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Abstract. Complexity in logic comes in many forms. In finite model
theory, it is the complexity of describing properties, whereas in proof
complexity it is the complexity of proving properties in a proof system.
Here we consider several notions of complexity in logic, the connections
among them, and their relationship with computational complexity. In
particular, we show how the complexity of logics in the setting of finite
model theory is used to obtain results in bounded arithmetic, stating
which functions are provably total in certain weak systems of arithmetic.
For example, the transitive closure function (testing reachability between
two given points in a directed graph) is definable using only NL-concepts
(where NL is the non-deterministic log-space complexity class), and its
totality (and, thus, the closure of NL under complementation) is provable
within NL-reasoning. Lastly, we will touch upon the topic of formalizing
complexity theory using logic, and the meta-question of complexity of
logical reasoning about complexity-theoretic statements.

This is intended to be a high-level overview, suitable for readers who are
not familiar with complexity theory and complexity in logic.

1 Introduction

What do we mean when we say that a certain object is “complex” or a problem
is “hard”? It may be that the object is hard to describe, or its properties are
hard to prove. It may be that the object in question is a problem for which it is
not easy to find a solution. Often, there is a relationship among various forms
of hardness: problems that cannot be described in a certain language would not
be solvable with a limited amount of resources. A system can be complex if its
behaviour is hard to predict (i.e., describe and prove its properties).

In the context of mathematical logic it is possible to define many forms of
complexity. Historically, the notions of hardness that received much attention
were the following:

1. The hardness of describing an object (by some formula)
2. The hardness of proving properties of an object in a formal system.
3. The hardness of solving a problem (e.g., when the problem is expressed in

the language of logic. )



It is natural that different areas of of mathematic (and mathematical logic)
emphasize distinct notions of hardness, appropriate for their framework. In par-
ticular,

1. Finite model theory (and its subfield descriptive complexity) focuses more
on the expressive power of logics, that is, complexity of describing objects.

2. Bounded arithmetic and proof complexity, as the name suggests, focus on
provability and the complexity of proving properties of objects in theories
and proof systems of varying power.

3. Computational complexity theory and some areas of computational logic
are concerned with complexity of solving a problem (such as determining a
membership in a set), where the problem is often presented in the language
of logic.

Complexity theory developed as an area devoted to study of the concepts of
hardness in their multitude, so it is not surprising that both finite model theory
and bounded arithmetic with proof complexity have strong ties with complexity
theory, making connections between the concepts, sharing the terminology and
proof techniques. However, at this point it might be beneficial to look at the
direct relationships among different notions of hardness in logic without going
through a computational model as an intermediate step.

An example of such a connection is the relationship between systems of
bounded arithmetic and proof systems. In some cases, there is a two-way re-
lationship between the system of arithmetic which proves the soundness of its
counterpart proof system, and, for the other direction, has all of its proofs trans-
latable into the proofs in the proof system. For example, the system of arithmetic
V 0 has such a connection with the proof system Bounded-Depth Frege, and the
system of arithmetic V 1 with Extended Frege.

Here we will present a different example of a direct relationship between log-
ical characterizations, a connection between descriptive complexity and proving
power of systems of bounded arithmetic. We show how such connection helps us
obtain results in bounded arithmetic using the notion of hardness from descrip-
tive complexity. We are interested in studying the power of proof systems that
are allowed to reason only about objects of predefined complexity. .We show that
for a certain range of complexities, if the class of objects is “sufficiently robust”
(we will define this more precisely later), then it is possible to infer directly what
is the power of a system of arithmetic which is allowed to reason with the objects
of this class.

We start with the canonical notion of hardness from computational complex-
ity theory.

2 The computational complexity setting

The computational complexity of a problem is measured in terms of amount of
resources necessary for an algorithm to solve the problem. The conventional re-
sources are space (memory) and time. Algorithms (programs) can be determinis-
tic and non-deterministic; in the latter case we sometimes talk about complexity



of verifying a (guessed) solution. For example, the famous class NP consists of
problems solvable by the non-deterministic polynomial-time algorithms (that is,
problems which have solutions verifiable by polynomial-time algorithms). Sim-
ilarly, the problems solvable by non-deterministic algorithms using amount of
space logarithmic in the length of the input comprise the class NL.

