
Noname manuscript No.
(will be inserted by the editor)

Complexity of approximating phrase alignment

Antonina Kolokolova · Renesa Nizamee

the date of receipt and acceptance should be inserted later

Abstract We study the complexity of finding a phrase alignment that has a signif-
icant overlap with an optimal alignment. In particular, we consider several versions
of the phrase alignment problem (more specifically, the bijective weighted sentence
alignment) and identify which parts of the problem make it hard to solve in this
setting.

We discuss ways of representing the solution for the general weighted sentence
alignment as well as phrases-to-words alignment problem, and show that comput-
ing a string which agrees with the optimal sentence partition on more than half
(plus an arbitrarily small polynomial fraction) positions for the phrases-to-words
alignment is NP-hard. For the general weighted sentence alignment we obtain such
bound from the agreement on a little over 2/3 of the bits.

Additionally, we consider finding a phrase alignment which is close with respect
to edit distance, and generalize the results above to show similar lower bounds.

Keywords Phrase alignment · weighted sentence alignment · approximation ·
lower bounds · edit distance

1 Introduction

It is a common task in machine translation and natural language inference to
determine whether one sentence can be converted into another by replacing blocks
of text with semantically equivalent blocks, and possibly changing the order of the
blocks [MGM08]. For example, the sentence “The president of the USA spoke on
New Year’s day” and the sentence “On January 1st, Obama gave a talk” convey

A. Kolokolova
Memorial University of Newfoundland
Tel: (709) 864-3657
Fax: (709) 864-2009
E-mail: kol@mun.ca

R. Nizamee
Memorial University of Newfoundland
E-mail: mrn271@mun.ca

2 Antonina Kolokolova, Renesa Nizamee

the same information; we can convert the former into the latter by replacing “the
president of the USA” with “Obama”, “on New Year’s day” with “on January
1st” and “spoke” with “gave a talk”. This task is known as the phrase alignment
problem; McCarthney, Galley and Manning [MGM08] describe the applications of
this problem in detail. Here, we study the complexity of this problem, with the
goal to identify the hardness of parts of this task in the context of approximation.

Following the setting of DeNero and Klein [DK08], we call the two sequences of
words (tokens) to be aligned “sentences”, a consecutive block of words a “phrase”,
and an aligned pair a “link”. A set of links such that each word (in either sentence)
occurs in exactly one link is called an alignment of the sentences. In the example
above, an alignment can be {(the president of the USA, Obama), (spoke, gave
a talk), (on New Year’s day, on January 1st)}. In practice, there can be various
degrees of how good a certain link is: there is a better correspondence between
“Obama” and “the president of the USA”, than between “Obama” and “the pres-
ident”, for example; “spoke” and “gave a talk” might not be as close semantically
as the other two links. But either of them would be better than aligning “USA”
with “Year’s day”. Thus, another parameter of the problem is a scoring function
assigning a weight to each potential link. The weighted sentence alignment problem
is defined then as finding a phrase alignment with the best weight. In the machine
translation application, where each phrase is linked with its potential translation,
statistical models are used to estimate the weight of each link as its probability
and the weight of an alignment is the the product of weights of its links.

In a more general statement of the problem, in particular in the natural lan-
guage inference setting [MGM08], the original sentence (text) can contain much
more information than the resulting sentence. However, it can be reduced to the
bijective case by padding the target sentence with null words (half the number of
words of the original sentence suffices), and setting the weight of links between
any phrase over the null words and any phrase of the original sentence to be 1,
and weight of any link with a phrase involving both null and non-null words to be
0.

In [DK08], DeNero and Klein show that the weighted sentence alignment prob-
lem is NP-hard, with its decision version being NP-complete. Several approaches
are commonly used to deal with NP-hardness in practice: restricting the problem,
heuristics and approximation algorithms. An early example of such a restriction
is a bag-of-words alignment of IBM models 1 and 2 for statistical machine trans-
lation [BPPM93]. In this setting, there is no need to determine a partition of
the source and target sentences into phrases of the optimal alignment, which sig-
nificantly reduces computational complexity of a problem. We will focus on the
general alignment of phrases to phrases, as well as the setting of the IBM models
3, 4 and 5, in which phrases in one string are matched to the words in the other:
this variant of the problem is already NP-complete (unless the alignment has to
respect the order of phrases). To simplify the problem, we will assume, following
[DK08], that the probability (that is, weight) of each link is given as part of the
input.

Heuristics have been a popular approach for phrase alignment, used both as
a direct application of a heuristic and in the context of modelling a problem in a
Integer Linear Programming framework, and then invoking heuristics-based solvers
for ILP. In particular, hill climbing has been used in [MW02,ON03,BCBOK06] and
simulated annealing in [MGM08] to solve the problem of partitioning strings into

Complexity of approximating phrase alignment 3

phrases. However, although useful in practice, such heuristic algorithms give no
guarantee of the closeness to optimality.

