Table of Contents

TaDIE OF CONTENLS ...ttt b bbb 1
1.0 INEFOAUCTION ...t bbbttt bbb bbb e e 1
1.1 Electrical COMPONENTSeciiiiiiiieeite et ettt te ettt ta et e s e ste e teasaesaeeneeneesreeneens 1
1.2 IMIBCRANISIM ... bbbt bbb 2
2.0 AlGOTTEMS ..ot bbbt 3
2.1 PSEUAOD COUR........oieieiiiieieeiett ettt bbbt 3
B0 TESE PIAN .. 5
4.0 Implementation and TESTINGooiiiiieiere bbb 6
4.1 Component Schematic and REVISIONc.covveriiiiriieiesie e e e sneesneas 6
4.2 Code Testing and ReSUIt ANAIYSIScouviiiiiiieciie e 7
5.0 Reflection and CONCIUSIONcuiiiiiiiieic e 10
G IO Y o] 1= o o0 11
6.1 Appendix A: TCS230 color light-to-frequency converter datasheetcccccceviveennnnnn 11
6.2 APPENdiX B: FUI COUR ..o 14

1.0 Introduction

The Skittles Separator illustrates some of the basic fundamentals of C++ programming language
elements implemented into a microcontroller, the Arduino Uno. This project consists of a
mechanism that is able to separate Skittles candy based on color into designated compartments.
The project is also programmed to keep track of how many skittles of each color were passed
through a color sensor. The user places a random sample of skittles into a funnel on the top of the
machine and then the machine is initiated via turning a rotary dial and the separation process
begins. This project applies both software and hardware engineering attributes.

1.1 Electrical Components

There are two input devices and two output devices used in this project:

Input Output
TCS230 Color Sensor Servo Motor
Rotary Dial LCD Screen

The color sensor is the fundamental component of how this project will operate. It is a
programmable light-to-frequency converter that uses an 8x8 array of photodiodes to obtain
square waves readings that can be read by the Arduino board to determine the color. Refer to
appendix A for in-depth explanation.

A rotary dial is used to initiate the machine. The rotary dial is used as a digital input rather than
an analog input. So, it only reads true or false with one full turn to the left for the system to
operate, and one turn back to stop it.

The LCD screen is used to print out the detected color of the individual pieces. It prints out a
warning message that reads “WARNING! STANDBY MODE” when the device is yet to be
initiated. Once the rotary dial is turned, the detection process begins and the screen prints the
color name depending on the color sensor detection. Once the funnel is empty, a message prints
notifying the user which appears for a specific time if the funnel is not reloaded. If the tunnel is
not refilled within a certain time range, a report will be printed showing the count of skittles for
each color.

The main mechanical component in this project is the servo motor. It is used to provide the
necessary motion to move the skittle pieces from the funnel tube to under the color sensor. Also,
another servo motor is used to move the angle the skittles pieces into different cups depending on
color.

1.2 Mechanism

The machine is box-shaped with an open front face that contains three main shelves, a moving
skittles holder piece to transport the skittles to the color sensor and a slanted plank to transport
the skittles to their designated compartment. All parts were sketched on AutoCAD and then laser
cut out of 2 mm foam board. The top shelf is a housing compartment for the color sensor with a
circular slot for a long plastic tube to fit and hold the skittles vertically in place. The middle shelf
houses a servo motor that transports each skittle under the color sensor for reading. The last shelf
contains a second servo motor that moves a slanted plank to transports each skittle to a
designated cup based on the skittles color. All parts and shelves are hot glued in place, as shown
in Figure 1.

Plastic Tube

ST f T L AT i Y G G

Color Sensor

Shelf 2

Servo #1

Seslie

Servo #2

Figure 1: Skittles Separator final assembly

2.0 Algorithms

After setting up the compartment for the device with all the components, an algorithm was
developed of how the color sensing mechanism, as well as the servo movement, will function.
The algorithm is developed for two main aspects of the device, which are:

1- Getting the frequency reading from the color sensor, and detecting the color based off
that reading.
2- Rotate the two servo motors accordingly depending on the color detected to dispense the

colored objects in separate containers.