An important feature which supports the concept of a complexity class as a
useful framework is that most of the complexity classes are robust, in a sense that
definitions in different frameworks, often with different computational models of-
ten give the same class of algorithms. In particular, a composition or a Boolean
combination of problems in the class is usually still within the same class (with
the notable exception of complementation: for non-deterministic time classes the
closure under complementation is a major open problem). One of the most ro-
bust in this respect is the class polynomial time, which is closed under Boolean
operators, composition of functions and more. For a contrast, the class of prob-
lems solvable in the time linear in their input does not have such nice closure
properties. This is one of the reasons that the class P of polynomial-time solvable
problems is has been a more popular object of research than LinTIME.

A complexity class that is also very robust, and has several natural definitions
in the context of logic is uniform AC0, the class of problems solvable by a uni-
form (that is, computable by a very simple algorithm) family of constant-depth
polynomial-size boolean circuits. In bounded arithmetic, this class corresponds
to the theory V 0 or, in the first-order setting, I∆0 (where I∆0 is Peano Arith-
metic with induction restricted to bounded formulae).In proof complexity, it
corresponds to the Bounded Frege proof system. In the descriptive complexity
setting AC0 can be defined as the class of properties expressible in first-order
logic over structures that contain arithmetic. We will discuss it in more detail
later.

Yet another attraction of complexity classes is that they often have a set of
“maximal” problems, where maximality is with respect to reductions between
problems. That is, a problem belonging to a complexity class is complete for
this class if any other problem in this class can be solved by reducing it to the
complete one. A classical example of a problem complete for NP is 3-colourability:
given a graph as an input, determine if it can be coloured with three colours so
that no edge connects vertices of the same colour. That is, any problem in NP
can be “disguised” (with little effort) as 3-colourability. This makes it possible to
concentrate on just one problem when studying properties of a complexity class:
if such a problem is proven to be solvable in another class, then the whole class
of problems for which it is complete can be solved within that class. A recent
result of this kind is due to Reingold [Rei05], who have shown how to solve graph
reachability in undirected graphs using only logarithmic amount of space (in L),
which implies that all problems in the corresponding class symmetric logspace
are solvable in L. The general graph reachability problem (determining if there
is a path between two vertices) is complete for the non-deterministic logspace
class NL; it is still open whether L is a proper subset of NL.



The class AC0 is one of the few for which there are non-trivial lower bounds:
the Parity problem of determining if an input string has an odd number of 1s is
not in AC0. That is, there is no first-order formula which would be true on all and
only structures with odd number of elements (in fact, since this result holds in a
non-uniform setting: adding to the vocabulary any kind of numerical predicates,
even undecidable ones, would still not help a first-order formula to express a
parity of a string). Binary addition can be done in AC0, but multiplication cannot.

3 Finite model theory and descriptive complexity

Finite model theory developed as a subfield of model theory with emphasis on
finite structures. In this new setting many of the standard techniques of model
theory, most notably compactness, do not apply1. Since testing if a first-order
formula has a finite model is undecidable [Tra50], our focus will be on the com-
plexity of model checking: given a finite structure and formula of some logic,
decide if this structure is a model of this formula. Considering both the for-
mula and the structure as inputs to an algorithm deciding this gives fairly high
complexity: checking if a first-order formula holds on a Boolean (two-element)
structure is complete for PSPACE (class of problems solvable using amount of
memory polynomial in the length of the input), which is believed to be larger
than P or NP. Therefore, we consider data complexity of the model checking,
where a formula is fixed and the only input is the structure. For example, a for-
mula might encode the conditions for a graph to be 3-colourable, and structures
correspond to graphs: the elements of their universes are treated as vertices, and
a binary relation E is viewed as an edge relation of a graph. This E is the only
free relational variable occurring in the formula for 3-colourability.

This leads us to descriptive complexity, the area studying the direct corre-
spondence between complexity classes and data complexity of logics of different
power. In this setting a logic is said to capture a complexity class over a class
of structures if, informally, the model checking problem for the logic is solvable
in the complexity class and every problem in the class is representable by a
formula of this logic. A classical reference on the subject is the book “Descrip-
tive complexity” by Immerman [Imm99]. Here, we follow the presentation from
[Lib04].

Definition 1 (Capture by a logic). Let C be a complexity class, L a logic
and K a class of finite structures. Then L captures C on K if

1. For every L-sentence φ and every A ∈ K, testing if A |= φ with φ fixed and
an encoding of A as an input can be done in C.

2. For every collection K ′ of structures closed under isomorphism, if this col-
lection is decidable in C then there is a sentence φK′ of L such that A |= φK′

iff A ∈ K ′, for every A ∈ K.