In this paper we will focus on the complexity of approximating an optimal
alignment. However, we will consider a somewhat different notion of an approx-
imation. Usually, an approximation algorithm produces a solution with a value
close enough to the value of an optimal solution (for example, an alignment with
probability at least half that of the optimal). But such an alignment can be very
different from an optimal alignment. This invites a natural question: is it possible
to compute a solution, an alignment, which is guaranteed to share a significant
fraction of links with an optimal solution? For example, is it possible to compute
a translation in which most of the source sentence is translated correctly, even if
the incorrectly translated part may bring the overall probability of the alignment
down to 0? To investigate this type of approximation, we will use the structure
approximation framework of [HMvRW07].

1.1 Approximating solution structure

Motivated by cognitive psychology applications such as the Coherence problem,
Hamilton, Müller, van Rooij and Wareham [HMvRW07] presented variant of ap-
proximation which they called a structure approximation. This framework extends
the notion of finding solutions close in value to the optimal to close according to a
specified metric. More precisely, the description of a problem includes a distance
function d(y, z) which may depend on the input, and an approximate solution y

is considered good if d(y, z) is sufficiently small for some optimal solution z. This
generalizes the standard notion of approximation as the distance d(y, z) can be
defined as a log of the ratio of values of solutions y and z. In a follow-up paper
[vRW12], this approach was applied to other problems such as the coherence model
of belief fixation in cognitive science.

[HMvRW07] present a number of lower bounds results for arbitrary distance
functions such as showing that there are no NP-hard problems with a structure
analogue of FPTAS for an arbitrary function. Among the other distance function
they consider, the most prominent is the Hamming distance. This is a very natural
metric for comparing how close two solutions encoded as binary strings are. For
example, in the Hamming approximation for Max3SAT a solution close to the op-
timal would be considered a solution which differs from an optimal in few variable
assignments, even if these variable assignments dramatically decrease the number
of satisfied clauses.

Several other papers include results that can be interpreted as lower bounds
for structure approximability with respect to Hamming distance. The reconstruc-
tion of a partially specified NP witness, considered in the 1999 paper by Gal,
Halevi, Lipton and Petrank [GHLP99], is probably the first result along these
lines. There, they show that it is possible to reconstruct a satisfying assignment
to a formula from N1/2+ε bits of a satisfying assignment of a related (though
larger) formula. Their proofs rely on erasure codes, thus ε is a fixed parameter.
They also consider Graph Isomorphism, Shortest Lattice Vector and Clique/Vertex
Cover/Independent set. In 1999, Kumar and Sivakumar [KS99] showed that for any
NP problem there is a verifier with respect to which all solutions are Hamming-far
from each other: make the witnesses to be encodings of natural witnesses to the

4 Antonina Kolokolova, Renesa Nizamee

original problem by some error-correcting code, the verifier decodes the witness
and then checks it using the original verifier. Then, list-decoding allows one to
find a correct codeword for the witness from a string which is within n/2 +n4/5+γ

Hamming distance from it. Following this, Feige, Langberg and Nissim [FLN00]
show that some natural verifiers (e.g., binary strings directly encoding satisfying
assignments for variants of SAT, encoding sequences of vertices for Clique/Vertex
Cover, etc) are often hard to approximate to within Hamming distance n/2−nε for
some ε dependent on the underlying error-correcting code. Guruswami and Rudra
[GR08] improve this ε to 2/3 + γ, but on the negative side argue that methods
based on error-correcting codes can only give bounds up to n/2−O(

√
n log n).

The recent paper of Sheldon and Young [SY13] settles much of the Hamming
distance approximation question, providing the lower bounds of n/2 − nε for any
ε for many of the problems considered in [FLN00], as well as upper bounds of
n/2 for several natural problems including Weighted Vertex Cover, and a surpris-
ing n/2 + O(

√
n log n) lower bound for the universal NP-complete language. The

latter result they extend to existence of such very hard to approximate verifiers
for all paddable (in Berman-Hartmanis [BH77] sense) NP languages, improving
on [KS99]. Their proof techniques avoid error-correcting codes altogether, instead
combining amplification with search-to-decision (Turing) reductions and down-
ward self-reducibility.

1.2 Our results

In this paper, we analyse the complexity of approximating solution structure of
the weighted sentence alignment problem (WSA), in particular its variant in which
phrases in the source sentence are aligned with words in the target sentence (PWSA
problem). We show that for PWSA, even when the weight function is restricted
to take {0, 1} values, computing an alignment which agrees with an optimal on at
least n/2+nε, for any constant ε > 0, links is NP-hard, where n is the length of the
source sentence. Moreover, the hardness stems from the problem of the partitioning
the source sentence into phrases: we show how to modify the NP-hardness proof
in such a way that the optimal alignment can be recovered directly from such
partition. More specifically, we define a compact solution representation for that
problem to be a binary string encoding the locations of phrase boundaries, and
show that computing a string which agrees with it on at least n/2 + nε positions
(that is, a string within Hamming distance n/2−nε) is already NP-hard. Note that
since expected Hamming distance between any string with n/2 1s and a random
string with n/2 1s is n/2, there is a randomized algorithm giving an expected
Hamming approximation n/2. Therefore, our results are tight.

For the more general case where the target string is required to be partitioned
into phrases as well (and thus the solution represents partitions for both strings),
we obtain a weaker bound requiring a 2n/3 + nε agreement for NP-hardness.

