

i

Table of Contents

Table of Contents .. 1

1.0 Introduction .. 1

1.1 Electrical Components .. 1

1.2 Mechanism .. 2

2.0 Algorithms ... 3

2.1 Pseudo Code.. 3

3.0 Test Plan... 5

4.0 Implementation and Testing .. 6

4.1 Component Schematic and Revision .. 6

4.2 Code Testing and Result Analysis .. 7

5.0 Reflection and Conclusion ... 10

6.0 Appendices ... 11

6.1 Appendix A: TCS230 color light-to-frequency converter datasheet 11

6.2 Appendix B: Full Code ... 14

1

1.0 Introduction

The Skittles Separator illustrates some of the basic fundamentals of C++ programming language

elements implemented into a microcontroller, the Arduino Uno. This project consists of a

mechanism that is able to separate Skittles candy based on color into designated compartments.

The project is also programmed to keep track of how many skittles of each color were passed

through a color sensor. The user places a random sample of skittles into a funnel on the top of the

machine and then the machine is initiated via turning a rotary dial and the separation process

begins. This project applies both software and hardware engineering attributes.

1.1 Electrical Components

There are two input devices and two output devices used in this project:

Input Output

TCS230 Color Sensor Servo Motor

Rotary Dial LCD Screen

The color sensor is the fundamental component of how this project will operate. It is a

programmable light-to-frequency converter that uses an 8x8 array of photodiodes to obtain

square waves readings that can be read by the Arduino board to determine the color. Refer to

appendix A for in-depth explanation.

A rotary dial is used to initiate the machine. The rotary dial is used as a digital input rather than

an analog input. So, it only reads true or false with one full turn to the left for the system to

operate, and one turn back to stop it.

The LCD screen is used to print out the detected color of the individual pieces. It prints out a

warning message that reads “WARNING! STANDBY MODE” when the device is yet to be

initiated. Once the rotary dial is turned, the detection process begins and the screen prints the

color name depending on the color sensor detection. Once the funnel is empty, a message prints

notifying the user which appears for a specific time if the funnel is not reloaded. If the tunnel is

not refilled within a certain time range, a report will be printed showing the count of skittles for

each color.

The main mechanical component in this project is the servo motor. It is used to provide the

necessary motion to move the skittle pieces from the funnel tube to under the color sensor. Also,

another servo motor is used to move the angle the skittles pieces into different cups depending on

color.

2

1.2 Mechanism

The machine is box-shaped with an open front face that contains three main shelves, a moving

skittles holder piece to transport the skittles to the color sensor and a slanted plank to transport

the skittles to their designated compartment. All parts were sketched on AutoCAD and then laser

cut out of 2 mm foam board. The top shelf is a housing compartment for the color sensor with a

circular slot for a long plastic tube to fit and hold the skittles vertically in place. The middle shelf

houses a servo motor that transports each skittle under the color sensor for reading. The last shelf

contains a second servo motor that moves a slanted plank to transports each skittle to a

designated cup based on the skittles color. All parts and shelves are hot glued in place, as shown

in Figure 1.

Figure 1: Skittles Separator final assembly

3

2.0 Algorithms

After setting up the compartment for the device with all the components, an algorithm was

developed of how the color sensing mechanism, as well as the servo movement, will function.

The algorithm is developed for two main aspects of the device, which are:

1- Getting the frequency reading from the color sensor, and detecting the color based off

that reading.

2- Rotate the two servo motors accordingly depending on the color detected to dispense the

colored objects in separate containers.

An algorithm for the LCD screen is also considered to print out various messages.

2.1 Pseudo Code

The code design was first approached by designing the pseudo code for the main functions

implemented in the design. Figure 2 shows the pseudo code of the main while loop that controls

all the different functions.

 while(true){
 rotaryDial=Read(port 2)

 if(rotaryDial=1){
 servoMovement();

}
 else{

 idleScreen();

 valueReset(red, yellow, orange, green, purple, empty);
 topServo(calibrate);

 bottomServo(calibrate);}
}

A digital read function constantly gets feedback from a specific port where the rotary dial is

connected to. If the reading is 1, it executes the servoMovement() function which is the main

function that controls the servo motors and the color sensor. If the reading is not 1, the device is

in standby mode which prints out the idleScreen() message to the LCD and reset the count values

for the colors to zero. Also, the two servo motors are calibrated to the default position.

