the keyboard based 

input are automated, meaning the user is not concerned about controlling the robot, the 

user just controls the target ball in 3D and the inverse kinematics algorithm takes care of 

applying the rotations to the robot arm simulator. 

 

H5 Participants are more likely to prefer the keyboard or the joystick based input method 

as their overall preference.    Based on the fact that the depth-camera is less ergonomic 

when compared to the keyboard and the joystick, we can expect that the participants will 

not prefer the depth-camera based input method for longer periods of time. In addition, 
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the depth camera is a relatively new interaction device for most people, so people might 

prefer to use devices they already use in everyday life. 

 

H6: The users’ will perform better with Keyboard as compared to the depth-camera and 

joystick both. 

Since most of people are familiar with keyboards and perform well using keyboards in 

their daily tasks, it is expected that they would perform better with keyboard than with the 

other devices.   

 

H7: Keyboard will be the most preferred input method. 

Due to keyboards easy operability and the user friendliness, the participants will prefer 

the keyboard as the overall preferred input method. 

 

H8: Participants will find that they perform better with the depth-camera based input 

after training and practice. 

The depth-camera is the newest and least common way of interaction with a computer. It 

is very likely that for most of the participants the depth-camera will be a new input 

device. Therefore, we expect that there would be a learning effect with depth-camera and 

participants will get better with depth-camera interface after completing some iterations 

of the task. 
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H9:  Participants will find the joystick most useful for completing a task. 

Although we hypothesized that keyboard would be the most preferred input method 

because it is easy to learn and use. Participants might find a joystick more useful for the 

manipulation tasks. The reason for that could be that the joystick is a more common way 

of robot manipulation as compared to the keyboard and depth-camera. 

  

H 10:  Participants will find out that their performance improves as they complete more 

iterations of the same task across the input devices. 

    The participants will be given different order of inputs to complete the task. For 

instance, some users might begin with depth-camera then move to keyboard and end the 

experiment with joystick. We expect that the device which was used at the 3rd place will 

perform better as the user will be familiar with the task by then.   

 

H 11: Participants will prefer the depth-camera interface over the joystick interface. 

   As the depth-camera interface works on inverse kinematics and is hypothesized to be 

easier to learn as compared to the joystick interface which works on forward kinematics, 

we expect that the users will prefer the depth-camera interface over the joystick interface.  

4.3 Methodology 

The user study was designed as a within subject [104] study to compare the three input 

methods (i.e. keyboard, joystick, and depth-camera). To keep the experiment unbiased 

and unadulterated for every participant, we asked each participant to start with a 
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randomly picked input method, with respect to input order, to perform a task, e.g. user A 

starts with keyboard then proceeds to depth-camera and ends with joystick whereas the 

user B starts with joystick then proceeds to depth-camera and ends with keyboard 

interface. 

4.4 User Selection 

Posters were put around the university to advertise the need for participants for this 

experiment. We received interested participants from engineering, science, medicine and 

bio chemistry fields. 18 users were recruited to perform this experiment. The users were 

divided in six groups, and users were assigned evenly to each of these groups. Each group 

follows a different order of input methods which the user uses to complete the task. Table 

1 shows the 6 groups and the order of input methods. Each input method was assigned a 

number as follows. 

 

                                   Keyboard=1, Depth-Camera =2, Joystick= 3 

Group Input method order 

1 1,2,3 

2 1,3,2 

3 2,1,3 

4 2,3,1 

5 3,1,2 

6 3,2,1 
 

Table 1: Group numbers and the input order 
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As a result, 3 participants were recruited for each group. The users were randomly put in 

a group. The table below shows the 18 users with randomized group number and order 

number.  

 

No Random_Group Order_Input 

1 1 1,2,3 

2 6 3,2,1 

3 5 3,1,2 

4 3 2,1,3 

5 4 2,3,1 

6 2 1,3,2 

7 5 3,1,2 

8 3 2,1,3 

9 6 3,2,1 

10 4 2,3,1 

11 1 1,2,3 

12 2 1,3,2 

13 3 2,1,3 

14 2 1,3,2 

15 4 2,3,1 

16 6 3,2,1 

17 5 3,1,2 

18 1 1,2,3 

 

Table 2: User ID, Group numbers and the input order. 

The users IDs were assigned to the users as arrived and when they were recruited. Each 

user was asked to sign a consent form before proceeding to the experiment. The consent 

form had the basic introduction of the research topic and can be found in Appendix A. 
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4.5 Experimental Tasks 

  To validate the proposed robotic arm manipulation solution, two tasks were developed 

in which the user was required to interact with the robot arm simulator using each input 

method. The tasks required the user to have an understanding of how to control the 

simulator. Training and a live demonstration was provided for each input method prior to 

starting a task.  

Task 1: This task was a selection/picking task, in this task the users were just expected to 

reach the object and grab it. Depending on which input method the user was using to 

interact with the simulator, there were different commands to pick/grab an object, which 

are explained in Chapter 3. As soon as the user starts the experiment and selects the task 

1, an object (cone, sphere or cube) is randomly generated and placed on the floor and the 

user is expected to control the robot so as to grab the object. The system records the time 

from the instant the object was generated to the instant it was grabbed and writes this 

information in a text file. As soon as the user grabs the object, the iteration is completed 

and the robot is set to an initial configuration. There were 10 iterations in this task. At the 

start of each iteration an object is randomly generated within the reach of the robot. 

Figure 28: Task 1 for user study. 
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Figure 28 shows the setup for Task 1.  The user just needs to reach the cone and pick it 

and the task is completed.  

Task 2: In this task the user is expected to grab the objects and drop them in a bin. As 

shown in Figure 29a the user grabs the object (green colored cube as shown in Figure 

29a) and places it in the bin. As soon as the user grabs the cube, the end-effector turns 

blue indicating an object has been grabbed, and then the user can move the arm towards 

the bin. If an object can be dropped into the bin, the color of the bin changes red as 

showed in Figure 29b. As soon as an object is dropped in the bin the robot is configured 

at its original resting position and a random object is generated again. There will be 10 

repetitions of this task. The system notes the time since an object was generated, until it 

was dropped in the bin. 

4.6 Results from the User’s Feedback 

After the experiment we gathered the data from all 18 users and performed some 

statistical analysis. After finishing the experiment each user was asked to answer a 

Figure 29a: Object is grabbed when end-

effector is blue. 

 

Figure 29b: Object can be dropped when 

the bin turns red. 
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questionnaire which had 17 questions in total with 1 open ended question. Appendix B 

presents the questionnaire in detail. 

The following section presents the findings from the user’s answers to the questionnaire. 

We will also discuss the answers to each question from the questionnaire in brief. 

4.6.1 User Familiarity with Input Devices: 

Questions 1 to 3 were designed to ask about the familiarity of the users with each input 

device. Figure 30 shows the familiarity of each user with the use of each input device to 

perform a manipulation task. 

 

Figure 30: Familiarity of users with each input device. 

Figure 30 shows that the users were most unfamiliar with the depth-camera and most 

familiar with joystick and keyboard. As shown in Figure 30, 14 (77.8%) participants said 

that they were familiar with keyboard and 13 (72.22%) participants said that they were 

familiar with joystick. The familiarity for keyboard and the joystick is almost equal, 

however, only 5 out of 18 (27.78%) participants said that they were familiar with the 

depth-camera and 9 participants (50%) said that they were unfamiliar with depth-camera, 

which indicates that participants were most unfamiliar with depth-camera. 
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4.6.2 Ease of Learning 

Question 4 (Q4) in the questionnaire was “Rate each input method for ease of learning. 

Was the operation of the input method easy to learn?”  

Figure 31 shows the user perception about ease of learning of each input method. 14 

(77.78%) participants strongly agreed that the keyboard method was easy to learn, 12 

(66.66%) participants strongly agreed that the joystick method was easy to learn and 15 

(83.33%) participants strongly agreed that the depth-camera method was easy to learn. 

 

Figure 31: User responses to ease of learning. 

From Figure 31 we can see that almost same number of users strongly agreed for each 

input method being easy to learn. However, 4 (22%) participants said that the joystick 

was hard to learn, whereas just 1 (5%) of the participants said that keyboard or depth-

camera was hard to learn. It is interesting to note that users found the depth-sensing 

camera easy to learn, as it was least familiar device to users. The result presented above 

suggests that hypothesis H 1 which states that the keyboard is the easiest method to learn 

is not true.  However, as shown in Figure 31, in general, users found all the input devices 

easy to learn.  
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4.6.3 User Perception about Performance. 

Question 5 (Q5) in the questionnaire was “Rate each input based on performance. Did the 

input perform appropriately?” 

The Figure 32 shown below shows the user perception on performance of each input 

device. We expected that the users will report that the keyboard performs appropriately 

the most followed by the depth-camera and then the joystick. However, as the Figure 32 

shows 16 (88.89%) participants strongly agreed that the keyboard performs appropriately 

and 14 (77.78%) participants strongly agreed that joystick performs appropriately, 

whereas 17 (94.45%) out of 18 participants strongly agreed depth-camera performs 

appropriately.  

 

Figure 32: User perception of performance for each input device. 

The overall impression of the users is that all methods performed appropriately.  