A different metric of the distance between two solutions encoded in this form
is an edit distance: there, a string resulting from shifting a consecutive group of
phrases by one word is considered to be distance 2 from the original, even if the
shift has affected a significant portion of the string. We show how the Hamming
distance approximation results can be extended to give edit distance approxima-
tion for two standard NP-hard problem 3SAT and VertexCover, and how to apply

Complexity of approximating phrase alignment 5

this technique to give lower bounds on edit distance approximation of the WSA
and PWSA problems. To our knowledge, these are the first, if mathematically sim-
ple, such lower bounds on approximating solution structure with respect to edit
distance (although [HMvRW07] do give a lower bound on edit distance solution
structure approximation for the Longest Common Subsequence problem in the
parameterized setting).

2 Preliminaries

Following DeNero and Klein [DK08], we formally define a weighted sentence align-

ment (WSA) problem as follows. Let e and f be sentences. The phrases in e are
represented by a set {eij}, where eij is a sequence of words from in-between-word
position i to j in e; f is represented by {fkl} in the same fashion. A link is an
aligned pair of phrases (eij , fkl). An alignment is a set of links such that every
word (token), in either sentence, occurs in exactly one link (here, we treat each
occurrence of a word as a separate word). A weight function φ : {(eij , fkl)} → R
assigns a weight to each link. A total weight of an alignment a, denoted φ(a), is
a product of weights of its links. Now, an optimization version of the weighted
sentence alignment problem asks, given (e, f, φ), to find the alignment with the
maximum weight. A decision version of this problem can be stated as finding an
alignment a of weight φ(a) ≥ 1.

Theorem 1 [DK08] The decision version of the WSA problem is NP-complete.

Proof DeNero and Klein in [DK08] show NP-hardness of WSA by the following
reduction from 3SAT. Let F be a formula with n variables and m clauses. The
construction will produce an instance I of WSA consisting of sentences e and f ,
and a function φ such that there is an alignment of weight (at least) 1 in I if and
only if F is satisfiable. For that, let sentence e consist of blocks of words as follows,
with one word for each occurrence of a literal: x1i . . . x

pi
1 x̄

1
i . . . x̄

qi
i , where pi and qi

are the number of positive and negative occurrences of xi in F , respectively. Thus,
the length of e will be ≤ 3m, with equality if every clause in F contains exactly 3
literals. Now, the sentence f will contain two types of words. The first m words,
c1 . . . cm, will correspond to the clauses of F . They will be followed by “slack words”
s1 . . . sn, one for each variable in F . Finally, the function φ will only have values
0 and 1, and it will have the value 1 in two cases. First, if the link is of the form
(ci, lk), where literal lk occurs positively in clause ci (for all occurrences of lk).
This will be used to align each clause with a literal that makes it true. Second,
each slack variable si corresponding to a variable i will be aligned with all possible
substrings of x1i . . . x

pi
1 x̄

1
i . . . x̄

qi
i in which either all positive or all negative copies of

the variable (or both) are present. For example, if there is one positive occurrence
of xi and two negative occurrences of xi, then the links with φ(ei,j , fk,l) = 1 have
fk,l = si and ei,j either xix̄ix̄i, or x̄ix̄i, or xix̄i, or xi. The first one covers both
positive and negative, the second covers all negative, and the last two all positive
occurrences of the literal. These slack variables are needed to ensure that either
only positive or only negative literals are left unmatched to be aligned with clause
words.

To see that this reduction works, note that a satisfying assignment becomes an
alignment in which every clause word is matched with one literal that makes it true

6 Antonina Kolokolova, Renesa Nizamee

(starting from the front of the block for positive and end of the block for negative),
and slack variables cover the literals that remain unmatched to clauses. For the
other direction, note that there is exactly one link for each slack variable: if it is
matched with a block that contains all positive occurrences of the corresponding
variable in F , the corresponding variable can be set to false, otherwise it can be
set to true (if it is matched with the block containing all occurrences, then either
assignment works).

Assuming that F has exactly 3 variables per clause, |e| = 3m, |f | = m+n, and
|φ| ≤ (3m)2(m + n)2, therefore the resulting instance is polynomial size, and the
reduction runs in polynomial time.

Therefore, WSA is NP-hard. As an alignment can be checked for validity (by
asserting that each word appears exactly once) and the weight of the alignment
can be computed in polynomial time, the decision version of WSA is NP-complete.

Alternatively, NP-hardness of WSA can be shown by a reduction from the
VertexCover problem. There, we are given an undirected graph G = (V,E) with
n vertices and m edges, and asked whether there exists a subset of k vertices
called a cover such that every edge has as its endpoint at least one vertex in the
cover. In an optimization version, a minimal-size such cover is sought. To show
V ertexCover ≤p WSA, construct the instance as follows. The words of e will be
blocks of copies of each vertex vi, where the length of each such block is the degree
of vi, denoted deg(vi), plus 1, so |e| = 2m+n. The words of f will be of three types.
The first m words c1 . . . cm will correspond to edges of G; the next n words are
the “slack variables” s1 . . . sn covering leftover copies of vertices, with one extra
copy always covered by si, and the final n − k words t1 . . . tn−k in f will ensure
that the size of the cover is at most k. Thus, |f | = m+ n+ (n− k) = m+ 2n− k.
With this intuition, define φ so that φ(vi,j , cl) = 1 if edge cl has vi as its endpoint
(for each copy vi,j of vi), then φ(vi,j . . . vi,deg(vi)+1, si) = 1 for each i and all j,
1 ≤ j ≤ deg(vi). Finally, each tl can cover the full block for every vertex (except
for the last copy), so φ(vi,1 . . . vi,deg(vi), tl) = 1 for every tl and every vi.