Figure 2: Pseudo code of the main design code

4

The pseudo code for the servoMovement() function is shown in Figure 3. This function controls

the servo motors based off the reading from the getColor() function. A for loop is implemented

to move top servo motor to position the skittles piece under the photodiode array of the color

sensor. A delay is set to give time for the sensor to obtain the frequency reading. Then, a switch

function is implemented to execute a set of statements based off color detected. For example, if

the sensor detects the color red, the counter for the red color is incremented by one and “Red” is

printed to the LCD screen and the background light color changes to red. The bottom servo is

moved depending on a predetermined angle of where the containers are placed. Then, the case

for red color is stopped by using the break function.

Void servoMovement(){

 for(angle between a and b){

 topServo(angle);}
 color = getColor();

 delay(1500);

 switch (color){
 case red:

 increment red counter

 moveBottomServo;

 screenPrint(“red”);
 change Backlight color to red;

 break;

 case orange:

 //same process as red

}
}

Figure 3: Pseudo code showing the servoMovement() function.

5

3.0 Test Plan

A test plan was developed for the major functionalities of the device. It serves as a blueprint to

conduct code debugging if the code is not executing properly, or the result is not as expected.

The list below specifies how each function of the design will be tested.

getColor():

Before making the assembly of the device compartment, the color sensor testes on a breadboard

to determine if the different frequency readings are detected properly. The serial monitor

functionality will be used to print out the readings for each color hue (red, green, and blue). If the

color sensor is detecting a different reading when different objects are placed on the photodiodes,

then the color sensor is functioning properly and is able to distinguish between color shades.

Then, when all the components are assembled, the range of each color is obtained through a trial

and error process. A set of 20 pieces from each color is put through the device and from the

serial monitor output, a range can be determined by analyzing the maximum and minimum

detected values for each color.

ServoMovement():

For the top servo motor, the testing process will be trial and error. The Skittles are placed on the

transportation piece and the servo motor moves the piece of skittles under the color sensor. Initial

values for the angles are set and then the servo operates to see if the Skittles piece is moved

directly under the color sensor. The angles are altered until exact positioning under the color

sensor is achieved. For the top servo motor, the degree of freedom is 180 degrees horizontally.

To accommodate for all five different Skittle colors, the 180 is divided by 5 to achieve equal

spacing between all five compartments. Then, a test is run by inserting different colored skittles

to observe the movement of the servo motor.

idleScreen():

This function prints out to the screen when the device is in standby mode which is activated by a

rotary dial. It can be tested by observing if the code executes properly and prints out the specific

message to the LCD screen when it is activated by the rotary dial (when reading is true).

valueReset():

The main purpose of this function is to reset the color counter every time a run is over, and the

rotary dial is turned to read false and stop the device. It can be tested by observing if the counter

printed out to the screen is reset every time.

6

4.0 Implementation and Testing

4.1 Component Schematic and Revision

All the components are connected to the Arduino board for testing. Powering the color sensor

correctly was done by referring to the datasheet of the particular model number. There are 3

input pins that get the RGB reading and one output pin. The configuration and connections of all

the components used are shown in Figure 4.

Two hardware components were changed compared to the original project proposal. First, the 9V

battery was discarded because it did not provide the system with enough current. Also, it caused

signal issues between the Arduino board and the servo motors. So, a connection using a USB

cable to the computer was a better alternative. Second, the push button was changed to a rotary

dial due to some programming issues with making the input of the push button always true until

pressed again. Therefore, the rotatory dial allowed that feature by rotating the dial to alternate

between true and false.

Figure 4: Diagram showing different components used in the project

7

4.2 Code Testing and Result Analysis

The list below shows the results of the conducted test plan with the results and the iteration

process. The full code can be found in Appendix B.

getColor():

Using the serial print function, a range for each color was set. 20 pieces of each color were tested

for frequency values and the maximum and minimum values were set as the range. Using IF

statement, when the color frequency falls within the range, it must detect the color as

appropriate. Testing the function through trial and error results in a successful trial with minor

errors due to lighting conditions and the sensor frequency.