1 Please see [Fag93] for an excellent survey of this area



In descriptive complexity the class of structures is often restricted to arith-
metic structures, that is, structures with min,max,+,×,≤,= in the language
which receive standard interpretations. In that case, the universe of a struc-
ture is considered to be {0, . . . , n− 1}. This comes from the need for arithmetic
operations to arithmetize Turing machines in the logic context. Over general
structures, most such logics (in particular, first-order logic) are strictly weaker,
since it becomes impossible to express computation.

Example 1 (Parity(X)). This is a formula over successor structures (that is,
structures with min, max, and successor function s in the vocabulary which
always receive standard interpretations). The structures also contain a unary
relational symbol X. Models of the formula below are those of such structures
that interpret X as a unary relation (that is, a set) with an odd number of
elements. It encodes a dynamic-programming algorithm for computing parity of
X: Podd(i) is true (and Peven(i) is false) iff the prefix of X of length i contains
an odd number of 1’s. Here, si is the successor of i, that is i+ 1.

∃Peven∃Podd∀iPeven(min) ∧ ¬Podd(min)
∧(Podd(max) ↔ ¬X(max)) ∧ (¬Peven(si) ∨ ¬Podd(si))
∧(Peven(i) ∧X(i) → Podd(si)) ∧ (Podd(i) ∧X(i) → Peven(si))
∧(Peven(i) ∧ ¬X(i) → Peven(si)) ∧ (Podd(i) ∧ ¬X(i) → Podd(si))

We usually think of the parity problem in the complexity-theoretic setting
as a problem of determining if an input string contains an odd number of 1s.
This example illustrates how a translation between these contexts is done: a
binary string of length n becomes a structure over the universe of size n with a
unary relation, X, such that for any i in the universe of the structure X(i) holds
iff the ith bit of the string in the complexity-theoretic setting is 1. Thus, any
language in complexity-theoretic setting can be translated into the finite model
theory framework using this method for representing binary strings (provided
some order is relation either already in the vocabulary or is definable, to allow us
to say ‘the ‘ith element”). However, often it is more convenient to consider other
types of structures: for example, although graphs can be represented as strings
(and they are when considered as inputs to Turing machines), in the finite model
theory setting it is much more natural to view them as structures with a binary
relation representing the edge relation of the graph.

The first capture result, a result relating a complexity class to a logic, is due to
Fagin [Fag74], who showed that existential second-order logic captures precisely
the complexity class NP. His proof has a similar structure to Cook’s original proof
of NP-completeness of propositional formula satisfiability [Coo71], but instead of
propositional variables Fagin uses existentially quantified second-order variables.
These variables encode the computation (Cook’s computational tableau of the
NP-machine), and the formula states that the computation is correct and the
final line states that the input string (encoded as a unary relation in a structure
in Fagin’s setting) is in the language. A notable feature of Fagin’s result is



that it holds over all structures, whereas AC0 vs. first-order logic only holds for
arithmetic structures: existential second-order logic is powerful enough to express
all relations needed to encode computation (which, for example, first-order logic
provably cannot express).

Another feature of Fagin’s theorem is that it shows how local the verifica-
tion of a solution is for an NP-language. Although this is already present in the
proof of Cook’s theorem, the fact that a finite formula is enough to describe the
computation of a NP Turing machine on input of any size makes this fact very
explicit. This is an very interesting property of NP languages, especially intrigu-
ing in that most of the relativized versions of NP, that is NPO for some oracle O,
do not possess it. Here, NPO is a class of languages computable by NP algorithm
with an additional ability to ask questions “is string s in O?” where O is some
fixed language. It is a famous result by Baker, Gill and Solovay [BGS75] that
none of the proof techniques that is insensitive to the presence of oracles (such
as diagonalization) can resolve P vs NP question. The logic characterization of
relativization and locality has been studied in [AIV92] in the setting of systems
of arithmetic. In particular, they show that the locality condition only holds for
a small limited subset of possible oracles.

A major open problem in finite model theory is whether there is a logic
capturing on all (including unordered) structures the complexity class P of
polynomial-time decidable languages. It is conjectured [Gur88] that there is no
such logic: if so, then P 6= NP.