4.6.4 Ease of Use 

Question 6 (Q6) in the questionnaire was “Rate each input based on ease of use. Was the 

input easy to use?” 
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Figure 33 shows the users’ response to Q6. We expected that the user will report the 

keyboard is the easiest to use and the depth camera will be hardest to use. From the 

results shown in Figure 33, we gathered that 4 (22.22%) participants perceived that 

joystick is slightly harder to use, whereas none of the participants said that the depth-

camera was hard to use and just one user said that keyboard is hard to use. On the other 

hand 14 (77.78%) participants said that the keyboard is easy to use, 12 (66.66%) 

participants said joystick is easy to use and 17 (94.4%) participants said that they found 

depth-camera easy to use. 

 

Figure 33: Ease of use for each input device. 

This result tends to support our hypothesis H2, which stated that the users will find that 

depth-camera based input method and the keyboard based input method will be 

comparatively easier to use than the joystick, but again, this is only a trend that is not 

statistically significant. 

4.6.5 Ergonomics 

Question 7 (Q7) in the questionnaire was “Rate each input for ergonomics. Was the input 

comfortable to operate?” 
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We expected that the users will rate keyboard and the joystick higher than the depth-

camera in ergonomics. The Figure 34 shows the user perception of ergonomics for each 

input. The keyboard and joystick was rated equal in ergonomics, 13 (72.22%) users 

strongly agreed that the keyboard and joystick are ergonomic interfaces. 

 

Figure 34: Ergonomics rating of each input device 

The camera was rated lowest in ergonomics, and only 7 (38.89%) participants strongly 

agreed that the camera was ergonomic to use, and 7 (38.89%) participants disagreed that 

the camera was an ergonomic interface and 4 (22.22%) participants were neutral about 

this question. We believe that the reason for that was the camera position. The camera 

was mounted on top of the desktop monitor and the users had to lift their hand to control 

the target ball and to issue gesture commands to pick and drop and object. After using the 

depth-camera interface for a couple of iterations the hand starts to hurt. Many participants 

reported this. This result seems to confirm our hypothesis H3 which stated that users will 

report that the depth-camera interface is not as ergonomic as the keyboard and the 

joystick interface. 
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4.6.6 Usefulness of an Input Method 

Question 8 (Q8) in the questionnaire was “Rate each input for its usefulness. Is the input 

useful for the given tasks?” 

This question asks the users about their perception of how useful each input device was 

for performing the given tasks. Figure 35 shows the user responses for Q8. 11 (61.11%) 

participants said that they found keyboard and joystick equally useful for completing both 

tasks.  Whereas slightly more number of participants, 16 (88.88%), said that they found 

the depth-camera to be the most useful for completing both tasks. It is interesting to see 

that for depth-camera, slightly less number of participants (just 2 participants, as 

compared to 6 participants for keyboard or 5 participants for joystick), were either neutral 

or disagreed that it was useful for the given tasks. This result tends to reject our 

hypothesis H9 which states that users will find joystick to be the most useful for 

performing the tasks. 

 

Figure 35: Usefulness rating of each input method 
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4.6.7 Input Preference for a Task 

Questions 9 and 10 (Q9 and Q10) in the questionnaire were “Which input type is best 

suited for Task 1/ Task2? 

Figure 36 shows the user responses for both Task 1 and Task 2. According to the user 

perception, the keyboard and the depth-camera was the most preferred input devices for 

Task 1 and Task 2 both. For Task 1, 7 (39%) participants strongly agreed that the 

keyboard is best suited input method for it, 8 (44%) participants strongly agreed that the 

depth-camera is the best suited whereas just 3 (17%) participants said that the joystick is 

the best suited input method. Similarly for Task 2, 7 (39%) participants said that the 

keyboard is the best suited input method and 9 (50%) participants reported that depth-

camera is the best method for it, whereas just 2 (11%) participants were in favor of 

joystick.  

 

Figure 36: Input preference for each task. 
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for a particular task. Additionally, more participants perceived keyboard and the depth-

camera as the preferred input method for both tasks as compared to joystick which 

supports the hypothesis H4.  

4.6.8 Training Time for Input Devices 

Question 11 (Q11) in the questionnaire was “Which input method requires least amount 

of training?” 

The user responses are shown below in Figure 37. 9 participants (50%) believed that 

keyboard takes the least amount of time; the depth-camera was rated second in training 

time, 6 (33%) participants said that the depth-camera requires the least amount of 

training. The joystick was rated lowest as only 3 (17%) participants said that joystick  

Figure 37: User responses for least amount of training time. 

requires the least amount of training. The reason for that could be the manual control of 

the joystick, because the joystick was controlled using forward kinematics, and the user is 

expected to control the joint angles to reach the target position. From this result we can 

conclude that according to the participants the keyboard takes less time to train as 

compared to the joystick and the depth camera which supports the hypothesis H 1. 
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4.6.9 Perception of Performance  

Question 12 (Q12) in the questionnaire was “Which input method performs best after 

training & practice?” 

The user responses to Q12 are shown in Figure 38. 11 (61%) participants reported that the 

depth-camera performs best, 5 (28%) participants reported that keyboard performs best 

and only 2 (11%) participants chose the joystick as best performer after training and 

practice. This result tends to support our hypothesis H8, which states that the users will 

report that the depth camera performs better. 

 

Figure 38: Users’ perception of performance . 
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Figure 39: Users’ response for selecting depth-camera over joystick 

From the results we can conclude that most users preferred depth-camera interface over 

joystick which supports hypothesis H11. 

 

Question 14 (Q14) in the questionnaire was “Would you prefer to use the depth camera 

interface over keyboard? “ 

Figure 40 shows the response to Q14. 11 (61%) participants strongly agreed that they 

would prefer the depth-camera interface over the keyboard interface; only 4 (22%) 

participants disagreed with it, whereas 3 (17) % participants had a neutral opinion about 

it.  This result rejects our hypothesis H 7, which says that the keyboard will be the most 

preferred input method amongst all three. However as the sample size is small this result 

is not statistically significant. 
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Figure 40: Users’ response for selecting depth-camera over keyboard. 

 

Question 15 (Q15) in the questionnaire was “Would you prefer to use the joystick 

interface over keyboard?” 

   Figure 41 shows the users response to Q15. 7 (39%) participants strongly agreed that 

they would prefer the joystick over the keyboard, 6 (33%) participants disagree with it 

and 5 (28%) participants had a neutral opinion about it. This result is inconclusive as 

almost same numbers of participants agreed, disagreed and were neutral about it, which 

rejects our hypothesis H 7. However as the sample size is small, this result is not 

statistically significant. 
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Figure 41: Users’ response for selecting joystick over keyboard 

4.6.11 Overall Input Preference 

Question 16 (Q16) in the questionnaire was “Which input type would you prefer overall?” 

Figure 42 shows the users response to Q16. 9 (50%) participants responded that they 

would prefer the depth-camera based input method over keyboard and the joystick based 

input methods. The second most preferred option was the keyboard based input method, 

where 7 (39%) participants said that they preferred the keyboard above all. 

 

Figure 42: Overall input preference. 

The least preferred option is the joystick based input method, where just 2 (11%) 

participants reported that they prefer the joystick based input method. The result tends to 

7, 39% 

5, 28% 

6, 33% Strongly Agree

Neutral

Disagree

2, 
11
% 

7, 39% 

9, 50% 

Joystick Keyboard Camera



73 

 

 

reject the hypothesis H7, in which we stated that keyboard would be the most preferred 

input method. In addition, it also rejects the hypothesis H5 which stated that the users will 

prefer either the keyboard or the joystick based input method as the depth-camera is not 

ergonomic to use. 

4.6.12 Unstructured User Feedback 

The question number 16 in Appendix B asked the users to write their comments about the 

system as a whole. The questions were designed to gather suggestions and critical 

remarks. This section talks about the most common remarks made by the users.  

1. Depth camera position: Many users reported that the camera position plays an 

important role in overall performance of the depth-camera based interface. The depth-

camera was mounted on top of the desktop monitor and for many users that was not a 

convenient position. Participants reported that instead of the mounting the depth-

camera on top of the monitor the depth-camera should be kept beside the keyboard on 

the same plane as keyboard facing upwards so that the user does not have to lift their 

hand too high to interact with camera. Also, some users said that there should be a 

support for the elbow if the camera was to be mounted on top of the desktop monitor.  

 

2. Keyboard control keys: Some users said that the keyboard control keys should be 

assigned in such a way that only one hand is enough to interact with the simulator. 

Also, instead of using the keys “Z” and “X” for controlling the depth of the ball, a 

user suggested that the keys “W” and “S” make a better match for it. Some 

participants said that keyboard controls are confusing when the user viewpoint or 
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perspective changes i.e. when the camera viewing parameters (direction and 

orientation) are changed.  

 

3. Joystick joints: Some of the users reported that the joystick interface is confusing to 

use as compared to the depth-camera and the keyboard because sometimes it is not 

clear which joint is selected and working in the simulator. The simulator should 

highlight the joint which is selected when the user is manipulating the arm using the 

joystick. 

4.7 Researcher Findings 

. We will briefly discuss some of the findings from the experiments in this section. For 

the joystick interface, we noticed that some users completed both tasks just by using the 

finger analogy feature (mentioned in section 3.5) of the joystick interface, which is 

interesting to see because even though the finger analogy method is simpler (user just 

needs to select and control joint 1 instead of control all 3 joints) it takes longer to 

complete an iteration of a task. However, some users preferred the slow and simpler 

method over the faster but slightly more complex method (select the joint depending on 

the location of the target object).  