If there is a vertex cover of size k in G, then an alignment in the constructed
instance will link all vertices other than the k vertices in the cover with t-variables,
will link each edge with a copy of a vertex in the cover (in order starting from vi,1),
and variables si will be linked with a block of remaining copies of the corresponding
vertices (consisting of at least one special copy, more if some edges have both
endpoints in the cover). For the other direction, variables tl denote vertices not in
the cover, so the cover consists of the remaining vertices. If there is a cover of size
smaller than k, then some si variables align with the whole block corresponding
to such extra vi, which is allowed by our definition of φ.

2.1 Defining a natural witness for WSA

Before we can talk about structure approximation of WSA, we need to define
what is meant by the witness (or feasible solution) to the WSA problem. Here,
we will consider an alignment of any weight to be a feasible solution; the question
remains how to represent an alignment. In DeNero and Klein [DK08], an alignment
is visualized as a matrix with words of e as columns, words of f as rows and a
cell (i, k) highlighted (say, set to 1) if the block with the ith word of e is linked to

Complexity of approximating phrase alignment 7

the block with the kth word of f . Each link thus becomes a rectangular all-ones
block in the matrix. This representation is not the most efficient in terms of space,
although it is convenient for visualization of the solution. In particular, for the
instances coming from the 3SAT ≤p WSA reduction above, any feasible solution
will only have 3m cells out of 3m× (m+ n) = N possible cells highlighted. In this
case, it is trivial to approximate the witness to an instance of WSA produced from
this 3SAT reduction: an all-zero matrix already gives a N − (m + n) Hamming
distance approximation.

Now, notice that the reduction above proves NP-hardness for a special case
of the problem: that where all phrases in f are single words. For this restricted
problem, a Hamming distance (and therefore an edit distance) approximation by
an all-zero matrix is |e| ∗ |f | − |f | close to any solution. One may object that an
all-zero matrix is not a valid alignment: here, we can construct an alignment by
matching first |f | − 1 words of e with words of f , and all the remaining words of
e as one phrase to the last word of f . This gives us a |e| ∗ |f | − 2|f | Hamming
approximation for the alignment represented as |e| × |f | matrix.

As we are looking for natural (and compact) witnesses, we will use a different
representation of the solution. For that, notice that finding a solution to WSA
involves solving two problems: first, we need to determine how to break each
sentence into phrases, and second, to determine an optimal alignment using only
links involving these phrases. So a feasible solution can consist of two components:
the first component with two binary strings of length |e| − 1 and |f | − 1, with 1
in between-phrase positions and 0 otherwise. The second component can list the
order of phrases in f mapping to phrases in e; if there are n phrases in each, then
the length of that component is n log n.

What part of computing this witness, and thus of solving the WSA problem,
is the hardest? Consider again the set of instances of WSA resulting from the
reduction. We would like to define a special case of WSA for which we could use
as small a witness as possible, and still have the NP-hardness reduction above
work. As noted above, one special property of this reduction is that it always
produces a partition of f where every phrase is exactly one word. The information
encoded in the second part of the witness described in the previous paragraph, the
string of |f | − 1 bits denoting the phrase boundaries in f , is therefore redundant.

Secondly, φ involved in the reduction has a special property that it can only take
values 0 and 1. In that case, after solving the first part of the problem (finding
splitting points between phrases in e and f), the second part can be computed
in polynomial time by the standard network flow algorithm for bipartite perfect
matching, with phrases of e and f forming the vertices of the bipartite graph,
and an edge connecting two vertices v and u iff φ(v, u) = 1. Thus, in this case it
is enough to compute a witness which contains only the binary strings denoting
splitting points between phrases, as described above.

Now, combining the two restrictions we will define a problem PWSA, which is
a special case of WSA satisfying the properties above.

Definition 1 (PWSA) The PWSA (for “partition” WSA) problem is defined as
follows. Given as input (e, f, φ) where φ : {(eij , fkl)} → {0, 1}, find a partition of e
into phrases such that there is an alignment of weight 1 of phrases in this partition
with words of f .

8 Antonina Kolokolova, Renesa Nizamee

The natural witness w for PWSA will be a binary string w1 . . . w|e|−1 such that
if eij is a phrase in the optimal alignment, then wi = wj = 1, or wj = 1 and i = 0,
or wi = 1 and j = |e|; and ∀k, i < k < j,wk = 0. Note that w has to have |f | − 1 1s
for any valid alignment.