An algorithm for the LCD screen is also considered to print out various messages.

2.1 Pseudo Code

The code design was first approached by designing the pseudo code for the main functions
implemented in the design. Figure 2 shows the pseudo code of the main while loop that controls
all the different functions.

while(true){
rotaryDial=Read(port 2)
if(rotaryDial=1){
servoMovement();

}
else{
idleScreen();
valueReset(red, yellow, orange, green, purple, empty);
topServo(calibrate);
bottomServo(calibrate);}
}

Figure 2: Pseudo code of the main design code

A digital read function constantly gets feedback from a specific port where the rotary dial is
connected to. If the reading is 1, it executes the servoMovement() function which is the main
function that controls the servo motors and the color sensor. If the reading is not 1, the device is
in standby mode which prints out the idleScreen() message to the LCD and reset the count values
for the colors to zero. Also, the two servo motors are calibrated to the default position.

The pseudo code for the servoMovement() function is shown in Figure 3. This function controls
the servo motors based off the reading from the getColor() function. A for loop is implemented
to move top servo motor to position the skittles piece under the photodiode array of the color
sensor. A delay is set to give time for the sensor to obtain the frequency reading. Then, a switch
function is implemented to execute a set of statements based off color detected. For example, if
the sensor detects the color red, the counter for the red color is incremented by one and “Red” is
printed to the LCD screen and the background light color changes to red. The bottom servo is
moved depending on a predetermined angle of where the containers are placed. Then, the case
for red color is stopped by using the break function.

Void servoMovement(){
for(angle between a and b){
topServo(angle);}
color = getColor();
delay(1500);
switch (color){
case red:
increment red counter
moveBottomServo;
screenPrint(“red”);
change Backlight color to red;
break;

case orange:
//same process as red

Figure 3: Pseudo code showing the servoMovement() function.

3.0 Test Plan

A test plan was developed for the major functionalities of the device. It serves as a blueprint to
conduct code debugging if the code is not executing properly, or the result is not as expected.
The list below specifies how each function of the design will be tested.

getColor():

Before making the assembly of the device compartment, the color sensor testes on a breadboard
to determine if the different frequency readings are detected properly. The serial monitor
functionality will be used to print out the readings for each color hue (red, green, and blue). If the
color sensor is detecting a different reading when different objects are placed on the photodiodes,
then the color sensor is functioning properly and is able to distinguish between color shades.
Then, when all the components are assembled, the range of each color is obtained through a trial
and error process. A set of 20 pieces from each color is put through the device and from the
serial monitor output, a range can be determined by analyzing the maximum and minimum
detected values for each color.

ServoMovement():

For the top servo motor, the testing process will be trial and error. The Skittles are placed on the
transportation piece and the servo motor moves the piece of skittles under the color sensor. Initial
values for the angles are set and then the servo operates to see if the Skittles piece is moved
directly under the color sensor. The angles are altered until exact positioning under the color
sensor is achieved. For the top servo motor, the degree of freedom is 180 degrees horizontally.
To accommodate for all five different Skittle colors, the 180 is divided by 5 to achieve equal
spacing between all five compartments. Then, a test is run by inserting different colored skittles
to observe the movement of the servo motor.

idleScreen():

This function prints out to the screen when the device is in standby mode which is activated by a
rotary dial. It can be tested by observing if the code executes properly and prints out the specific
message to the LCD screen when it is activated by the rotary dial (when reading is true).

valueReset():

The main purpose of this function is to reset the color counter every time a run is over, and the
rotary dial is turned to read false and stop the device. It can be tested by observing if the counter
printed out to the screen is reset every time.

4.0 Implementation and Testing

4.1 Component Schematic and Revision

All the components are connected to the Arduino board for testing. Powering the color sensor
correctly was done by referring to the datasheet of the particular model number. There are 3
input pins that get the RGB reading and one output pin. The configuration and connections of all
the components used are shown in Figure 4.

Two ~5V Servo Motors TCS230 Color Sensor

LCD screen for output printing .