   The user can rotate the OpenGL camera around the scene by dragging the mouse left or 

right. We expected that this feature will be used extensively, as it provides a better 

understanding of the target ball’s position. However, many users reported that it is 

confusing to change the camera position in the scene because the user perspective 

changes completely and it is harder for them to control the target ball.  
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4.8 Statistical Analysis 

A balanced study was conducted as mentioned in section 4.4.  A total of 18 participants 

were recruited, and each user performed the experiment with all 3 devices with 10 trials 

per task and one of 6 different input orders was given to a user. Execution time in seconds 

was measured for each iteration. The following table shows the number of observations 

per input, order, trial and input-order combination. 

Total Number of 

observations 

Per Input Per Order Per Trial Per Input-Order 

combination 

540 180 180 54 60 

Table 3: Number of observations 

4.8.1 ANOVA tests 

Two-way ANOVA tests were conducted on both Task 1 and Task 2. There was a 

significant difference in execution times and in variances of Task 1 and Task 2 (obtained 

from Bartlett’s and Shapiro-Wilk tests). Some non-parametric tests were also applied 

along with two-way ANOVA tests. The details of the statistical analysis can be found in 

Appendix C.  

For the following results, the following key was used in order to establish whether a result 

is statistically significant or not. 

p-value Inference 

Less than 0.001 Highly significant 

Less than 0.01 Significant 

Less than 0.5 Borderline 

significant 

Table 4: Key for statistical significance 
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4.8.2 Mean execution time per input 

Table 5 shows the mean execution time per iteration with each input device. To confirm 

whether the difference between the execution times is statistically significant, an ANOVA 

test was conducted and we obtained a p-value of 2e-16 which is much less than 

0.001, which indicated that the difference in execution times of the input devices is 

statistically significant. Similarly, for Task 2 we obtained a p-value of 6.78e-07 which 

means that the difference in the mean execution time as a function of each input device is 

statistically significant.  

 

Input device Keyboard Camera Joystick 

Task 1 17.333 18.083 28.733 

 

Task 2 29.59 30.75 37.98 

Table 5: Mean execution time per input 

Figure 43 shows the mean execution times per trial for each input device for task 1 and 

Figure 44 shows the mean execution times per trial for each device for task 2. As shown 

in Fig. 43 and Fig. 44 the difference between the execution times of depth-camera and 

joystick and keyboard and joystick is significant. However, the depth-camera and the 

keyboard execution times are almost similar. To understand whether the difference 

between the execution times of depth-camera and the keyboard is statistically significant 

we performed the Tukey multiple comparison [105] test on the data.  
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The following table shows the p-values obtained by the comparison test for both Task 1 

and Task 2. 

Comparison pair Task 1 p-value Task 2 p-value 
Depth-camera - keyboard 0.846458 0.7714063 

 

Joystick - Keyboard 0.000000 0.0000025 

 

Joystick – Depth-camera 0.000000 0.0000610 

Table 6: Difference in execution times of input devices. 

As indicated in Table 6, the p-value obtained from the comparison of the depth-camera 

and keyboard is much greater than 0.001, therefore there is no statistically significant 

difference between the execution times of the depth-camera and the keyboard interface. 

However, the comparison between the joystick and the keyboard resulted a p-value of 0. 

for Task 1 and 0.0000025 for Task 2, which means that there is a statistically significant 

difference in the execution times of the joystick and the keyboard. Similarly, for the 

joystick and the depth-camera interface, a p value much less than 0.001 was obtained 

which confirms that there is a statistically significant difference in the execution times of 

the joystick interface and the depth-camera interface. The above mentioned result 

confirms the hypothesis H4 as the depth-camera and the keyboard both performed better 

than the joystick. However, the results rejected the hypothesis H6 as there is no 

significant difference in the execution times of the depth-camera and the keyboard 

providing only statistical support to part of H6, namely that the keyboard would perform 

better than the joystick. 
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Figure 43: Execution time per input for Task 1 
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Figure 44: Execution time per input for Task 2 
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4.8.3 Means of Execution Times by Order. 

The Table 7 shows the mean execution time and the standard deviation of each device in 

different order for Task 1, and Table 8 shows the mean execution time and the standard 

deviation of each device in different order for Task 2. From the tables 7 and 8, it can be 

seen that the keyboard’s mean execution time for 3
rd

 order decreases significantly as 

compared to 1
st
 and the 2

nd
 order. However, for the depth-camera the execution times 

seem to increase with the
 
order; while the joystick’s mean execution times do not change 

significantly by the order. To confirm this behavior Wilcoxon rank sum test [106] was 

conducted and for the keyboard for both tasks a p-value < 0.0200 was obtained, which 

confirms that the keyboard’s execution times for the 3
rd

 order is significantly lower than 

those for the 1
st
 and 2

nd
 order.  For depth-camera, however, the execution times for Task 1 

for the 3
rd

 order were significantly larger than for the 1st order (p-value 0.03) and for 

Task 2 the execution times for the 3
rd

 order were significantly larger than for the 2
nd

 order 

(p-value =0.0088). 

 

Input device 1st 2nd 3rd 

Keyboard 19.4830 ± 11.670 20.350 ± 18.590 12.167 ± 10.540 

Camera 15.933 ± 8.830 

 

17.050 ± 9.860 21.267 ± 15.360 

Joystick 29.867 ± 14.970 27.650 ± 12.370 28.683 ± 11.190 

                           Table 7: Mean execution time and standard deviation of each input device at different 

order for Task 1 
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                           Table 8: Mean execution time and standard deviation of each input device at different 

order for Task 2 

Figure 45 and Figure 46 show the graphical representation of the execution times at 

different order per input device for Task 1 and Task 2 respectively. In case of the 

keyboard the execution time is significantly less when it was used at 3
rd

 place. This is 

same for both Task 1 and Task 2. However, for the joystick there is not a significant 

difference in execution time by the order, for both Task 1 and Task 2. But the depth 

camera behaves differently than both keyboard and the joystick. The depth-camera 

execution times increases by the order, i.e. depth camera was slowest when it was used at 

the third place. The Figure 45 and Figure 46 both confirm the same behavior. The results 

discussed above reject  hypothesis H 10 as the users' performance did not improve with 

the order across input devices; however, the order did affect the execution times of two of 

the input devices (keyboard's execution times improve and those of the camera became 

slightly worse). 

 

 

 

 

Input device 1st 2nd 3rd 

Keyboard 32.23 ± 21.76 30.70 ± 15.79 25.85 ± 13.53 

Camera 29.82 ± 9.89 26.98 ± 10.33 35.45 ± 17.46 

Joystick 39.60 ± 16.51 37.47 ± 21.61 36.88 ± 14.17 
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Figure 45: Mean execution time of each input device at different order for Task 1 
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Figure 46: Mean execution time of each input device at different order for Task 2 

 

Figures 47 and 48 show the execution times sorted by input order and input device.  In 

Figures 47 and 48, the first digit showing  1 is the keyboard (shown in blue), 2 is the 

depth-camera (yellow) and 3 is for the joystick (green). For example, 1.1 denotes input 

1(which is keyboard) and order 1. Similarly, the orders for all inputs are shown in both 

figures. From both figures it is clearly evident that the keyboard execution times a 
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significantly lower for 3
rd

 order as compared to 1
st
 and 2

nd
 order.  But for depth-camera 

the execution times are higher for 3
rd

 order as compared to 1
st
 and 2

nd
 order. There was no 

significant change in the execution times for the joystick as the p-value obtained was 

higher than 0.05.  

 

Figure 47: Mean execution times of each input sorted by order for Task 1 

 

 



85 

 

 

 

 

 

Figure 48: Mean execution times of each input sorted by order for Task 2 
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4.8.4 Learning effect  

The following plots show the learning effect with each device over the 10 trials. The 

execution time for each trial for each input was analyzed and we found that the depth-

camera has the clearest learning effect amongst all the input devices.  For Task 1 we 

obtained a p-value of 9e-04 (Fig. 49) using paired Wilcoxon rank sum test which 

confirms that the learning effect is highly significant in case of depth-camera. 

 

Figure 49: Learning effect for each input device for Task 1 
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The joystick also shows a significant (p-value < 0.05) learning effect, however not as 

clear as the depth-camera’s. The keyboard on the other hand doesn’t have a significant (p-

value > 0.05) learning effect. From Task 2 results (Fig. 50) also it is confirmed that the 

depth-camera has a significant learning effect (p-value < 0.05) over the trials. However, 

the keyboard and the joystick interface doesn’t show a significant learning (p –value > 

0.05) curve for Task 2. The above mentioned result is in accordance with user perceptions 

as predicted in hypothesis H8, which states that the participants will find that the depth-

camera based input will perform better. 
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Figure 50: Learning effect for each input device for Task 2 
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4.9  Summary of User Feedback and Statistical Analysis 

In this section we summarize the user feedback and the statistical analysis, and how that 

relates to our hypotheses.  

 The hypothesis H1, which stated that the keyboard based input would be the 

easiest to learn, was rejected by the user feedback as all three devices were rated 

almost equally. However, as the results showed that each input was rated 

comparably in ease of learning by the users, we can say in general all the input 

methods were considered to be easy to learn.  

 The hypothesis H2, which stated that the keyboard and the depth-camera based 

input methods will be easier to use as compared to joystick, was not clearly 

supported by the users’ feedback, as the users found all the input devices were 

easy to use, but the depth-camera and the keyboard were rated slightly higher than 

the joystick.  