Here, the NP-hardness follows by the same 3SAT ≤p WSA reduction as in
theorem 1, where the satisfying assignment is recovered from w by running the
network flow algorithm and determining, as before, the values of the variables of
F from the links with slack variables si. Moreover, for variables with more than
two positive and two negative occurrences the value can be determined directly
from w. Suppose a slack variable covers all positive occurrences of a variable v,
and leaves out some negative occurrences. Then, there will be no splitting points
within the block denoting the positive literals, but there will be as many splitting
points for the negative literals as there are clauses which use them. From that,
already, it can be inferred that the negative occurrences were used to satisfy the
clauses, thus the variable needs to be set to false. So if a substring wij of w
corresponding to a block of encoding a literal v (without the endpoints) is of the
form 1111....0000, then we can immediately infer that v = true, otherwise if it is of
the form 000....1111, v = false. It would not work if there is exactly one positive
or negative occurrence of a variable; but this can be resolved by modifying the
reduction so that there is always an extra “viv̄i” (or a single dummy variable) in
the middle of each block, and φ(x . . . x) = φ(x̄ . . . x̄) = 0. Then, the partition of e
uniquely specifies the optimal alignment.

3 Edit distance inapproximability

Consider dE(y, z) to be the edit distance between strings y and z, that is, the
number of insert, replace and delete a symbol operations needed to convert y

into z. This function, even though in some respect related to Hamming distance,
nevertheless has a very different behaviour. For example, a string 01010101 and
a string 10101010 have the maximal Hamming distance of n = 8, however their
edit distance is just 2, corresponding to deleting a 0 in front and inserting it in
the back of the string. For Hamming distance, a random string is expected to be
within n/2 from any string, but it is not clear what expected edit distance between
two random strings is. If two strings are far in the edit distance though, then in
particular they are far in the Hamming distance. So lower bounds on edit distance
approximability imply lower bounds for the Hamming distance, but the reverse is
not immediate.

However, in case when one of the strings is a string of all 0s or all 1s then
the two notions coincide, as long as the length of the approximating string is the
same. Indeed, even edit distance with transpositions to a string of all 1s from any
given string is equivalent to Hamming distance.

Lemma 1 For any string x of length n, its Hamming distance to a string of n 1s is

equal to the edit distance.

The proof follows directly from the fact that only replacements and insertions
introduce 0s, and each insertion needs to have a corresponding deletion. Now,

Complexity of approximating phrase alignment 9

Sheldon-Young [SY13] proof that a natural witness for SAT cannot be Hamming-
distance-approximated to within n/2 − nε, for any constant ε > 0, proceeds as
follows. First, note that it is enough to have an algorithm determining the value
of one variable; the formula is then simplified and the process is repeated until the
whole assignment is revealed. Now, the proof proceeds by amplifying an arbitrary
variable zi n

1/ε times, that is introducing n1/ε new variables and adding clauses
stating that they are equivalent to zi. Now, if there is a polynomial-time algorithm
that is guaranteed to return a witness within n/2 − nε Hamming distance of a
satisfying assignment, then such a string will be correct on majority of copies of
zi. Taking the majority thus gives the correct value of this variable, and repeating
the process n times, substituting computed values on each iteration, results in a
satisfying assignment. The resulting algorithm for SAT will run in time nO(1/ε)

times the running time of the assumed polynomial-time approximation algorithm,
which is polynomial when ε is constant.

Theorem 2 If there is a polynomial-time algorithm that, for some constant ε > 0, can
approximate the natural witness to SAT to within edit distance n/2− nε, then P=NP.

Proof Note that a natural witness for this problem consists of either n1/ε 0s or n1/ε

ones, together with n− 1 symbols of arbitrary values for the rest of the variables;
moreover, we can assume that all values of the copies of zi are together, for example
forming the first n1/ε positions of the string. Now, suppose there is an algorithm
that approximates the satisfying assignment above, with n1/ε copies of zi, to within
edit distance N/2 −Nε rather than Hamming distance, where N = n + n1/ε. Let
y′ be a string returned by the approximation algorithm and y the corresponding
optimal solution. Consider only the first n1/ε positions in y′, ones corresponding to
the copies of zi. Without loss of generality, assume that zi = 1 in y. These positions
can be changed to 0 (to obtain y′) by either a replacement or an insertion/deletion
pair moving values of the remaining n − 1 variables into the first n1/ε positions.
But as discussed above, in this case the number of insert/delete pairs is at least
as large as the number of replacements. Therefore, the same argument as for the
Hamming distance applies, and bounding the edit distance between y and y′ by
N − Nε means that majority of the copies of zi in y′ have a correct value. Note
also that this argument works even if transposition operations are allowed.

A similar argument can be used to show n/2 − nε lower bound for the edit
distance approximation of VertexCover; however, as it will involve a string of 1s and
a string of 0s, the only edit distance operations allowed will be insertions, deletions
and replacements. Recall that in the MinVertexCover the goal is to determine a
minimal set of vertices such that every edge has at least one endpoint in the cover;
the decision version VertexCover asks to determine if there is a cover of size at
most k. A natural witness to VertexCover is a binary string of length n = |V |,
where a bit corresponding to a vertex is 1 iff that vertex is in the cover. In the
[SY13] proof of Hamming distance inapproximability of this problem, in an input
graph a copy of an arbitrary vertex v is made and an even-length path on ≥ 2n1/ε

vertices is added between v and its copy v′. Now, as a (minimal) vertex cover of
an even-length path consists of either all even or all odd vertices, we say that the
original v is in the k + n1/ε cover if all even vertices are in that cover, otherwise
v is not in the cover. Then the argument proceeds by showing that the majority

10 Antonina Kolokolova, Renesa Nizamee

of the vertices on the path will be correctly placed by the same calculation as for
SAT above.