Rotary Dial

Figure 4: Diagram showing different components used in the project

Two hardware components were changed compared to the original project proposal. First, the 9V
battery was discarded because it did not provide the system with enough current. Also, it caused
signal issues between the Arduino board and the servo motors. So, a connection using a USB
cable to the computer was a better alternative. Second, the push button was changed to a rotary
dial due to some programming issues with making the input of the push button always true until
pressed again. Therefore, the rotatory dial allowed that feature by rotating the dial to alternate
between true and false.

4.2 Code Testing and Result Analysis

The list below shows the results of the conducted test plan with the results and the iteration
process. The full code can be found in Appendix B.

getColor():

Using the serial print function, a range for each color was set. 20 pieces of each color were tested
for frequency values and the maximum and minimum values were set as the range. Using IF
statement, when the color frequency falls within the range, it must detect the color as
appropriate. Testing the function through trial and error results in a successful trial with minor
errors due to lighting conditions and the sensor frequency.

1. ki

2. These conditions are what determines the color under the sensor.
3. There is a range for each condition because of the uncertainty
4. and accuracy of the sensor.

5o Y

6. if (R <= 25 &R >=22 & G <=39 & G >= 33 & B <=28 & B >= 23) {
7. color = 1; // Detects red

8. }

9. if (R<=20 & R >= 16 & G <= 34 & G >= 28 & B <= 27 & B »>= 21) {
10. color = 2; // Detects Orange

11. }

12. if (R<=30 & R >= 22 & G <= 30 & G >= 21 && B <= 26 & B »>= 22) {
13. color = 3; // Detects Green

14. }

15, if (R<=20 & R >= 15 & G <= 25 & G >= 20 & B <= 24 & B >= 15) {
16. color = 4; // Detects Yellow

17. }

18. if (R<=32 &R >=26 & G <=43 & G >= 35 & B <= 31 & B »>= 26) {
19. color = 5; // Detects purple

20. }

21. if (R<=38 &R >= 34 & G <=43 & G >= 37 & B <= 31 & B >= 26)

22. color = 6; // Detects Nothing

236

24. return color; //return the color number to the servoMovement() function
ServoMovement():

For the top servo motor, three angles were set for three positions. The first angle positions the
skittles holder directly under the plastic tube to reload with a piece of skittles, the second angle
places the piece of skittles under the color sensor for reading, and the third angle positions the
skittles piece to drop through a hole onto the slanted plank to place the piece the designated
compartment. After, a series of trial an error, the three angles were determined to be: first angle
125 (under the plastic tube), second angles 73 (under color sensor), and third angle 20 (through
the hole onto the plank).

1. for (int i =73; 1 > 20; i--) {

2. topServo.write(i);

3. delay(2);

4. }

5. delay(200);

6.

7. for (int i = 20; i < 125; i++) {
8. topServo.write(i);

9. delay(2);

10. }

These three movements are looped for the machine to operate continuously until stopped by
turning the rotary dial.

For the bottom servo motor, the five angles for the different compartment positions are stored in
an array.

int servoAngles[] = {25, 50, 80, 110, 140}

Then, the values are passed in from the array to the servo motor function to move the slanted
plank depending on which case in the SWITCH function is getting executed which depends on
the color detected. The testing process consisted of multiple tries to get the right delay between
the time the color sensor takes to detect the color and the time for the bottom servo to move the
plank to the angle of the color detected compartment.

11. switch (color) {

12. case 1:

13. redCounter++; //increases the counter value by 1 each time it's detected
14. bottomServo.write(servoAngles[0]); //gets angle from array and moves servo
15 lcdPrint (" RED"); //prints color name to the lcd

16. lcdMoveCursor(o, 1); // moves cursor to second line

17. lcdPrint("skittles # ");

18. lcdPrint(redCounter); //prints out the number of skittles

19. lcdBacklightColour(255, @, ©); //changes lcd backlight color

20. delay(1500); // sets a delay of 1.5 seconds

21. lcdClear(); //clears lcd screen

22. break; //breaks the execution sequence for case 1

idleScreen():