1. /*
2. These conditions are what determines the color under the sensor.
3. There is a range for each condition because of the uncertainty
4. and accuracy of the sensor.
5. */
6. if (R <= 25 & R >= 22 & G <= 39 & G >= 33 & B <= 28 & B >= 23) {
7. color = 1; // Detects red
8. }
9. if (R <= 20 & R >= 16 & G <= 34 & G >= 28 & B <= 27 & B >= 21) {
10. color = 2; // Detects Orange
11. }
12. if (R <= 30 & R >= 22 && G <= 30 & G >= 21 && B <= 26 & B >= 22) {
13. color = 3; // Detects Green
14. }
15. if (R <= 20 & R >= 15 & G <= 25 & G >= 20 & B <= 24 & B >= 15) {
16. color = 4; // Detects Yellow
17. }
18. if (R <= 32 & R >= 26 & G <= 43 & G >= 35 & B <= 31 & B >= 26) {
19. color = 5; // Detects purple
20. }
21. if (R <= 38 & R >= 34 & G <= 43 & G >= 37 & B <= 31 & B >= 26)
22. color = 6; // Detects Nothing
23.
24. return color; //return the color number to the servoMovement() function

ServoMovement():

For the top servo motor, three angles were set for three positions. The first angle positions the

skittles holder directly under the plastic tube to reload with a piece of skittles, the second angle

places the piece of skittles under the color sensor for reading, and the third angle positions the

skittles piece to drop through a hole onto the slanted plank to place the piece the designated

compartment. After, a series of trial an error, the three angles were determined to be: first angle

125 (under the plastic tube), second angles 73 (under color sensor), and third angle 20 (through

the hole onto the plank).

8

1. for (int i = 73; i > 20; i--) {
2. topServo.write(i);
3. delay(2);
4. }
5. delay(200);
6.
7. for (int i = 20; i < 125; i++) {
8. topServo.write(i);
9. delay(2);
10. }

These three movements are looped for the machine to operate continuously until stopped by

turning the rotary dial.

For the bottom servo motor, the five angles for the different compartment positions are stored in

an array.

int servoAngles[] = {25, 50, 80, 110, 140}

Then, the values are passed in from the array to the servo motor function to move the slanted

plank depending on which case in the SWITCH function is getting executed which depends on

the color detected. The testing process consisted of multiple tries to get the right delay between

the time the color sensor takes to detect the color and the time for the bottom servo to move the

plank to the angle of the color detected compartment.

11. switch (color) {
12. case 1:
13. redCounter++; //increases the counter value by 1 each time it's detected
14. bottomServo.write(servoAngles[0]); //gets angle from array and moves servo
15. lcdPrint(" RED"); //prints color name to the lcd
16. lcdMoveCursor(0, 1); // moves cursor to second line
17. lcdPrint("skittles # ");
18. lcdPrint(redCounter); //prints out the number of skittles
19. lcdBacklightColour(255, 0, 0); //changes lcd backlight color
20. delay(1500); // sets a delay of 1.5 seconds
21. lcdClear(); //clears lcd screen
22. break; //breaks the execution sequence for case 1

9

idleScreen():

Using an IF statement, the function detects when the device is idle (rotary dial reading is false),

and prints out a fading warning screen. Two FOR loops were used to create the fading effect –

one to fade down to 0 RGB reading and one to fade up to 255 RGB reading. Testing the function

was simply done by physically rotating the dial and observing whether the screen print function

gets executed. The test was successful after the modification of the fading FOR loop by only

changing the red RGB reading in changeBackLightColor function.

1. for (int i = 255; i > 0; i--) //first for loop runs from 255 to 0
2. {
3. lcdBacklightColour(i, 0, 0);
4. }
5. for (int i = 0; i < 255; i++) //second for loop runs from 0 to 255
6. {
7. lcdBacklightColour(i, 0, 0);
8. }

valueReset():

Using pass-by-reference, each color counter parameter is passed into the valueReset() function.

Inside the function each parameter gets reassigned to zero when the condition of the rotary dial is

false. Testing the function is done by completing a run, then stopping the device. When turned

on again, the values were reset to zero, indicating a successful trial.

23. // This function is used to reset the counter values to zero after run is complete
24. void valuesReset(int& redCounter, int& yellowCoarunter, int& orangeCounter
25. , int& greenCounter, int& purpleCounter, int& emptyHole) {
26.
27. redCounter = 0;
28. yellowCounter = 0;
29. orangeCounter = 0;
30. greenCounter = 0;
31. purpleCounter = 0;
32. emptyHole = 0;
33. }

10

5.0 Reflection and Conclusion

Ultimately, after a long debugging and trial error process, the device is successfully able to

separate the skittles pieces based off color into the designated cups. A small percentage of error

is still present due to various aspects – ambient light and the accuracy of the color sensor.