 The hypothesis H3, which stated that the depth-camera based input method is not 

as ergonomic as the other two methods, was supported by the results, many 

participants said that the depth-camera was inconvenient to use because of its 

position. The keyboard and the joystick were rated equal in ergonomics ratings.  

 The hypothesis H4, which stated that the users will perceive that the depth-camera 

based input and the keyboard based input method perform better than the joystick 

based method, was supported by the users’ responses, and the statistical analysis 

mentioned in section 4.8 shows that the keyboard and the depth-camera based 

input methods performed significantly better than the joystick.  



90 

 

 

 The hypothesis H5, which stated that the participants are more likely to prefer the 

keyboard or the joystick based input method as their overall preference for an 

input method, was rejected by users’ feedback as most of the users preferred the 

depth-camera based input over both the keyboard and the joystick both.  

 The hypothesis H6, which stated that users of the keyboard will perform better 

than the users of the depth-camera and the joystick both, was rejected by the 

statistical analysis, as we found out that the keyboard and the depth-sensing 

camera performed equally. Only part of H6 was confirmed. This is the part that 

suggested that the keyboard would perform better than the joystick..  

 The hypothesis H7, which stated that keyboard will be the most preferred input 

method, was rejected by the user feedback, as according to the users the depth-

camera was the most preferred input method. Keyboard was the second most 

preferred input method. 

 The hypothesis H8, which stated that the depth-camera based input will perform 

better, was supported by the user feedback as many participants said that they 

found the depth camera to be performing better. Also, from statistical analysis, we 

found out that the camera has a steep learning effect out of all the input methods, 

which confirms hypothesis H8.  

 The hypothesis H9, which stated the participants will find the joystick to be the 

most useful input method, was rejected by the user feedback as the users found the 

depth-camera to be the most useful input method to complete the task.  
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 The hypothesis H10, which stated that the users will improve their performance as 

they complete more iterations of the same task across the input devices, was 

rejected by statistical analysis, which indicated that the order of input had a 

significant effect on the performance of the keyboard and the depth-camera based 

input methods. The keyboard execution times were significantly shorter when it 

was used at 3
rd

 place, whereas the depth-camera execution times were higher for 

3
rd

 order and lower when the depth-camera was used at the 1
st
 place, the reason for 

that could be the fact that the users get tired by the 3
rd

 order and depth-camera 

causes discomfort to users especially when they were already tired.  

 The hypothesis H11, which stated that the participants will prefer the depth-

camera interface over the joystick interface, was supported by the user feedback, 

as most of the users said that they would prefer the depth-camera over joystick 

interface which was interesting to see, because as shown in section 4.6.1, the 

depth-camera was the least familiar method to the users. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

In this thesis a new approach to manipulate a robotic arm is presented. The presented 

approach makes use of an inexpensive depth-camera to capture user input and inverse 

kinematics to define the motion of the robotic arm.  An OpenGL based robot arm 

simulator was developed which could be controlled by a standard keyboard, a gaming 

joystick and a depth-camera. A user study was conducted to test the presented approach. 

18 participants were recruited to participate in the study. The participants were divided in 

6 groups and each group followed a different order of input conditions. The users were 

randomly assigned to a group. Each user was asked to complete two tasks, one a picking 

task and the other a picking and dropping task. Task completion time was recorded at 

every iteration for both tasks. A statistical analysis was performed on the data obtained 

from the experiment. From the experimental results of Chapter 4 the following 

conclusions can be drawn about the presented approach.  

    The execution times for depth-camera and the keyboard were significantly lower than 

the joystick interface.  On an average keyboard execution times are 11.40 seconds shorter 

and camera execution times are 10.65 seconds shorter than the joystick. However, the 

standard deviations for keyboard, depth-camera and joystick are 14.46, 11.87, and 12.9 

for Task 1 (17.79, 13.43, and 17.68 for Task 2), respectively. This shows that there was a 

lot of variation in execution times of each device, since sometimes the random placement 
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of the object were close to the target and sometimes far. Since contemporary manipulators 

use a joystick-like interface to control robots we can say that the two other interfaces 

might offer a faster approach for some manipulation tasks. 

    We concluded that the input order plays an important role in the performance, or 

execution times, of the keyboard and the depth-camera interface. For the keyboard 

interface in 3
rd

 order (i.e. when the keyboard was used after the user had used the depth-

camera and the joystick interface), the execution times was significantly lower as 

compared to the 1
st
 and the 2

nd
 order. This could be explained by the fact that by the third 

time the user is aware of how the system works and hence the keyboard execution times 

are short. However, for the depth-camera the execution times are significantly higher for 

3
rd

 order as compared to the 1
st
 order, which implies that the depth-camera execution 

times are longer over the time which might be due to the fact that by the 3
rd

 order the 

users are tired. From the user feedback which was gathered after the experiment 

(Appendix B), the users reported that the depth-camera was inconvenient to use for longer 

durations because of its position. Also, it was rated low in the ergonomics ratings (38% 

users strongly disagreed that the camera was an ergonomic design, whereas 22% 

responded neutrally) which also explains the longer execution times when users perform 

the tasks using the depth-camera after having used the keyboard and the joystick. 

Therefore, it is important to keep the depth-camera at a convenient position so it doesn’t 

cause discomfort to the user over longer durations. 

    The results in Chapter 4 also showed that there is a significant learning effect in the 

case of the depth-camera as compared to the keyboard and the joystick based interfaces. 
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The average execution time improved from trial number 1 to 10. Also, in the exit 

questionnaire, 61% users reported that the depth-camera performed best whereas 28% 

users reported that the keyboard performed best and just 11% users said that the joystick 

was the one that performed best. The user feedback suggests that the camera has a clear 

learning effect and becomes efficient after training and practice. Hence, we can conclude 

that the depth-camera requires a bit of getting used to and training but after that, the users 

preferred the depth-camera over joystick and keyboard both.  

    50% of the users reported that they would prefer the depth-camera interface over the 

joystick and the keyboard interface, 39% users reported that they would prefer the 

keyboard interface over the depth-camera and the joystick interface, whereas only 11% 

users reported that they would prefer the joystick interface over the depth-camera and the 

keyboard interface.  The reason why the joystick was least preferred could be related to 

the fact that the execution times of the joystick are significantly longer as compared to the 

depth-camera and the keyboard. Also, joystick is the only interface which is operated by 

forward kinematics (user controls the joint and the rotation on its own) so we can 

conclude that the inverse kinematics based approaches were faster as compared to the 

forward kinematics. 

    We can also conclude that there is no preferred input method for a particular task as the 

results from Task 1 and Task 2 are similar for both tasks. The users also reported the 

same in the exit questionnaire.  38.8% of the users said that the keyboard was best suited 

for both the Task 1 and Task 2, 44% users said that the depth-camera was best suited for 

Task 1 and 50% users said that the depth-camera was best suited for Task 2.  Whereas 
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just 16% users responded that the joystick was best suited for task 1, and 11% responded 

that the joystick was best suited for task 2.  This result also shows that the users indicate 

that the depth-camera and the keyboard were the preferred input methods for both tasks. 

5.2 Future Work 

The user comments in the questionnaire provided important feedback about the presented 

approach. A common feedback from the users was about the position of the depth-

camera; the position of the depth-camera plays an important role in overall comfort of the 

users of the depth-camera interface. We would like to explore the possibility placing the 

depth-camera at a more convenient position so the user doesn’t need to lift his/her hand 

too much to interact with the depth-camera interface. In the future, the depth-camera 

could be placed on the same plane as of the keyboard facing upwards which could make 

the depth-camera interface more comfortable to use. Another option is to provide a 

support for the user’s elbow so that it doesn’t cause pain over the long term.  

     The user experience with the joystick interface can be improved by implementing 

colored feedback in the simulator, e.g. the selected joint should change the color after 

joint selection. Similarly, in case of the depth-camera the grid mentioned in Fig. 18 could 

be implemented with a colored feedback, so when a user is in a specific cell, the gird 

shows that appropriately.  

     Currently the implementation is limited to finding the solution in one plane and all the 

joint rotations occur in one plane. In future, the presented method would be extended to 

support not only cylindrical joints but spherical and prismatic joints as well so that a 

solution can be obtained in multiple planes using the inverse kinematics method.  
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    This research mainly focused on the control of the robot simulator to reach a target 

position using the depth-camera and inverse kinematics. However, it does not focus on 

the end-effector module in detail and the randomly generated objects which were used for 

tasks were relatively uniform in shape. However, in the real world the object which may 

need to be manipulated might not be uniform in shape or size. In the future, we would 

like to add an intelligent algorithm to the end-effector control module which will find a 

way to grab the object based on its shape [107], [108]. Also, the possibility of the remote 

operation of the robotic arm can be explored where the operators are manipulating the 

robotic arm using a wireless network or through LAN.  

    The presented approach could also be extended to control more than one manipulator 

robots where the robots can communicate with each other and transfer a load from a point 

to a target position [30, 31]. This could enable the manipulator to perform complex 

manipulation tasks.      

    Finally, the presented approach would be tested in a real world environment, with an 

actual robot arm. 