Theorem 3 Unless P=NP, no polynomial-time algorithm can approximate the natural

witness to VertexCover within edit distance n/2− nε, for any constant ε > 0.

Proof Consider the [SY13] construction described above, but with a different nam-
ing convention for the variables in the witness. Let variables v1 . . . vn be the original
variables, v′ a copy of a selected variable e.g. of v1, u1 . . . un1/ε be even variables
on the path from v to v′ and w1 . . . wn1/ε be the odd variables on that pass. Now,

in the witness the first n1/ε positions will correspond to the ui variables, followed
by vis, in turn followed by the wis.

Now, the same kind of argument as before applies. The witness, a characteristic
string of a vertex cover of size K = k + n1/ε, will be encoded by either a string of
n1/ε 0s followed by some string of length n + 1 followed by n1/ε 1s, or a similar
string with 0s at the beginning and 1s at the end. Now, similarly to the SAT
construction, we would like to argue that a sequence of N/2−Nε of arbitrary edit
operations (insertions, deletions, replacements) would not result in any string that
differs from the original on the u-part and w-part in more than N/2−Nε positions.

Consider a pair of insert/delete operations applied to the above string encoding
a K-cover. Suppose, without loss of generality, that the correct string starts with
1s and ends with 0s. Consider deleting a value from the u part of the string and
inserting it into the w part. Now, the middle part of the string, corresponding to
the v variables, could become maximally far from the encoding of the K- vertex
cover at that point (i.e., if it was of the form 01010101), however to determine
whether v is in the cover, only variables ui’s and wj ’s are relevant. A pair of
insert-delete operations then introduces at most one 0 into the u part (by shifting
the v part into it), and at most one 1 into the w part by insertion. Therefore,
the “damage done” to these parts of the string is no more than from doing two
replacements, and the argument still applies to an already corrupted string.

Therefore, if there exists a structure approximation algorithm for vertex cover
that can consistently return a string within edit distance n/2 − nε from an op-
timal cover, then this algorithm can be used to determine exactly whether any
given variable is in the intended cover. By Turing/search-to-decision reduction,
from there the actual cover can be computed. In this reduction, if a vertex was
determined to be in the cover, then recurse on a graph without this vertex, and
otherwise recurse on a graph without this vertex and all of its neighbours.

So far, we have discussed the complexity of approximating an NP witness,
however in majority of practical problems it is approximating an optimal solution
which is of interest. But since lower bounds on decision problems imply lower
bounds on optimization problems, the results above give inapproximability of the
optimization version of this problem, in particular MaxSAT and MinVertexCover.

4 Hamming distance and edit distance inapproximability of PWSA and

WSA

In this section we will show that PWSA cannot be Hamming or edit distance
structure approximated to within n/2 − nε, with respect to the witness defined

Complexity of approximating phrase alignment 11

above. From this, the structure inapproximability of WSA can be derived, albeit
with weaker parameters. Note that a random string with n/2 1s has expected
Hamming distance n/2 from any given string with n/2 1s; the larger disparity
between the number of 0s and 1s gives a better expected Hamming distance.
Thus, there is a randomized algorithm approximating PWSA to within Hamming
distance n/2, but the results below show that doing better than that by a small
inverse polynomial amount is NP-hard.

Theorem 4 (Hamming inapproximability of PWSA) Let (e, f, φ) be a valid

input to PWSA. If there is a polynomial-time algorithm A(e, f, φ) computing a string

w which is within Hamming distance n/2 − nε of a witness for any constant ε > 0,
then P=NP.

Proof We will show how to use such a structure approximation algorithm A for
PWSA to compute the exact value of the first variable in F , in a manner similar
to the proof of Hamming inapproximability of SAT.

Let F be a formula on n variables and m clauses. Choose k such that nk > 1.5m.
Now, augment F with nk/ε copies of the dummy clause (v ∨ v̄) to obtain a new
formula F ′. If the reduction from theorem 1 is applied to this F ′, it will have an
effect of introducing nk/ε copies of the literal v and nk/ε copies of the literal v̄ as
additional words of e (that is, the first nk/ε + p words of e will be copies of v, and
the following nk/ε+q words of e will be copies of v̄, where p and q are the numbers
of positive and negative occurrences of v in the original F .) The clauses (v ∨ v̄)
will become nk/ε new words in f (say first nk/ε words of f). Finally, φ(eij , fkl)
is defined as before with respect to the augmented formula. This amplification
preserves the correctness of the reduction, as the link (eij , s1) forces only copies
of v or only copies of v̄ to be used to satisfy the dummy clauses. Now, if w is a
correct witness (of length N = 3m + 2nk/ε − 1) to this instance, the value of v
can be determined immediately: if w starts with a string of at least nk/ε 1s, then
v = true, and if w starts with at least nk/ε 0s, then v = false.