Using an IF statement, the function detects when the device is idle (rotary dial reading is false),
and prints out a fading warning screen. Two FOR loops were used to create the fading effect —
one to fade down to 0 RGB reading and one to fade up to 255 RGB reading. Testing the function
was simply done by physically rotating the dial and observing whether the screen print function
gets executed. The test was successful after the modification of the fading FOR loop by only
changing the red RGB reading in changeBackLightColor function.

for (int i = 255; i > @; i--) //first for loop runs from 255 to ©

lcdBacklightColour(i, 0, 0);
}

for (int 1 = @; i < 255; i++) //second for loop runs from @ to 255

{
lcdBacklightColour(i, 0, 0);
}

ONOUVTA WNBE

valueReset():

Using pass-by-reference, each color counter parameter is passed into the valueReset() function.
Inside the function each parameter gets reassigned to zero when the condition of the rotary dial is
false. Testing the function is done by completing a run, then stopping the device. When turned
on again, the values were reset to zero, indicating a successful trial.

23. // This function is used to reset the counter values to zero after run is complete
24. void valuesReset(int& redCounter, int& yellowCoarunter, int& orangeCounter

250 , int& greenCounter, int& purpleCounter, int& emptyHole) {
26.

27. redCounter = 0;

28. yellowCounter = 0;

29. orangeCounter = 0;

30. greenCounter = 0;

31. purpleCounter = 0;

32. emptyHole = 0;

330 }

5.0 Reflection and Conclusion

Ultimately, after a long debugging and trial error process, the device is successfully able to
separate the skittles pieces based off color into the designated cups. A small percentage of error
is still present due to various aspects — ambient light and the accuracy of the color sensor.
Overall, the design went through multiple iteration processes. The main changes to the
implementation was modifying the ranges for each color case to reduce error. The design is
heavily dependent on the perfect alignments by the servo motors. So, during the implementation
of the code, the angles were modified until the system was able to run smoothly with minimal
errors.

The list below illustrates all the various functions implemented into the design.

e Expressions and functions: The code consists of a variety of functions that each perform
certain tasks. For example, one function consists of IF statements to determine the color
determined by the color sensor. Another function moves the servo motor depending on
the detected color. Expressions are used to evaluate the angles and frequency reading
from the color sensor.

e If statements and the switch function: If statements are used to set a range of
frequencies read by the color sensor for the 5 identified colors (red, orange, green,
yellow, and purple) and given a number from 1 to 5. Once that is obtained, the switch
function is then used to operate the servo motors to move at the required angle depending
on the case number (1-5) to drop the skittles pieces in the designated container.

e While and for loops: It is essential that the code runs in a continuous loop. A while loop
is used to render the code always true (running) unless the rotary dial is turned, which
terminates the program. For loops are used to move the servo motors to the certain
predefined angles.

e Arrays: The sorting mechanism is dependent on a servo motor that moves to certain
predetermined angles. These angles are stored in an array of size of 5 (each angle
depends on where the container is) and then the designated angle can be retrieved from
the array by passing the address into the servo motor.

e Pass-by-Reference: One feature of the design is the ability to keep count of each piece
by color and then print out a report to the LCD screen with all the color numbers stored.
The counter needs to reset every time a new run is started which is possible to achieve by
passing in all the counter values by reference, then resigning all the values to zero. If the
values were passing in by value, it would only create a copy of each variable and not
change the original values.

10

6.0 Appendices

6.1 Appendix A: TCS230 color light-to-frequency converter datasheet

o - TCS230

"TAOS PROGRAMMABLE
SoLuTIoNs COLOR LIGHT-TO-FREQUENCY CONVERTER

TAOS046 - FEBRUARY 2003

® High-Resolution Conversion of Light SOIC PACKAGE

Intensity to Frequency (TOP VIEW)
® Programmable Color and Full-Scale Output

Frequency so1f — [fiess
® Communicates Directly With a Microcontroller st 2] | (07 s2
® Single-Supply Operation (2.7 Vto 5.5V

Lo g () OF 3 [| [0 6 our
® Power Down Feature
® Nonlinearity Error Typically 0.2% at 50 kHz GND 4 O &:I 5 Vpp
® Stable 200 ppm/°C Temperature Coefficient
® Low-Profile Surface-Mount Package
Description

The TCS230 programmable color light-to-frequency converter combines configurable silicon photodiodes and
a current-to-frequency converter on single monolithic CMOS integrated circuit. The output is a square wave
(50% duty cycle) with frequency directly proportional to light intensity (irradiance). The full-scale output
frequency can be scaled by one of three preset values via two control input pins. Digital inputs and digital output
allow direct interface to a microcontroller or other logic circuitry. Output enable (OE) places the output in the
high-impedance state for multiple-unit sharing of a microcontroller input line.