5.3 Publications from this Research 

Parts of this work were presented as a research article at the OCEANS 2014 conference 

held at St. Johns, NL under the category “Remotely operated vehicles-II” [112]. Posters 

based on this research were presented at the AI/GI/CRV conference held in University of 

Montreal in 2014, where the poster was awarded as the best research poster in HCI 

category [114] and at the Nova Scotia Energy R&D Conference 2014 under the category 

“Seabed Engineering” [113]. 
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Appendix A  

User Study Documentation 

This appendix includes the formal approval received from the Interdisciplinary 

Committee on Ethics in Human Research (ICEHR) for the user evaluation and the 

consent form. 

Informed Consent Form 

Title: Assessment of gesture recognition performance for the operation of a 

simulated robotic arm 

 

Researcher(s): Akhilesh Kumar Mishra  

 Masters Computer Science 

 Department of Computer Science. 

  Akm565@mun.ca 

  

 Supervisor: Dr. Oscar Meruvia-Pastor 

 Department of Computer Science. 

  oscar@mun.ca 

 

You are invited to take part in a research project entitled “Assessment of gesture recognition 

performance for the operation of a simulated robotic arm”. 

 

This form is part of the process of informed consent.  It should give you the basic idea of what the 

research is about and what your participation will involve.  It also describes your right to 

withdraw from the study at any time.  In order to decide whether you wish to participate in this 

research study, you should understand enough about its risks and benefits to be able to make an 

informed decision.  This is the informed consent process.  Take time to read this carefully and to 

understand the information given to you.  Please contact the researcher, Akhilesh Kumar Mishra, 
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if you have any questions about the study or for more information not included here before you 

consent. 

 

It is entirely up to you to decide whether to take part in this research.  If you choose not to take 

part in this research or if you decide to withdraw from the research once it has started, there will 

be no negative consequences for you, now or in the future. 

 

 

Introduction 

As part of my Masters/Honours thesis, I am conducting research under the supervision of Dr. 

Oscar Meruvia-Pastor. The research is funded by RDC (Research & Development Corporation of 

Newfoundland and Labrador) 

 

The idea behind this research is to develop an input interface which is based on depth sensing 

cameras, to control a simulated robotic arm. Current simulators make use of a variety of interfaces 

to control a robotic arm, such as a commercial controller designed to control the robotic arm or 

gaming joysticks. In this research we are adding another interface style to control a robotic arm: 

gesture-base manipulation using depth-sensing cameras, such as Microsoft’s Kinect and Intel’s 

Perceptual Computing camera. 

 

Purpose of study: 

The purpose of this study is to design a gesture based input module to control a robotic arm 

simulator. Existing manipulators for robotic arms such as Titan IV are operated via cabled 

controllers which are relatively expensive. Operators of these controllers require a lot of training 

and experience before they apply their skills in the field. As the operated arm is deployed under 

the ocean, training a user to control the arm is expensive and risky. There are, however, computer 

simulators which are used to train users on particular manipulator arms. However, commercial 

simulators work using forward kinematics and require a high degree of skill from the operator 

requiring extensive training. The proposed method in this research enables the user to operate a 

robotic arm with ease, which requires less training. Also, as the proposed method uses a depth 

sensing camera to capture the user input, the cost of this method is less. 
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What you will do in this study: 

 

The users are expected to complete a placement task using a robotic arm simulator connected to 

one of the three possible operating interfaces: a standard simulation joystick, a standard keyboard 

control method and a gesture-based control method which used the depth sensing camera. 

 

The Task: 

The users will be asked to complete several iterations of a placement task by controlling a 

simulated robotic arm made of 4 joints and a grabber handle at the very end. In the simulator 

screen the users will see a robotic arm and several objects strewn on the floor in the vicinity of the 

robotic arm. The users will be asked to grab an object and place it into a bin using a variety of 

interfaces.  

Upon completion of the tasks, the participants will fill an anonymous feedback form. 

 

To obtain a measure of performance we will gather the task completion times and perform 

statistical analysis of the results. The task completion times will be recorded by the system 

automatically: before each trial starts, the controller of the experiment will set an internal timer 

that will be running until the user completes the placement task.  

 

The participants will be offered $10 for participation in the study as compensation. 

 

Length of time: 

The total amount of time that we expect that each user spends using the simulator is about 50 

minutes, so 15 minutes per condition, plus 5 minutes to complete a task satisfaction survey at the 

end of the session.  

 

Withdrawal from the study: 

Participation is entirely voluntary and participants can withdraw anytime. As for the 

compensation, if the participant withdraws in the stage of the first training session, i.e. before 

starting to try to accomplish the actual tasks from which experimental data will be obtained, no 

compensation will be provided, as this amounts to a conscious decision of not taking part in the 
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experiment. If for any reason, a participant who has started doing a task does not complete it 

because the participant decides to withdraw at that point, full compensation will be provided and 

the data for that particular task will be purged. However, if any of the above mentioned tasks is 

completed by the participant, the data gathered up to that point will remain as part of the study 

and it will be aggregated along with the other data from the other participants and hence it cannot 

be removed from the study. 

 

Possible benefits: 

Students participating in the study will benefit through exposure to the type of experimentation 

needed for validation of scientific studies, so if they will eventually perform their own user 

studies, they will have the experience of having participated as subjects in a prior study.  

 

This research will provide information to the scientific community and the public in general about 

the potential advantages and disadvantages of the use of gesture-based controllers using depth 

cameras for manipulation tasks which are relevant to a wide variety of applications. In particular, 

the study will be relevant to the remote operation of a robotic arm, which is an important task 

where human dexterity and control are necessary to complete a certain task.  

 

Possible risks: 

There is a certain risk that some participants might feel upset or frustrated if they are unable to 

complete the tasks. To reduce the anxiety participants will be assured that they do not need to feel 

an obligation to complete the experiment and that they will be able to move on to the next trial or 

next stage of the experiment if they have failed all the trials under a particular condition and wish 

to continue.  

 

Confidentiality and Storage of Data: 

During this study no information about the identity of participants will be used during the conduct 

of the research or the release of the findings. The only place where the participants’ names or 

identifying information will be recorded is in the informed consent form and in the videos. The 

participants will be assigned sequential ID numbers in the internal computer systems, statistics 

analysis and in the release of the findings. In the case of the video recordings there is likelihood 



111 

 

 

 

that the face of the participants is captured. When distributing the results of the research we may 

show snapshots of the experimental setup, but we will not show the face of any participant and 

will blur any identifying feature in the snapshot. In general, we will not be publishing any 

sequence of video as part of this research.  

 

The participants will fill an anonymous feedback form and the information on the feedback is the 

only thing we need for research. Upon completion of the study the informed consent forms and 

completed surveys will be archived in the office of the Principal Supervisor. These forms will be 

kept for a minimum of five years and may be destroyed after that. Video recordings will be kept 

in a secured computer with password protection in the office of the Principal Supervisor and in a 

secured server of the Department of Computer Science at MUN as a backup. The data will only 

be accessible to the principal investigator and the supervisor.  All data will be retained for a 

minimum of five years, as required by Memorial University policy on Integrity in Scholarly 

Research. 

Anonymity: 

Participant’s identity will be kept anonymous. Also, the feedback form which the participants will 

complete after the experiment will be anonymous. Participants will not be mentioned in the thesis 

or publication without their explicit permission. 

 

Recording of Data: 

To improve our understanding of the limitations of our implementation and inform our 

conclusions about the research we will record the session using a video-camera that will be placed 

such that it should capture both the screen that the participant is looking at and the gestures of the 

participant.  

 

Reporting of Results: 

The results of the user study will be used in the thesis and since the data collected from the 

participants is an anonymous feedback form, there will not be any mention of the personal 

identity of the participants. We will gather the data from the feedback forms and perform 

statistical analysis on it to understand the performance of the gesture-based method as compared 

to a Joystick based manipulation method. 
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Sharing of Results with Participants: 

Upon completion of experiments and thesis submission, the thesis will be available for public 

viewing. The participants will be informed of the availability of the thesis report by email. 

 

Questions: 

You are welcome to ask questions at any time during your participation in this research.  If you 

would like more information about this study,  

Please contact: Akhilesh Kumar Mishra, Email: akm565@mun.ca  

                       Oscar Meruvia-Pastor, Email : Oscar@mun.ca 

 

 

The proposal for this research has been reviewed by the Interdisciplinary Committee on Ethics in 

Human Research and found to be in compliance with Memorial University’s ethics policy.  If you 

have ethical concerns about the research (such as the way you have been treated or your rights as 

a participant), you may contact the Chairperson of the ICEHR at icehr@mun.ca or by telephone at 

709-864-2861. 

Consent: 

Your signature on this form means that: 

 You have read the information about the research. 

 You have been able to ask questions about this study. 

 You are satisfied with the answers to all your questions. 

 You understand what the study is about and what you will be doing. 

 You understand that you are free to withdraw from the study at any time, without having 

to give a reason, and that doing so will not affect you now or in the future.   

 You understand that if the data gathered upon your withdrawal is not complete, i.e. if you 

leave without completing any task, the data gathered up to that point will be purged. 

However, if you complete any one of the tasks, the data will be kept and will not be 

removed from the study. 

If you sign this form, you do not give up your legal rights and do not release the researchers from 

their professional responsibilities. 

mailto:icehr@mun.ca
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Your signature:  

I have read what this study is about and understood the risks and benefits.  I have had adequate 

time to think about this and had the opportunity to ask questions and my questions have been 

answered. 

 

  I agree to participate in the research project understanding the risks and contributions of my 

participation, that my participation is voluntary, and that I may end my participation at any time. 

 I agree to be video-recorded during the experiment.   