Overall, the design went through multiple iteration processes. The main changes to the

implementation was modifying the ranges for each color case to reduce error. The design is

heavily dependent on the perfect alignments by the servo motors. So, during the implementation

of the code, the angles were modified until the system was able to run smoothly with minimal

errors.

The list below illustrates all the various functions implemented into the design.

• Expressions and functions: The code consists of a variety of functions that each perform

certain tasks. For example, one function consists of IF statements to determine the color

determined by the color sensor. Another function moves the servo motor depending on

the detected color. Expressions are used to evaluate the angles and frequency reading

from the color sensor.

• If statements and the switch function: If statements are used to set a range of

frequencies read by the color sensor for the 5 identified colors (red, orange, green,

yellow, and purple) and given a number from 1 to 5. Once that is obtained, the switch

function is then used to operate the servo motors to move at the required angle depending

on the case number (1-5) to drop the skittles pieces in the designated container.

• While and for loops: It is essential that the code runs in a continuous loop. A while loop

is used to render the code always true (running) unless the rotary dial is turned, which

terminates the program. For loops are used to move the servo motors to the certain

predefined angles.

• Arrays: The sorting mechanism is dependent on a servo motor that moves to certain

predetermined angles. These angles are stored in an array of size of 5 (each angle

depends on where the container is) and then the designated angle can be retrieved from

the array by passing the address into the servo motor.

• Pass-by-Reference: One feature of the design is the ability to keep count of each piece

by color and then print out a report to the LCD screen with all the color numbers stored.

The counter needs to reset every time a new run is started which is possible to achieve by

passing in all the counter values by reference, then resigning all the values to zero. If the

values were passing in by value, it would only create a copy of each variable and not

change the original values.

11

6.0 Appendices

6.1 Appendix A: TCS230 color light-to-frequency converter datasheet

12

13

14

6.2 Appendix B: Full Code

34. //including required header files
35. #include <Wire.h>
36. #include <SoftwareSerial.h>
37. #include <Servo.h>
38. #include <seeed-kit.h>
39.
40. //defining each port in the color sensor
41.
42. const int S0 = 8;
43. const int S1 = 9;
44. const int S2 = 10;
45. const int S3 = 11;
46. const int sensorOut = 12;
47.
48. //initializing various global identifiers to zero
49.
50. int frequency = 0;
51. int color = 0;
52. int servoAngles[] = {25, 50, 80, 110, 140}; //defining an array with 5 angle readings
53. int redCounter = 0;
54. int yellowCounter = 0;
55. int orangeCounter = 0;
56. int greenCounter = 0;
57. int purpleCounter = 0;
58. int emptyHole = 0;
59.
60. //initializing servo motors
61. Servo topServo;
62. Servo bottomServo;
63.
64. /*
65. void setup is where the function declaration and port initializing
66. is found. The code inside is executed only once at the beginning of
67. the program and then never again.
68. */
69. void setup() {
70. /*
71. the pinMode funtion is used to identify each port
72. on the arduino board as an input or output port.
73. */
74. pinMode(S0, OUTPUT);
75. pinMode(S1, OUTPUT);
76. pinMode(S2, OUTPUT);
77. pinMode(S3, OUTPUT);
78. pinMode(sensorOut, INPUT);
79.
80. lcdInit(); //initializes lcd screen
81.
82.
83. /*
84. according to the TC230 color sensor datasheet,
85. setting pin S0 and S1 to HIGH will set the reading
86. frequency scale to 100%
87. */
88. digitalWrite(S0, HIGH);
89. digitalWrite(S1, HIGH);
90.
91. //attaching each servo motor to certain digital port

15

92. topServo.attach(5);
93. bottomServo.attach(4);
94. Serial.begin(9600); // begins the serial monitor function to 9600 baud
95. }
96.
97. /*
98. the void loop function loops the code inside the block consecutively,
99. which allows the program to change and respond. It is used to actively
100. control the Arduino board.
101. */
102. void loop() {
103.
104. int rotaryDial;
105. /*
106. The while loop is the main function of the program and connects
107. everything together.
108. */
109. while (true) {
110.
111. rotaryDial = digitalRead(2); //the value of the rotary dial is constantly being read