3.1 Logics between first-order and existential second-order

In the data complexity setting, first-order logic captures AC0 and existential
second-order logic already captures NP. However, many interesting complexity
classes lie between these two, in particular classes P (polynomial time) and NL
(non-deterministic logspace). The two ways to capture these classes (in the pres-
ence of order) are either by extending first-order logic with additional predicates,
or restricting second-order logic. In the first approach, a logic for NL is obtained
by adding a transitive closure operator to first-order logic, and P is captured by
first-order logic together with a least fixed point operator [Imm83,Imm82,Var82].
Here we will concentrate on the second approach, due to Grädel [Grä91].

Definition 2. SNP formulae are of the form ∃P1 . . . Pk∀x1 . . . xlψ(P̄ , x̄, ā, Ȳ ),
where ψ is quantifier-free.

Two important types of SNP formulae are SO∃-Horn and SO∃-Krom:

– SO∃-Horn: ψ is a CNF with no more than one positive literal of the form
Pi(t) per clause.

– SO∃-Krom: ψ is a CNF with no more than two Pi literals per clause.

In particular, the formula for Parity in the example above is both a second-
order Horn and a second-order Krom formula. The notion of SNP was introduced
by Papadimitriou and Yanakakis in [PY88]; Grädel does not use this terminology
when defining SO∃-Horn and SO∃-Krom formulas.



Theorem 1 ([Grä92]). Over structures with successor, SO∃-Horn and
SO∃-Krom capture complexity classes P and NL, respectively.

The proof is based on the fact that propositional Horn (resp. 2CNF) formula
satisfiability is complete for P (resp. NL). To convert these formulas in the propo-
sitional setting, it is enough to take a conjunction of copies of the formulas for
every possible value of the tuple of variables under the universal quantifier: the
relational variables on a fixed tuple of values become essentially propositional
variables. Since there are only constantly many quantified first-order variables,
the resulting formula has length polynomial in the size of the structure. For the
other direction of the proof in the SO∃-Horn case note that the formula from
Fagin’s proof encoding the computation of an NP-machine is SO∃-Horn when
the machine is deterministic.

4 Bounded arithmetic

Just like in complexity classes P and NP the computation length is bounded by a
polynomial, in bounded arithmetic quantified variables are bounded by a term
in the language (e.g., a polynomial in free variables of a formula). Here, instead
of describing functions by formulae the goal is to prove their totality within a
system; we will say that a system of arithmetic captures a function class if it
proves totality of all and only functions in this class. In this setting, arithmetic
reasoning with formulas having an unbounded existential quantifier captures
primitive recursive functions in the same sense as reasoning with an appropriate
bounded version of these formulae captures polynomial-time functions.

4.1 The language and translation from the finite model theory
setting

There are two notions of hardness appearing in the theories of arithmetic setting.
One of them is a “descriptive” notion of arithmetic formulae representing (that
is, describing) a property; another is a more recursion-theoretic notion in terms of
the provable totality of functions (the term “defining” is used in either context
in literature). In this section we show how results in descriptive complexity,
translated into the framework of bounded arithmetic to become representability
results, help us obtain results about provability of function totality.

Definition 3. Call a (first-order) quantifier bounded if the domain of quantified
variables is restricted to values less than the value of a bound, where the bound is
a term in the language. For second-order quantifiers, the bounding term bounds
the length of the second-order object (i.e., the length of a string). A formula is
bounded if all of its quantifiers are bounded.

Define ΣB
0 to be the class of bounded formulas with no second order quanti-

fiers over L2, and ΣB
1 as a closure of ΣB

0 under bounded existential second-order
quantification. ΣB

i is defined inductively in a natural way.



It seems that the correspondence of logics in finite model theory framework
with representability in bounded arithmetic is folklore. This translation works
most naturally in the setting of second-order systems of arithmetic such as sys-
tems V i. Here, by “second-order” systems we mean two-sorted, with one sort for
numbers, and another for strings (viewed as sets of numbers). For a thorough
treatment of this framework, please see Cook’s survey [Coo03] or a book by Cook
and Nguyen [CN08], scheduled to be published in March 2009.

Let φ be a (possibly second-order) formula with free relational variables
R1, . . . , Rk over a vocabulary that contains arithmetic. The corresponding ΣB

i

formula has Rj as parameters, where non-monadic relational variables are rep-
resented using a pairing function, as well as an additional parameter n denoting
the size of the structure. It is easy to see that this formula holds on its free
variables iff the corresponding structure is a model of the original formula in the
finite model theory setting. So here in the arithmetic setting a binary string X
corresponding to an input string of an algorithm would be a free second-order
variable in a formula.