The light-to-frequency converter reads an 8 x 8 array of photodiodes. Sixteen photodiodes have blue filters, 16
photodiodes have green filters, 16 photodiodes have red filters, and 16 photodiodes are clear with no filters.
The four types (colors) of photodiodes are interdigitated to minimize the effect of non-uniformity of incident
irradiance. All 16 photodiodes of the same color are connected in parallel and which type of photodiode the
device uses during operation is pin-selectable. Photodiodes are 120 um x 120 um in size and are on 144-um
centers.

Functional Block Diagram

R R S S R S S S ST A

| PP
I Photodiode Current-to-Frequency I
| Array Converter

|

L

@
8
2
2
Al

11

TCS230
PROGRAMMABLE
COLOR LIGHT-TO-FREQUENCY CONVERTER

TAOS046 - FEBRUARY 2003

Terminal Functions

TERMINAL S
NAME NO. Vo DESCRIPTION
GND 4 Power supply ground. All voltages are referenced to GND.
OE | Enable for f, (active low).
ouT (0] Output frequency (f,).
S0, St 152 | Output frequency scaling selection inputs.
S2, S3 7.8 | Photodiode type selection inputs.
Vpp 5 Supply voltage
Table 1. Selectable Options
SO S1 OUTPUT FREQUENCY SCALING (f,) S2 S3 PHOTODIODE TYPE
L L Power down L L, Red
K H 2% L H Blue
H L, 20% H L, Clear (no filter)
H H 100% H H Green
Available Options
DEVICE Ta PACKAGE - LEADS | PACKAGE DESIGNATOR | ORDERING NUMBER
TCS230 -25°Ct0 85°C SOIC-8 D TCS230D

Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)t

Supply voltage; Vpp (SeeNote 1) wusemesns fuass ounessens 50 6 Osnanss 15 I diumiasng teass 6V
Input voltage range, allinputs, V| i -0.3VtoVpp+0.3V
Operating free-air temperature range, TAottt it 0°C to 70°C
Storage temperature rangeuut ittt e -25°C to 85°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 secondsc.oviiiiiiiinnnnn. 260°C

1 Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

Recommended Operating Conditions

MIN NOM MAX | UNIT
Supply voltage, Vpp 27 5 5.5 \
High-level input voltage, V4 Vpp=27Vto55V 2 Vpp \
Low-level input voltage, V) Vpp=27Vto55V 0 0.8 \
Operating free-air temperature range, Ta 0 70 °C

Copyright © 2003, TAOS Inc. The LUMENOLOGY® Company

TEXAS
ADVANCED
OPTDELECTRONIC

SOLUTIONS ™

TAOS

2 www.taosinc.com

TCS230
PROGRAMMABLE
COLOR LIGHT-TO-FREQUENCY CONVERTER

TAOS046 - FEBRUARY 2003

APPLICATION INFORMATION

Power supply considerations

Power-supply lines must be decoupled by a 0.01-uF to 0.1-uF capacitor with short leads mounted close to the
device package.

Input interface

A low-impedance electrical connection between the device OE pin and the device GND pin is required for
improved noise immunity.

Output interface

The output of the device is designed to drive a standard TTL or CMOS logic input over short distances. If lines
greater than 12 inches are used on the output, a buffer or line driver is recommended.

Photodiode type (color) selection

The type of photodiode (blue, green, red, or clear) used by the device is controlled by two logic inputs, S2 and
S3 (see Table 1).