 I agree to the use of quotations but do not want my name to be identified in any publications 

resulting from this study. 

 

A copy of this Informed Consent Form has been given to me for my records. 

 

 ______________________________   _____________________________ 

Signature of participant     Date 

Researcher’s Signature: 

I have explained this study to the best of my ability.  I invited questions and gave answers.  I 

believe that the participant fully understands what is involved in being in the study, any potential 

risks of the study and that he or she has freely chosen to be in the study. 

 

 

 ______________________________   _____________________________ 

Signature of Principal Investigator    Date 
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Appendix B  

Exit Questionnaire 

 

1) Rate your familiarity with use of keyboard to manipulate a robotic arm.  

              1                                   2                          3                             4                           5 

    (Very familiar)                                            (Neutral)                                         (Very unfamiliar) 

2) Rate your familiarity with use of joystick to manipulate a robotic arm. 

              1                                   2                          3                             4                           5 

    (Very familiar)                                            (Neutral)                                         (Very unfamiliar) 

3) Rate your familiarity with use of depth camera to manipulate a robotic arm. 

              1                                   2                          3                             4                           5 

    (Very familiar)                                            (Neutral)                                         (Very unfamiliar) 

 

4)  Rate each input method for ease of learning. Was the operation of the input method easy to 

learn?  

a) Joystick   

                1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

b) Keyboard 

          1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

c) Depth Camera 

                 1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 
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5) Rate each input based on performance. Did the input perform appropriately?  

a) Joystick   

                1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

b) Keyboard 

                1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

c) Depth Camera 

                1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

6) Rate each input based on ease of use. Was the input easy to use?  

a) Joystick   

                1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

b) Keyboard 

                1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

c) Depth Camera 

                1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 
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7)  Rate each input for ergonomics. Was the input comfortable to operate?  

a) Joystick   

                1                                2                       3                             4                         5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

b) Keyboard 

           1                                2                           3                             4                          5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

 

c) Depth Camera 

             1                                2                         3                             4                            5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

 

8)  Rate each input for its usefulness. Is the input useful for the given tasks? 

a) Joystick   

             1                                2                         3                             4                            5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

b) Keyboard 

 

             1                                2                         3                             4                            5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

c) Depth Camera 

 

               1                                2                         3                             4                            5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 
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9)  Which input type is best suited for Task 1? 

a) Joystick   

b) Keyboard  

c) Depth Camera  

 

10)      Which input type is best suited for Task 2?  

a) Joystick   

b) Keyboard  

c) Depth Camera  

 

11)      Which input method requires least amount of training? 

a) Joystick   

b) Keyboard  

c) Depth Camera  

 

12)  Which input method performs best after training & practice?   

a)  Joystick   

b) Keyboard  

c) Depth Camera  

 

 

13)  Would you prefer to use the depth camera interface over joystick?  

              1                                2                         3                             4                            5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 
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14) Would you prefer to use the depth camera interface over keyboard? 

              1                                2                         3                             4                            5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

15) Would you prefer to use the joystick interface over keyboard? 

            1                                2                          3                             4                            5 

         (Strongly Disagree)                                    (Neutral)                                       (Strongly Agree) 

 

 

16) Which input type would you prefer overall?  

a) Joystick   

b) Keyboard  

c) Depth Camera  

 

17) Is there anything else you would like to comment on? 

……………………………………………………………………………………………………… 

……………………………………………………………………………………………………… 

……………………………………………………………………………………………………… 

……………………………………………………………………………………………………… 

……………………………………………………………………………………………………… 

……………………………………………………………………………………………………… 

……………………………………………………………………………………………………… 

……………………………………………………………………………………………………… 

……………………………………………………………………………………………………… 

……………………………………………………………………………………………………… 
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Appendix C  

ANOVA Tests and Results 

 

The following statistical analysis is the work of Dr. Lourdes Pena-

Castillo. We would like to thank her for her contribution to data 

analysis. 

 

We have a balanced study with 18 users, 3 input devices, 10 trials per 

user and 6 alternative orderings of the input methods. Execution time in 

seconds was measured for every user per trial. 

 

Number of 

observations 

Per Input Per Order Per Trial Per Input-

Order 

combination 

540 180 180 54 60 

 

 

Data for each of the two tasks was analyzed independently. Statistical 

threshold for significance was set to 0.01. Data was tested for 

homogeneity of variance using the Bartlett's test and for normality 

using the Shapiro-Wilk test.  There was a significant difference in the 

variances, and the distribution of the execution times significantly 

deviated from normality for both tasks. Therefore non-parametric tests 

were applied in addition to two-way ANOVA. 

 

Results task 1 

 

Anova model: Time ~ Input * Order 

Table of means of execution times 

# Grand mean 

# 21.38333  

 

# Input 

# Keyboard   Camera Joystick  

  # 17.333   18.083   28.733  

 

# Order 

   # 1st    2nd    3rd  

# 21.761 21.683 20.706  

 

# Input:Order  

          # Order 

# Input      1st    2nd    3rd    

  # Keyboard 19.483 20.350 12.167 

  # Camera   15.933 17.050 21.267 

  # Joystick 29.867 27.650 28.683 
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# Standard errors for differences of means 

        # Input Order Input:Order 

        # 1.363 1.363       2.361 

# replic.   180   180          60 

 

 

 

ANOVA results 

             # Df Sum Sq Mean Sq F value   Pr(>F)     

# Input         2  14637    7318  43.750  < 2e-16 *** 

# Order         2    125      62   0.372 0.689281     

# Input:Order   4   3398     849   5.078 0.000506 *** 

# Residuals   531  88825     167                      

# --- 

# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Conclusion: The input device has a very significant effect in the 

execution time and there is a significant interaction between Input and 

Order. 

 

# Tukey multiple comparisons of means 

# 95% family-wise confidence level 

# Fit: aov(formula = Time ~ Input * Order, data = t1_r4A) 

# $Input 

                   # diff      lwr      upr    p adj 

# Camera-Keyboard    0.75 -2.45422  3.95422 0.846458 

# Joystick-Keyboard 11.40  8.19578 14.60422 0.000000 *** 

# Joystick-Camera   10.65  7.44578 13.85422 0.000000 *** 

# $Order 

               # diff       lwr      upr     p adj 

# 2nd-1st -0.07777778 -3.281998 3.126443 0.9982072 

# 3rd-1st -1.05555556 -4.259776 2.148665 0.7190090 

# 3rd-2nd -0.97777778 -4.181998 2.226443 0.7534191 

# $`Input:Order` 

                                 # diff          lwr          upr     p 

adj 

# Camera:1st-Keyboard:1st    -3.5500000 -10.90472047   3.80472047 0.8538528 

# Joystick:1st-Keyboard:1st  10.3833333   3.02861286  17.73805381 0.0004487 *** 

# Keyboard:2nd-Keyboard:1st   0.8666667  -6.48805381   8.22138714 0.9999907 

# Camera:2nd-Keyboard:1st    -2.4333333  -9.78805381   4.92138714 0.9828192 

# Joystick:2nd-Keyboard:1st   8.1666667   0.81194619  15.52138714 0.0169584 

# Keyboard:3rd-Keyboard:1st  -7.3166667 -14.67138714   0.03805381 0.0524087 

# Camera:3rd-Keyboard:1st     1.7833333  -5.57138714   9.13805381 0.9979009 

# Joystick:3rd-Keyboard:1st   9.2000000   1.84527953  16.55472047 0.0035058 *** 

# Joystick:1st-Camera:1st    13.9333333   6.57861286  21.28805381 0.0000002 *** 

# Keyboard:2nd-Camera:1st     4.4166667  -2.93805381  11.77138714 0.6345377 

# Camera:2nd-Camera:1st       1.1166667  -6.23805381   8.47138714 0.9999344 

# Joystick:2nd-Camera:1st    11.7166667   4.36194619  19.07138714 0.0000330 *** 

# Keyboard:3rd-Camera:1st    -3.7666667 -11.12138714   3.58805381 0.8073634 

# Camera:3rd-Camera:1st       5.3333333  -2.02138714  12.68805381 0.3694984 

# Joystick:3rd-Camera:1st    12.7500000   5.39527953  20.10472047 0.0000036 *** 

# Keyboard:2nd-Joystick:1st  -9.5166667 -16.87138714  -2.16194619 0.0020740 *** 

# Camera:2nd-Joystick:1st   -12.8166667 -20.17138714  -5.46194619 0.0000031 *** 
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# Joystick:2nd-Joystick:1st  -2.2166667  -9.57138714   5.13805381 0.9906320 