Suppose that there is an algorithm A that returns a “corrupted” string w′ which
agrees with w on at least N/2+Nε bits. Here, we are not even concerned whether w′

is a valid alignment (i.e., has |f |−1 ones); any such w′ will work. That is, w′ agrees
with w on (3m+2nk/ε−1)/2+(3m+2nk/ε−1)ε ≥ (3m+2nk/ε−1)/2+nk positions.
Now, suppose that all the errors lie within the 2nk/ε positions corresponding to
extra copies of v and v̄. Since we chose k such that nk > 1.5m, and ignoring −1/2,
there are at least nk/ε + nk − 1.5m > nk/ε correct bits in that block, that is more
than half of copies of v and v̄ are computed correctly. Taking majority now gives
us the correct value of v.

This result can be extended to show edit distance inapproximability of PWSA
using the ideas from the edit distance inapproximability proof for VertexCover.

Corollary 1 PWSA cannot be approximated in polynomial time to within edit distance

n/2− nε for any constant ε > 0 unless P = NP .

Proof We will use the same class of instances as in theorem 4. Note that the sub-
string of w that we are interested in is w1 . . . wr, where r = 2nk/ε + p + q, which
is the block corresponding to the first variable v in F . In a correct witness, this
substring is either of the form 1111....000000 or 000....11111, with the number of 0s

12 Antonina Kolokolova, Renesa Nizamee

and 1s at least nk/ε each. Now, suppose an approximation algorithm A produces
a string w′ which is edit distance N/2−Nε of w; that is, w′ can be converted to w
with at most N/2 + Nε insertion, deletion and replacement operations. Consider
a substring w′1 . . . w

′
r in w′. As for the case of VertexCover, we can argue that the

Hamming distance between w1 . . . wr and w′1 . . . w
′
r is at most N/2 − Nε. Indeed,

suppose for the sake of contradiction that the Hamming distance between w1 . . . wr
and w′1 . . . w

′
r is greater than the edit distance between these two substrings. As

they have the same size, the number of insertions is the same as the number of
deletions. Now, it is sufficient to say that the pair insertion/deletion can introduce
at most one 0 in the “1111...1” part, and at most one 1 in the “0000..000”, by the
same argument as in theorem 3. Therefore, the Hamming distance inapproxima-
bility implies edit distance inapproximability with the same parameters.

In the proofs above, we have shown inapproximability results for the problem
PWSA, in which the second sentence is assumed to be partitioned as one word
per phrase. A more realistic scenario would be to assume that the witness consists
of the partition strings for both e and f (here, we are still assuming that φ takes
values in {0, 1}). The corollary below shows that for a weaker bound, there is
still an inapproximability. The weakening here comes from the fact that our block
becomes a smaller fraction of the total length of the witness, since f contains nk/ε

words corresponding to the dummy clauses.

Corollary 2 WSA with φ ∈ {0, 1} cannot be approximated to within Hamming dis-

tance or edit distance 2n/3 + nε for any constant ε > 0.

Proof Consider the same reduction as before, but now the witness is of length
|e| + |f | and encodes partition into phrases of f as well as of e. Thus, the total
length N of the witness becomes, ignoring “-1”s, N = (3m+2nk/ε)+(nk/ε+m+n)
= 4m+3nk/ε+n. If the calculation above is done with this value of N , then we end
up with only 0.5nk/ε guaranteed correct positions in our 2nk/ε block of interest.
We need c, 0 < c < 1, such that N ∗ c+Nε − (N − 2nk/ε) > nk/ε; choosing c = 2/3
satisfies this condition.

5 Conclusions

In this paper we have considered the problem of approximating solution structure
for the weighted sentence alignment problem and its phrase-to-word variant. We
have shown that a partition of a source string into phrases for which there is
an optimal alignment is hard to approximate to within Hamming distance or edit
distance n/2+nε for all ε, where n is the length of the source string. We adapted the
framework of [HMvRW07] and the techniques of [SY13] for this task, in particular
showing how the Hamming distance results of [SY13] can be extended to edit
distance for several problems.

Additionally, the discussion of the most compact representation of the solutions
to WSA and its variants suggests a direction for the parameterized complexity
analysis of this problem. The “source of intractability” there seems to be the
partitioning task. It is known, for example, that limiting the distance, in terms of
position, at which the linked phrases can be (generalizing the “monotone WSA”,
where the alignment must preserve the order of phrases) allows the problem to

Complexity of approximating phrase alignment 13

be solved in polynomial time by a dynamic programming algorithm [DeN10]. Can
limiting the number of phrases or the length of phrases give a fixed-parameter
tractable algorithm for WSA or would it be W[1]-hard? Note that limiting both
the number and the length of phrases does give an FPT algorithm, but it is
not interesting since bounding both puts a limit on the length of the string itself.
Another note is that the reduction from Vertex Cover contains a block of k′ = n−k
t-words; thus, considering it a reduction from k′-independent set, the parameter
k′ suggests W[1]-hardness. However, this does not give a natural parameter of
WSA corresponding to k′, as the length of f depends on the size of the graph.
Yet another parameter that can be considered, in the {0, 1} framework, would be
the maximal number of links of weight 1 per phrase. As real-world sentences to be
translated tend to be of restricted types, such parameterized analysis may explain
the success of heuristics and integer linear programming approach to solving WSA.