Output frequency scaling

Output-frequency scaling is controlled by two logic inputs, SO and S1. The intemal light-to-frequency converter
generates a fixed-pulsewidth pulse train. Scaling is accomplished by internally connecting the pulse-train output
of the converter to a series of frequency dividers. Divided outputs are 50%-duty cycle square waves with relative
frequency values of 100%, 20%, and 2%. Because division of the output frequency is accomplished by counting
pulses of the principal internal frequency, the final-output period represents an average of the multiple periods
of the principle frequency.

The output-scaling counter registers are cleared upon the next pulse of the principal frequency after any
transition of the S0, S1, S2, S3, and OE lines. The output goes high upon the next subsequent pulse of the
principal frequency, beginning a new valid period. This minimizes the time delay between a change on the input
lines and the resulting new output period. The response time to an input programming change or to an irradiance
step change is one period of new frequency plus 1 uS. The scaled output changes both the full-scale frequency
and the dark frequency by the selected scale factor.

The frequency-scaling function allows the output range to be optimized for a variety of measurement
techniques. The scaled-down outputs may be used where only a slower frequency counter is available, such
as low-cost microcontroller, or where period measurement techniques are used.

Measuring the frequency

The choice of interface and measurement technique depends on the desired resolution and data acquisition
rate. For maximum data-acquisition rate, period-measurement techniques are used.

Output data can be collected at a rate of twice the output frequency or one data point every microsecond for
full-scale output. Period measurement requires the use of a fast reference clock with available resolution directly
related to reference clock rate. Output scaling can be used to increase the resolution for a given clock rate or
to maximize resolution as the light input changes. Period measurement is used to measure rapidly varying light
levels or to make a very fast measurement of a constant light source.

Maximum resolution and accuracy may be obtained using frequency-measurement, pulse-accumulation, or
integration techniques. Frequency measurements provide the added benefit of averaging out random- or
high-frequency variations (jitter) resulting from noise in the light signal. Resolution is limited mainly by available
counter registers and allowable measurement time. Frequency measurement is well suited for slowly varying
or constant light levels and for reading average light levels over short periods of time. Integration (the
accumulation of pulses over a very long period of time) can be used to measure exposure, the amount of light
present in an area over a given time period.

Copyright © 2003, TAOS Inc. ﬁ "

6 | www.taosinc.com

The LUMENOLOGY® Company
TEXAS

ADVANCED
OPTDELECTRONIC
SOLUTIONS *

13

6.2

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45,
46.
a47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57 o
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

Appendix B: Full Code

//including required header files
<Wire.h>
<SoftwareSerial.h>
<Servo.h>

<seeed-kit.h>

#include
#include
#tinclude
#include

//defining each port in the color sensor

const int SO
const int S1
const int S2
const int S3
const int sensorOut

//initializing various global identifiers to zero
int frequency = 0;

int color
int servoAngles[] = {25, 50, 80, 110, 140}; //defining an array with 5 angle readings

9;

int redCounter

int yellowCounter
int orangeCounter
int greenCounter
int purpleCounter
int emptyHole

//initializing servo motors

Servo topServo;

Servo bottomServo;

/*

void setup is where the function declaration and port initializing
is found. The code inside is executed only once at the beginning of
the program and then never again.

*/

void setup() {

/*

the pinMode funtion is used to identify each port
on the arduino board as an input or output port.

*/

pinMode (SO,
pinMode(S1,
pinMode(S2,
pinMode(S3,
pinMode(sensorOut, INPUT);

lcdInit(); //initializes lcd screen

/*

according to the TC230 color sensor datasheet,
setting pin S@ and S1 to HIGH will set the reading
frequency scale to 100%

*/

digitalWrite(S@, HIGH);
digitalWrite(S1, HIGH);

//attaching each servo motor to certain digital port

92.
93.
94.
95.
96.
97.
98.
99.

100.
lo1.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.

112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.