# Keyboard:3rd-Joystick:1st -17.7000000 -25.05472047 -10.34527953 0.0000000 *** 

# Camera:3rd-Joystick:1st    -8.6000000 -15.95472047  -1.24527953 0.0089880 *** 

# Joystick:3rd-Joystick:1st  -1.1833333  -8.53805381   6.17138714 0.9998980 

# Camera:2nd-Keyboard:2nd    -3.3000000 -10.65472047   4.05472047 0.8986274 

# Joystick:2nd-Keyboard:2nd   7.3000000  -0.05472047  14.65472047 0.0534943 

# Keyboard:3rd-Keyboard:2nd  -8.1833333 -15.53805381  -0.82861286 0.0165612 

# Camera:3rd-Keyboard:2nd     0.9166667  -6.43805381   8.27138714 0.9999856 

# Joystick:3rd-Keyboard:2nd   8.3333333   0.97861286  15.68805381 0.0133455 

# Joystick:2nd-Camera:2nd    10.6000000   3.24527953  17.95472047 0.0002997 *** 

# Keyboard:3rd-Camera:2nd    -4.8833333 -12.23805381   2.47138714 0.4964849 

# Camera:3rd-Camera:2nd       4.2166667  -3.13805381  11.57138714 0.6917429 

# Joystick:3rd-Camera:2nd    11.6333333   4.27861286  18.98805381 0.0000392 *** 

# Keyboard:3rd-Joystick:2nd -15.4833333 -22.83805381  -8.12861286 0.0000000 *** 

# Camera:3rd-Joystick:2nd    -6.3833333 -13.73805381   0.97138714 0.1490789 

# Joystick:3rd-Joystick:2nd   1.0333333  -6.32138714   8.38805381 0.9999638 

# Camera:3rd-Keyboard:3rd     9.1000000   1.74527953  16.45472047 0.0041215 *** 

# Joystick:3rd-Keyboard:3rd  16.5166667   9.16194619  23.87138714 0.0000000 *** 

# Joystick:3rd-Camera:3rd     7.4166667   0.06194619  14.77138714 0.0462804 

 

Conclusion: Both camera and keyboard have significantly shorter 

execution times than joystick. On average keyboard execution times are 

11.40 seconds shorter and camera execution times are 10.65 seconds 

shorter than those of joystick. There is no significant difference 

between the execution times of camera and keyboard. 

 

Results non-parametric tests 

 

As the data deviated from normality and violated the assumption of 

homogeneity of variances, a Kruskal-Wallis rank sum test (which is a 

non-parametric test)  of the null that the location parameters of the 

distribution of the execution times are the same for each input device 

was performed. The conclusion is that the execution times per input 

device significantly differ. Execution times are not significantly 

different when grouped based on order  or trial. 

 

# Kruskal-Wallis rank sum test 

# data:  Time by Input 

# Kruskal-Wallis chi-squared = 135.9753, df = 2, p-value < 2.2e-16 

 

 

# #  Kruskal-Wallis rank sum test 

# data:  Time by Order 

# Kruskal-Wallis chi-squared = 1.6793, df = 2, p-value = 0.4319 

 

# #  Kruskal-Wallis rank sum test 

# data:  Time by Trial 

# Kruskal-Wallis chi-squared = 12.4988, df = 9, p-value = 0.1866 

 

 

To account for the effect of order and trial in the execution times, a  

Friedman rank sum test with unreplicated blocked data was performed. 

This test can be used instead of two-way ANOVA when the normality 
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assumption may be violated. The null hypothesis is that apart from the 

effect of order and trial, the location parameter  of the distribution 

of the execution times per input device is the same. Conclusion: 

Execution times per input device significantly differ.  

 

 # Friedman rank sum test 

 

# data:  tmp$x, tmp$Group.1 and tmp$block 

# Friedman chi-squared = 39.4667, df = 2, p-value = 2.691e-09 

 

 

 

Differences in the execution times per input were also tested using a 

Wilcoxon signed rank test of the null that the mean of the differences 

of ranks of the execution times between two samples is different from 

zero. Same conclusion as above; namely, both camera and keyboard have 

highly significant shorter execution times than joystick. 

 

# Pairwise comparisons using paired Wilcoxon rank sum test  

# data:  Time and Input  

         # Keyboard Camera 

# Camera   0.047    -      

# Joystick <2e-16   <2e-16 

# P value adjustment method: BH  

 

 

Differences in the execution times per order for input device were also 

tested using a Wilcoxon signed rank test. Conclusion: Execution times 

for keyboard – 3rd order are significantly shorter than those for 

keyboard in the 1st or 2nd order. Execution times for camera – 3rd order 

are in the threshold of being significantly longer than those for camera 

in the 1st or 2nd order.  

 

## keyboard 

# #  Pairwise comparisons using Wilcoxon rank sum test  

# data:  Time and Order  

    # 1st     2nd     

# 2nd 0.16    -       

# 3rd 8.4e-08 8.2e-06 

# P value adjustment method: BH  

 

#Camera 

# #  Pairwise comparisons using Wilcoxon rank sum test  

# data:  Time and Order  

    # 1st   2nd   

# 2nd 0.299 -     

# 3rd 0.030 0.064 

# P value adjustment method: BH  

 

 

Results task 2 
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Trial was included as a factor for the analysis of task 2 based on the 

interaction plots. 

 

Anova model: Time ~ Input * Order + Trial 

Table of means of execution times 

 

# Grand mean 

          

# 32.77593  

 

# Input 

# Keyboard   Camera Joystick  

# 29.59    30.75    37.98  

# Order 

  # 1st   2nd   3rd  

# 33.88 31.72 32.73  

 

# Trial 

    # 0     1     2     3     4     5     6     7     8     9  

# 35.46 38.04 30.69 38.04 32.59 31.85 33.24 27.83 29.93 30.09  

 

# Input:Order  

          # Order 

# Input      1st   2nd   3rd   

  # Keyboard 32.23 30.70 25.85 

  # Camera   29.82 26.98 35.45 

  # Joystick 39.60 37.47 36.88 

 

# Standard errors for differences of means 

        # Input Order Trial Input:Order 

        # 1.683 1.683 3.073       2.915 

# replic.   180   180    54          60 

 

 

 

ANOVA results 

             # Df Sum Sq Mean Sq F value   Pr(>F)     

# Input         2   7442    3721  14.597 6.78e-07 *** 

# Order         2    423     212   0.830  0.43664     

# Trial         9   5821     647   2.538  0.00742 **  

# Input:Order   4   3384     846   3.319  0.01064 *   

# Residuals   522 133062     255                      

# --- 

# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Conclusion: The input device has a very significant effect in the 

execution time, trial also has a significant effect in the execution 

time, and there is a slightly significant interaction between Input and 

Order (p-value < 0.05). 
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  # Tukey multiple comparisons of means 

    # 95% family-wise confidence level 

 

# Fit: aov(formula = Time ~ Input * Order + Trial, data = t2_r4A) 

 

# $Input 

                      # diff       lwr       upr     p adj 

# Camera-Keyboard   1.155556 -2.800068  5.111179 0.7714063 

# Joystick-Keyboard 8.388889  4.433265 12.344512 0.0000025 *** 

# Joystick-Camera   7.233333  3.277710 11.188957 0.0000610 *** 

 

# $Order 

             # diff       lwr      upr     p adj 

# 2nd-1st -2.166667 -6.122290 1.788957 0.4028919 

# 3rd-1st -1.155556 -5.111179 2.800068 0.7714063 

# 3rd-2nd  1.011111 -2.944512 4.966735 0.8197306 

 

# $Trial 

             # diff        lwr        upr     p adj 

# 1-0  2.574074e+00  -7.189140 12.3372886 0.9979510 

# 2-0 -4.777778e+00 -14.540992  4.9854368 0.8688672 

# 3-0  2.574074e+00  -7.189140 12.3372886 0.9979510 

# 4-0 -2.870370e+00 -12.633585  6.8928442 0.9952892 

# 5-0 -3.611111e+00 -13.374326  6.1521034 0.9758109 

# 6-0 -2.222222e+00 -11.985437  7.5409923 0.9993615 

# 7-0 -7.629630e+00 -17.392844  2.1335849 0.2800093 

# 8-0 -5.537037e+00 -15.300252  4.2261775 0.7338139 

# 9-0 -5.370370e+00 -15.133585  4.3928442 0.7673615 

# 2-1 -7.351852e+00 -17.115066  2.4113627 0.3322877 

# 3-1  2.131628e-14  -9.763215  9.7632145 1.0000000 

# 4-1 -5.444444e+00 -15.207659  4.3187701 0.7526823 

# 5-1 -6.185185e+00 -15.948400  3.5780293 0.5902117 

# 6-1 -4.796296e+00 -14.559511  4.9669182 0.8661692 

# 7-1 -1.020370e+01 -19.966918 -0.4404892 0.0322523 

# 8-1 -8.111111e+00 -17.874326  1.6521034 0.2019091 

# 9-1 -7.944444e+00 -17.707659  1.8187701 0.2270790 

# 3-2  7.351852e+00  -2.411363 17.1150664 0.3322877 

# 4-2  1.907407e+00  -7.855807 11.6706219 0.9998176 

# 5-2  1.166667e+00  -8.596548 10.9298812 0.9999973 

# 6-2  2.555556e+00  -7.207659 12.3187701 0.9980630 

# 7-2 -2.851852e+00 -12.615066  6.9113627 0.9955126 

# 8-2 -7.592593e-01 -10.522474  9.0039553 0.9999999 

# 9-2 -5.925926e-01 -10.355807  9.1706219 1.0000000 

# 4-3 -5.444444e+00 -15.207659  4.3187701 0.7526823 

# 5-3 -6.185185e+00 -15.948400  3.5780293 0.5902117 

# 6-3 -4.796296e+00 -14.559511  4.9669182 0.8661692 

# 7-3 -1.020370e+01 -19.966918 -0.4404892 0.0322523 

# 8-3 -8.111111e+00 -17.874326  1.6521034 0.2019091 

# 9-3 -7.944444e+00 -17.707659  1.8187701 0.2270790 

# 5-4 -7.407407e-01 -10.503955  9.0224738 1.0000000 
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# 6-4  6.481481e-01  -9.115066 10.4113627 1.0000000 