The analysis of the approximation algorithms based on the integer linear pro-
gramming formulation of the WSA used by [DK08] and others is another interest-
ing question. Is there a linear programming-based or SDP approximation algorithm
for WSA? And would an approximation produced by such algorithm agree with the
elements of the optimal solution enough to give a matching upper bound for the
approximating solution structure (as it is for weighted MinVertexCover [SY13])?
Here we did not go into details of the underlying statistical models, rather work-
ing in the simplified bijective setting of [DK08]. How would such upper bounds
apply in a more general context of phrase alignment problems, both with respect
to optimality conditions and the requirement that alignment has to be bijective?

Finally, in this paper we considered the weighted sentence alignment problem
and distance functions Hamming distance and edit distance. Exploring the setting
of structure approximation further, it would be interesting to see if there is a
generic way to build a lattice of hardness implications for various metrics. We
conjecture, in particular, that any metric with a certain “locality property” (that
is, one “unit of change” only affects a small, though not necessarily constant
number of positions) should be inapproximable by generalizing Hamming distance
results. Alternatively, one wonders if there is a non-trivial, practically interesting
metric for which there is, indeed, a fast approximation algorithm for any NP-hard
problem. In that respect, considering various metrics and their interrelation with
respect to computational problems is a promising area with a possibility for new
approaches to computational problems from a wide variety of fields.

6 Acknowledgements

We are very grateful to Valentine Kabanets, Todd Wareham and Russell Im-
pagliazzo for numerous discussions and suggestions, and to Venkat Guruswami
for telling us about then-unpublished work of Sheldon and Young.

References

[BCBOK06] Alexandra Birch, Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Con-
straining the phrase-based, joint probability statistical translation model. In
Proceedings of the workshop on statistical machine translation, pages 154–157.
Association for Computational Linguistics, 2006.

14 Antonina Kolokolova, Renesa Nizamee

[BH77] Leonard Berman and Juris Hartmanis. On isomorphisms and density of NP and
other complete sets. SIAM Journal on Computing, 6(2):305–322, 1977.

[BPPM93] Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L
Mercer. The mathematics of statistical machine translation: Parameter estima-
tion. Computational linguistics, 19(2):263–311, 1993.

[DeN10] John Sturdy DeNero. Phrase Alignment Models for Statistical Machine Transla-
tion. PhD thesis, UC Berkeley, 2010.

[DK08] John DeNero and Dan Klein. The complexity of phrase alignment problems. In
Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies: Short Papers, pages 25–28. Asso-
ciation for Computational Linguistics, 2008.

[FLN00] Uriel Feige, Michael Langberg, and Kobbi Nissim. On the hardness of approxi-
mating NP witnesses. In APPROX, pages 120–131, 2000.

[GHLP99] Anna Gal, Shai Halevi, Richard J. Lipton, and Erez Petrank. Computing the
partial solutions. In 14th Annual IEEE Conference on Computational Complexity
(CCC’99), pages 34 – 45, 1999.

[GR08] Venkatesan Guruswami and Atri Rudra. Soft Decoding, Dual BCH Codes, and
Better List-Decodable ε-Biased Codes. In IEEE Conference on Computational
Complexity, pages 163–174, 2008.

[HMvRW07] Matthew Hamilton, Moritz Müller, Iris van Rooij, and Todd Wareham. Approx-
imating solution structure. In Erik Demaine, Gregory Z. Gutin, Daniel Marx,
and Ulrike Stege, editors, Structure Theory and FPT Algorithmics for Graphs,
Digraphs and Hypergraphs, number 07281 in Dagstuhl Seminar Proceedings. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, Dagstuhl, Germany, 2007.

[KS99] Ravi Kumar and D. Sivakumar. Proofs, Codes, and Polynomial-Time Reducibil-
ities. In IEEE Conference on Computational Complexity, pages 46–53, 1999.

[MGM08] Bill MacCartney, Michel Galley, and Christopher D Manning. A phrase-based
alignment model for natural language inference. In Proceedings of the conference
on empirical methods in natural language processing, pages 802–811. Association
for Computational Linguistics, 2008.

[MW02] Daniel Marcu and William Wong. A phrase-based, joint probability model for
statistical machine translation. In Proceedings of the ACL-02 conference on Em-
pirical methods in natural language processing-Volume 10, pages 133–139. Asso-
ciation for Computational Linguistics, 2002.

[ON03] Franz Josef Och and Hermann Ney. A systematic comparison of various statistical
alignment models. Computational linguistics, 29(1):19–51, 2003.

[SY13] Daniel Sheldon and Neal E. Young. Hamming Approximation of NP Witnesses.
Theory of Computing, 9(22):685–702, 2013.

[vRW12] Iris van Rooij and Todd Wareham. Intractability and approximation of optimiza-
tion theories of cognition. Journal of Mathematical Psychology, 56(4):232 – 247,
2012.