125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.

to
bo
Se

}

/*
t

pServo.attach(5);
ttomServo.attach(4);
rial.begin(9600); // begins the serial monitor function to 9600 baud

he void loop function loops the code inside the block consecutively,

which allows the program to change and respond. It is used to actively

C
o7/
void

in

/*

*/
wh

}

}
/*
T
t
*/
void
de

/!

ontrol the Arduino board.
loop() {
t rotaryDial;

The while loop is the main function of the program and connects
everything together.

ile (true) {

rotaryDial = digitalRead(2); //the value of the rotary dial is constantly being read

if (rotaryDial > @) {
lcdClear(); //clears the screen from previous output
servoMovement(); //executes the servoMovement function below

}

/*
the else function contains functions that are executed
when the sorting mechanism is turned off.

*/

else {

warningScreen(); //executes the warning screen function
valuesReset(redCounter, yellowCounter, orangeCounter

, greenCounter, purpleCounter, emptyHole); //resets the color count val

ues to zero
topServo.write(125); //moves the top servo to the middle
bottomServo.write(90); //moves the bottom servo to the middle

}

his function is what controls the servo motors based off
he color reading.

servoMovement () {
lay(1500);

for (int i = 125; i > 73; i--) {

}
de

co

de
/*

*/

topServo.write(i);
delay(2);

lay(1500);

lor = readColor(); //calls the readColor function which detects the color
lay(10);

The switch functions executes a certain set of code
based off the color determined. Here, there are 6 cases.

15

151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.

switch (color) {
case 1:

redCounter++; //increases the counter value by 1 each time it's detected
bottomServo.write(servoAngles[0]); //gets angle from array and moves servo
lcdPrint (" RED"); //prints color name to the lcd

lcdMoveCursor(9, 1); // moves cursor to second line

lcdPrint("skittles # ");

lcdPrint(redCounter); //prints out the number of skittles
lcdBacklightColour(255, @, ©); //changes lcd backlight color

delay(1500); // sets a delay of 1.5 seconds

lcdClear(); //clears lcd screen

break; //breaks the execution sequence for case 1

case 2:

orangeCounter++;
bottomServo.write(servoAngles[1]);
lcdPrint (" ORANGE");
lcdMoveCursor(e, 1);
lcdPrint("skittles # ");
lcdPrint(orangeCounter);
lcdBacklightColour (255, 100, 0);
delay(1500);

lcdClear();

break;

case 3:

greenCounter++;
bottomServo.write(servoAngles[2]);
lcdPrint (" GREEN");
lcdMoveCursor(9, 1);
lcdPrint("skittles # ");
lcdPrint(greenCounter);
lcdBacklightColour (@, 255, 9);
delay(1500);

lcdClear();

break;

case 4:

yellowCounter++;
bottomServo.write(servoAngles[3]);
lcdPrint (" YELLOW");
lcdMoveCursor(o, 1);
lcdPrint("skittles # ");
lcdPrint(yellowCounter);
lcdBacklightColour (255, 255, 0);
delay(1500);

lcdClear();

break;

case 5:

purpleCounter++;
bottomServo.write(servoAngles[4]);
lcdPrint (" PURPLE");
lcdMoveCursor(9, 1);
lcdPrint("skittles # ");
lcdPrint(purpleCounter);
lcdBacklightColour (128, 0, 128);
delay(1500);

16

212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244
245.
246.
247.
248.
249.
250.
251.
252.
253.
254,
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.

lcdClear();
break;

case 6:
/*
if the compartment where the skittles is supposed
to be is empty for 2 runs, it will execute the a report
for the number of skittles for each color
*/
if (emptyHole == 2) {
colorRunDown();
delay(10000);
lcdClear();
¥
emptyHole++;
bottomServo.write(servoAngles[2]);
lcdMoveCursor(2, 0);
lcdPrint("compartment”);
lcdMoveCursor(4, 1);
lcdPrint("is empty");
lcdBacklightColour(255, 255, 255);
delay(1500);
lcdClear();

case 0O:
break;

¥
delay(300);

for (int 1 = 73; 1 > 20; i--) {
topServo.write(i);
delay(2);

}
delay(200);

for (int i = 20; i < 125; i++) {
topServo.write(i);
delay(2);

color = 0;

}

/*
The following function detects the color based off the
frequency reading. The digitalWrite value depends on
what color hue is being read from the data sheet.