112.
113. if (rotaryDial > 0) {
114. lcdClear(); //clears the screen from previous output
115. servoMovement(); //executes the servoMovement function below
116. }
117. /*
118. the else function contains functions that are executed
119. when the sorting mechanism is turned off.
120. */
121. else {
122. warningScreen(); //executes the warning screen function
123. valuesReset(redCounter, yellowCounter, orangeCounter
124. , greenCounter, purpleCounter, emptyHole); //resets the color count val

ues to zero
125. topServo.write(125); //moves the top servo to the middle
126. bottomServo.write(90); //moves the bottom servo to the middle
127. }
128. }
129.
130. }
131. /*
132. This function is what controls the servo motors based off
133. the color reading.
134. */
135. void servoMovement() {
136. delay(1500);
137.
138. //
139. for (int i = 125; i > 73; i--) {
140. topServo.write(i);
141. delay(2);
142. }
143. delay(1500);
144.
145. color = readColor(); //calls the readColor function which detects the color
146. delay(10);
147. /*
148. The switch functions executes a certain set of code
149. based off the color determined. Here, there are 6 cases.
150. */

16

151. switch (color) {
152. case 1:
153. redCounter++; //increases the counter value by 1 each time it's detected
154. bottomServo.write(servoAngles[0]); //gets angle from array and moves servo
155. lcdPrint(" RED"); //prints color name to the lcd
156. lcdMoveCursor(0, 1); // moves cursor to second line
157. lcdPrint("skittles # ");
158. lcdPrint(redCounter); //prints out the number of skittles
159. lcdBacklightColour(255, 0, 0); //changes lcd backlight color
160. delay(1500); // sets a delay of 1.5 seconds
161. lcdClear(); //clears lcd screen
162. break; //breaks the execution sequence for case 1
163.
164. case 2:
165. orangeCounter++;
166. bottomServo.write(servoAngles[1]);
167. lcdPrint(" ORANGE");
168. lcdMoveCursor(0, 1);
169. lcdPrint("skittles # ");
170. lcdPrint(orangeCounter);
171. lcdBacklightColour(255, 100, 0);
172. delay(1500);
173. lcdClear();
174.
175. break;
176.
177. case 3:
178. greenCounter++;
179. bottomServo.write(servoAngles[2]);
180. lcdPrint(" GREEN");
181. lcdMoveCursor(0, 1);
182. lcdPrint("skittles # ");
183. lcdPrint(greenCounter);
184. lcdBacklightColour(0, 255, 0);
185. delay(1500);
186. lcdClear();
187.
188. break;
189.
190. case 4:
191. yellowCounter++;
192. bottomServo.write(servoAngles[3]);
193. lcdPrint(" YELLOW");
194. lcdMoveCursor(0, 1);
195. lcdPrint("skittles # ");
196. lcdPrint(yellowCounter);
197. lcdBacklightColour(255, 255, 0);
198. delay(1500);
199. lcdClear();
200.
201. break;
202.
203. case 5:
204. purpleCounter++;
205. bottomServo.write(servoAngles[4]);
206. lcdPrint(" PURPLE");
207. lcdMoveCursor(0, 1);
208. lcdPrint("skittles # ");
209. lcdPrint(purpleCounter);
210. lcdBacklightColour(128, 0, 128);
211. delay(1500);

17

212. lcdClear();
213.
214. break;
215.
216. case 6:
217. /*
218. if the compartment where the skittles is supposed
219. to be is empty for 2 runs, it will execute the a report
220. for the number of skittles for each color
221. */
222. if (emptyHole == 2) {
223. colorRunDown();
224. delay(10000);
225. lcdClear();
226. }
227. emptyHole++;
228. bottomServo.write(servoAngles[2]);
229. lcdMoveCursor(2, 0);
230. lcdPrint("compartment");
231. lcdMoveCursor(4, 1);
232. lcdPrint("is empty");
233. lcdBacklightColour(255, 255, 255);
234. delay(1500);
235. lcdClear();
236.
237. case 0:
238. break;
239. }
240. delay(300);
241.
242. for (int i = 73; i > 20; i--) {
243. topServo.write(i);
244. delay(2);
245. }
246. delay(200);
247.
248. for (int i = 20; i < 125; i++) {
249. topServo.write(i);
250. delay(2);
251. }
252. color = 0;
253. }
254.
255. /*
256. The following function detects the color based off the
257. frequency reading. The digitalWrite value depends on
258. what color hue is being read from the data sheet.
259. */
260. int readColor() {
261. // Setting red filtered photodiodes to be read
262. digitalWrite(S2, LOW);
263. digitalWrite(S3, LOW);
264. // Reading the output equency
265. frequency = pulseIn(sensorOut, LOW);
266. int R = frequency;
267. // Printing the value on the serial monitor
268. Serial.print("R= ");//printing name
269. Serial.print(frequency);//printing RED color frequency
270. Serial.print(" ");
271. delay(50);
272.