# 7-4 -4.759259e+00 -14.522474  5.0039553 0.8715329 

# 8-4 -2.666667e+00 -12.429881  7.0965479 0.9973070 

# 9-4 -2.500000e+00 -12.263215  7.2632145 0.9983688 

# 6-5  1.388889e+00  -8.374326 11.1521034 0.9999877 

# 7-5 -4.018519e+00 -13.781733  5.7446960 0.9516837 

# 8-5 -1.925926e+00 -11.689140  7.8372886 0.9998023 

# 9-5 -1.759259e+00 -11.522474  8.0039553 0.9999072 

# 7-6 -5.407407e+00 -15.170622  4.3558071 0.7600699 

# 8-6 -3.314815e+00 -13.078029  6.4483997 0.9865724 

# 9-6 -3.148148e+00 -12.911363  6.6150664 0.9907033 

# 8-7  2.092593e+00  -7.670622 11.8558071 0.9996083 

# 9-7  2.259259e+00  -7.503955 12.0224738 0.9992705 

# 9-8  1.666667e-01  -9.596548  9.9298812 1.0000000 

 

# $`Input:Order` 

                                 # diff         lwr        upr     p adj 

# Camera:1st-Keyboard:1st    -2.4166667 -11.4963090  6.6629757 0.9959633 

# Joystick:1st-Keyboard:1st   7.3666667  -1.7129757 16.4463090 0.2213211 

# Keyboard:2nd-Keyboard:1st  -1.5333333 -10.6129757  7.5463090 0.9998528 

# Camera:2nd-Keyboard:1st    -5.2500000 -14.3296424  3.8296424 0.6815630 

# Joystick:2nd-Keyboard:1st   5.2333333  -3.8463090 14.3129757 0.6853643 

# Keyboard:3rd-Keyboard:1st  -6.3833333 -15.4629757  2.6963090 0.4138087 

# Camera:3rd-Keyboard:1st     3.2166667  -5.8629757 12.2963090 0.9736162 

# Joystick:3rd-Keyboard:1st   4.6500000  -4.4296424 13.7296424 0.8073063 

# Joystick:1st-Camera:1st     9.7833333   0.7036910 18.8629757 0.0237655 

# Keyboard:2nd-Camera:1st     0.8833333  -8.1963090  9.9629757 0.9999979 

# Camera:2nd-Camera:1st      -2.8333333 -11.9129757  6.2463090 0.9882149 

# Joystick:2nd-Camera:1st     7.6500000  -1.4296424 16.7296424 0.1789728 

# Keyboard:3rd-Camera:1st    -3.9666667 -13.0463090  5.1129757 0.9118480 

# Camera:3rd-Camera:1st       5.6333333  -3.4463090 14.7129757 0.5913537 

# Joystick:3rd-Camera:1st     7.0666667  -2.0129757 16.1463090 0.2728980 

# Keyboard:2nd-Joystick:1st  -8.9000000 -17.9796424  0.1796424 0.0597453 

# Camera:2nd-Joystick:1st   -12.6166667 -21.6963090 -3.5370243 0.0006061 *** 

# Joystick:2nd-Joystick:1st  -2.1333333 -11.2129757  6.9463090 0.9983212 

# Keyboard:3rd-Joystick:1st -13.7500000 -22.8296424 -4.6703576 0.0001066 *** 

# Camera:3rd-Joystick:1st    -4.1500000 -13.2296424  4.9296424 0.8884558 

# Joystick:3rd-Joystick:1st  -2.7166667 -11.7963090  6.3629757 0.9910684 

# Camera:2nd-Keyboard:2nd    -3.7166667 -12.7963090  5.3629757 0.9382268 

# Joystick:2nd-Keyboard:2nd   6.7666667  -2.3129757 15.8463090 0.3310959 

# Keyboard:3rd-Keyboard:2nd  -4.8500000 -13.9296424  4.2296424 0.7683111 

# Camera:3rd-Keyboard:2nd     4.7500000  -4.3296424 13.8296424 0.7882297 

# Joystick:3rd-Keyboard:2nd   6.1833333  -2.8963090 15.2629757 0.4598541 

# Joystick:2nd-Camera:2nd    10.4833333   1.4036910 19.5629757 0.0105752 

# Keyboard:3rd-Camera:2nd    -1.1333333 -10.2129757  7.9463090 0.9999855 

# Camera:3rd-Camera:2nd       8.4666667  -0.6129757 17.5463090 0.0899322 

# Joystick:3rd-Camera:2nd     9.9000000   0.8203576 18.9796424 0.0208636 

# Keyboard:3rd-Joystick:2nd -11.6166667 -20.6963090 -2.5370243 0.0024836 *** 

# Camera:3rd-Joystick:2nd    -2.0166667 -11.0963090  7.0629757 0.9988797 

# Joystick:3rd-Joystick:2nd  -0.5833333  -9.6629757  8.4963090 0.9999999 

# Camera:3rd-Keyboard:3rd     9.6000000   0.5203576 18.6796424 0.0290486 

# Joystick:3rd-Keyboard:3rd  11.0333333   1.9536910 20.1129757 0.0053442 *** 

# Joystick:3rd-Camera:3rd     1.4333333  -7.6463090 10.5129757 0.9999117 
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Conclusion: Both camera and keyboard have significantly shorter 

execution times than joystick. On average keyboard execution times are 

8.40 seconds shorter and camera execution times are 7.2 seconds shorter 

than those of joystick. There is no significant difference between the 

execution times of camera and keyboard. For task 2, order is not such a 

significant effect as for task 1. 

 

Results non-parametric tests 

 

Kruskal-Wallis test's conclusion is that the execution times per input 

device significantly differ. Execution times are not significantly 

different when grouped based on order, but they are in the threshold of 

significance when grouped by trial. 

 

#  Kruskal-Wallis rank sum test 

# data:  Time by Input 

# Kruskal-Wallis chi-squared = 43.3175, df = 2, p-value = 3.924e-10 

 

# Kruskal-Wallis rank sum test 

# data:  Time by Order 

# Kruskal-Wallis chi-squared = 2.5309, df = 2, p-value = 0.2821 

 

#  Kruskal-Wallis rank sum test 

# data:  Time by Trial 

# Kruskal-Wallis chi-squared = 21.0169, df = 9, p-value = 0.01258 

 

Based on the Friedman test, execution times per input device 

significantly differ even when the effect of order and trial is 

accounted for. 

 

# #  Friedman rank sum test 

# data:  tmp$x, tmp$Group.1 and tmp$block 

# Friedman chi-squared = 20.0667, df = 2, p-value = 4.391e-05 

 

 

 

Based on paired Wilcoxon test, both camera and keyboard have highly 

significant shorter execution times than joystick. Camera execution 

times are  in the threshold of significance for being larger than those 

of keyboard. 

 

# Pairwise comparisons using Wilcoxon signed rank test  

# data:  Time and Input  

         # Keyboard Camera  

# Camera   0.018    -       

# Joystick 1.5e-07  3.1e-06 

# P value adjustment method: BH  

 

 

Differences in the execution times per order for input device were also 

tested using a Wilcoxon signed rank test. Conclusion: Execution times 
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for keyboard – 3rd order are in the threshold of being significantly 

shorter than those for keyboard in the 1st or 2nd order. Execution times 

for camera – 3rd order are significantly longer than those for camera in 

the 2nd order.  

 

 

Keyboard 

# Pairwise comparisons using Wilcoxon rank sum test  

# data:  Time and Order  

    # 1st   2nd   

# 2nd 0.498 -     

# 3rd 0.013 0.013 

# P value adjustment method: BH  

 

 

Camera 

# Pairwise comparisons using Wilcoxon rank sum test  

# data:  Time and Order  

    # 1st    2nd    

# 2nd 0.9734 -      

# 3rd 0.1571 0.0088 

# P value adjustment method: BH  
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Appendix D  

  Instructions 

You are expected to perform two tasks with each of the input method which is, a 

keyboard, joystick, depth camera. 

Task 1: You are just expected to reach the object and grab it by the commands below. The 

commands are different for each input method.  

 Trial runs: You will be given a trial time. You can do 5 iterations of task 1 in 

trial. 

 Experiment runs: There will be 10 iterations of each task.  

So you will have to reach the target using one of the input devices and grab it. 

This repeats 10 times. 

Task 2:  You are expected to reach the object, grab it and drop it into the bin.  

 Trial runs: You will be given a trial time. You can do 5 iterations of task 2 in trial. 

 Experiment runs: There will be 10 iterations for this task as well.  

So you will have to reach the target using one of the input devices and grab it, 

then navigate to the bin and drop the object. This repeats 10 times. 

Commands to pick (task 1) and drop (task 2) an object. 

1. Keyboard 

For picking an object, press the Key “P”. 

For dropping an object, press the key “O” 

2. Joystick 

You can pick and drop the objects using the same key in joystick. The key is 

marked on the joystick. 
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3. Depth camera. 

For picking something when using the depth camera, perform a peace gesture.  

 

                                                      

Figure 2: Peace gesture to pick an object 

                                                               

            Figure 2: Thumbs UP gesture to drop an object 

Toggle Control: Press the key “T” when you want to start/stop the camera control. 

4. End-Effector Colors 

The end-effector changes the color to red when an object can be picked and 

changes to blue when an object has been picked. 

 

 

 

Figure 3:  Red: Object can be picked. Blue: Object has been picked. 