*/

int readColor() {
// Setting red filtered photodiodes to be read
digitalWrite(S2, LOW);
digitalWrite(S3, LOW);
// Reading the output equency
frequency = pulseIn(sensorOut, LOW);
int R = frequency;
// Printing the value on the serial monitor
Serial.print("R= ");//printing name
Serial.print(frequency);//printing RED color frequency
Serial.print(" ");
delay(50);

17

273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294,
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.

}

// Setting Green filtered photodiodes to be read

digitalWrite(S2,
digitalWrite(S3,

HIGH);
HIGH);

// Reading the output frequency
frequency = pulseIn(sensorOut, LOW);
int G = frequency;

// Printing the

value on the serial monitor

Serial.print("G= ");//printing name
Serial.print(frequency);//printing RED color frequency

Serial.print("
delay(50);

// Setting Blue

digitalWrite(S2,
digitalWrite(S3,

");

filtered photodiodes to be read
LOW) ;
HIGH);

// Reading the output frequency
frequency = pulseIn(sensorOut, LOW);

int B =
// Printing the

frequency;

value on the serial monitor

Serial.print("B= ");//printing name
Serial.print(frequency);//printing RED color frequency

Serial.println("

delay(50);

/*

");

These conditions are what determines the color under the sensor.
There is a range for each condition because of the uncertainty

and accuracy

*/

if (R <= 25 &R
color = 1; //

}

if (R <= 20 &R
color = 2; //

}

if (R<=30 &R
color = 3; //

}

if (R<=20 &R
color = 4; //

}

if (R<=328&R
color = 5; //

}

if (R <= 38 &R
color = 6; //

of the sensor.

>= 22 & G <= 39 & G >= 33 & B <= 28 & B >= 23) {
Detects red

>= 16 & G <= 34 & G >= 28 & B
Detects Orange

<= 27 & B >= 21) {

>= 22 && G <= 30 & G >= 21 &&
Detects Green

B <= 26 & B >= 22) {

>= 15 &
Detects

G<=25& G >=20&8B
Yellow

<= 24 & B >= 15) {

>= 26 &
Detects

G <=43 & G >=35&8B
purple

<= 31 & B >= 26) {

>= 34 &
Detects

G <=43 & G >= 37 & B
Nothing

<= 31 & B >= 26)

return color; //return the color number to the servoMovement() function

lcdMoveCursor(4,

// this function prints out to the screen when device is idle
void warningScreen() {

9);

lcdPrint ("WARNING:");

lcdMoveCursor(0,

1);

lcdPrint("STANDSTILL MODE!");

/*
the for loop
*/

is used to add a red fading affect to the lcd screen

18

334, for (int i = 255; i > @; i--) //first for loop runs from 255 to ©

335, {
336. lcdBacklightColour(i, @, 0);
337. }

338. for (int i = @; i < 255; i++) //second for loop runs from @ to 255
339, {

340. lcdBacklightColour(i, @, 0);

341. }

342.

343. }

344, // function for printing out the color report at the end of each run
345. void colorRunDown() {

346. lcdPrint("R=");

347. lcdPrint(redCounter);

348. lcdMoveCursor(6, 0);

349. lcdPrint("G=");

350. lcdPrint(greenCounter);

351. lcdMoveCursor(13, 9);

352. lcdPrint("Y=");

353. lcdPrint(yellowCounter);

354, lcdMoveCursor(4, 1);

355, lcdPrint("P=");

356. lcdPrint(purpleCounter);

357. lcdMoveCursor(10, 1);
358. lcdPrint("0=");

359. lcdPrint(orangeCounter);
360. }

361. // This function is used to reset the counter values to zero after run is complete
362. void valuesReset(int& redCounter, int& yellowCoarunter, int& orangeCounter

363. , int& greenCounter, int& purpleCounter, int& emptyHole) {

364.

365. redCounter = 0;
366. yellowCounter =
367. orangeCounter =
368. greenCounter = 0;
369. purpleCounter = 0;
370. emptyHole = 0;
371.

372. }

P

[ON)

3