18

273. // Setting Green filtered photodiodes to be read
274. digitalWrite(S2, HIGH);
275. digitalWrite(S3, HIGH);
276. // Reading the output frequency
277. frequency = pulseIn(sensorOut, LOW);
278. int G = frequency;
279. // Printing the value on the serial monitor
280. Serial.print("G= ");//printing name
281. Serial.print(frequency);//printing RED color frequency
282. Serial.print(" ");
283. delay(50);
284.
285. // Setting Blue filtered photodiodes to be read
286. digitalWrite(S2, LOW);
287. digitalWrite(S3, HIGH);
288. // Reading the output frequency
289. frequency = pulseIn(sensorOut, LOW);
290. int B = frequency;
291. // Printing the value on the serial monitor
292. Serial.print("B= ");//printing name
293. Serial.print(frequency);//printing RED color frequency
294. Serial.println(" ");
295. delay(50);
296.
297. /*
298. These conditions are what determines the color under the sensor.
299. There is a range for each condition because of the uncertainty
300. and accuracy of the sensor.
301. */
302. if (R <= 25 & R >= 22 & G <= 39 & G >= 33 & B <= 28 & B >= 23) {
303. color = 1; // Detects red
304. }
305. if (R <= 20 & R >= 16 & G <= 34 & G >= 28 & B <= 27 & B >= 21) {
306. color = 2; // Detects Orange
307. }
308. if (R <= 30 & R >= 22 && G <= 30 & G >= 21 && B <= 26 & B >= 22) {
309. color = 3; // Detects Green
310. }
311. if (R <= 20 & R >= 15 & G <= 25 & G >= 20 & B <= 24 & B >= 15) {
312. color = 4; // Detects Yellow
313. }
314. if (R <= 32 & R >= 26 & G <= 43 & G >= 35 & B <= 31 & B >= 26) {
315. color = 5; // Detects purple
316. }
317. if (R <= 38 & R >= 34 & G <= 43 & G >= 37 & B <= 31 & B >= 26)
318. color = 6; // Detects Nothing
319.
320. return color; //return the color number to the servoMovement() function
321. }
322.
323. // this function prints out to the screen when device is idle
324. void warningScreen() {
325.
326. lcdMoveCursor(4, 0);
327. lcdPrint("WARNING:");
328. lcdMoveCursor(0, 1);
329. lcdPrint("STANDSTILL MODE!");
330.
331. /*
332. the for loop is used to add a red fading affect to the lcd screen
333. */

19

334. for (int i = 255; i > 0; i--) //first for loop runs from 255 to 0
335. {
336. lcdBacklightColour(i, 0, 0);
337. }
338. for (int i = 0; i < 255; i++) //second for loop runs from 0 to 255
339. {
340. lcdBacklightColour(i, 0, 0);
341. }
342.
343. }
344. // function for printing out the color report at the end of each run
345. void colorRunDown() {
346. lcdPrint("R=");
347. lcdPrint(redCounter);
348. lcdMoveCursor(6, 0);
349. lcdPrint("G=");
350. lcdPrint(greenCounter);
351. lcdMoveCursor(13, 0);
352. lcdPrint("Y=");
353. lcdPrint(yellowCounter);
354. lcdMoveCursor(4, 1);
355. lcdPrint("P=");
356. lcdPrint(purpleCounter);
357. lcdMoveCursor(10, 1);
358. lcdPrint("O=");
359. lcdPrint(orangeCounter);
360. }
361. // This function is used to reset the counter values to zero after run is complete
362. void valuesReset(int& redCounter, int& yellowCoarunter, int& orangeCounter
363. , int& greenCounter, int& purpleCounter, int& emptyHole) {
364.
365. redCounter = 0;
366. yellowCounter = 0;
367. orangeCounter = 0;
368. greenCounter = 0;
369. purpleCounter = 0;
370. emptyHole = 0;
371.
372. }