In particular, arithmetic versions of SO∃-Horn and SO∃-Krom are subsets of
ΣB

1 , with no existential first-order quantifier and Horn (resp. Krom) restriction
on the occurrences of quantified second-order variables. In this paper we will
abuse the notation and say SO∃-Horn and SO∃-Krom meaning both Grädel’s
logics and their translation into the language of arithmetic.

Example 2. The Parity formula defined in example 1 can be written as follows
in the bounded arithmetic setting:

Parity(X) ≡ ∃Peven∃Podd∀i < |X|
Peven(0) ∧ ¬Podd(0) ∧ Podd(|X|) ∧ (¬Peven(i+ 1) ∨ ¬Podd(i+ 1))
∧(Peven(i) ∧X(i) → Podd(i+ 1)) ∧ (Podd(i) ∧X(i) → Peven(i+ 1))
∧(Peven(i) ∧ ¬X(i) → Peven(i+ 1)) ∧ (Podd(i) ∧ ¬X(i) → Podd(i+ 1))

Here, X is the only free variable, and all second-order variables are implicitly
bounded by the largest value of the indexing term (i+1 = |X| in this example).
Note that here it is possible to reference Podd(|X|), and so we do to simplify the
formula. Of course, a direct translation would not account for such details. Here
we did not need to refer to the size of the universe n since |X| = n; if there were
no relational symbols in the vocabulary a corresponding formula would have to
reference n explicitly.

4.2 Systems of bounded arithmetic

Early study of weak systems of arithmetic concentrated on restricted fragments
of Peano Arithmetic, e.g., I∆0 in which induction is over bounded first-order
formulae [Par71]. This system, I∆0, was used by Ajtai [Ajt83] to obtain lower
bounds for the Parity Principle, which implied lower bounds for the complex-
ity class AC0. A different approach was used by Cook: in 1975 he presented a
system PV for polynomial-time reasoning [Coo75]. PV is an equational system



with a function for every polynomial-time computable function defined using
Cobham’s [Cob65] recursion-theoretic characterization of polynomial-time func-
tions. Yet another way of characterizing polynomial-time functions was presented
by Leivant in [Lei91,Lei94]; his characterization is somewhat similar in nature
to the one we use here.

The major development in bounded arithmetic came in the 1985 PhD thesis
of S. Buss [Bus86]. There, several (classes of) systems of bounded arithmetic
were described, capturing major complexity classes such as P, EXP and the lev-
els of polynomial-time hierarchy PH (viewed as classes of functions). The best
known system is S1

2 , which is a first-order system capturing P. To capture higher
complexity classes such as PSPACE and EXP, Buss extends his systems to second-
order.

In second-order systems we consider here, the richer language of Buss’s first-
order systems is simulated using second-order objects; in Buss’s second-order
systems for PSPACE and EXP the vocabulary contains powerful functions missing
in our setting (function x#y = 2|x|·|y|). Second-order quantified variables are
strings of bounded length; the notation ∃Z ≤ b corresponds to ∃Z |Z| ≤ b.
First-order objects or numbers are index variables: their values are bounded by
a term in number variables and lengths of second-order variables. The translation
between first and second-order system is given by the RSUV isomorphism due
to [Raz93,Tak93]. Here, the isomorphism is between first-order systems (R, S)
and second-order systems (U and V). In particular, it translates Buss’s S1

2 into
V 1, a system that reasons with ΣB

1 , that is, existential second-order definable
predicates.

Let L2 be the language of Peano Arithmetic with added terms |X| (length
of X) and X(t) (membership of t in X), where X is second-order viewed as a
set or a binary string. We look at the systems axiomatized by Peano axioms on
the number variables, together with the axioms defining length of second order
variables: L1: X(y) → y < |X| and L2: y + 1 = |X| → X(y). Additionally,
there is a comprehension axiom scheme: for every formula φ from a given class
of formulae Φ such as Φ = ΣB

1 or Φ = SO∃-Horn,

∃Z ≤ b∀i < b(Z(i) ↔ φ(i, ā, X̄)), (Comprehension)

Such systems of arithmetic reason with objects of complexity allowed in the com-
prehension axiom scheme. For example, reasoning in V 0 is limited to reasoning
with ΣB

0 -definable objects.
Although the general definition uses an axiom scheme (and thus an infinite

set of axioms) in many cases such as SO∃-Horn it is possible to obtain a finitely
axiomatized system by encoding by a Φ-formula an evaluation algorithm for the
formulas from Φ. In particular, the base system V 0 is finitely axiomatized. Please
see [CK03] for details.

Definition 4. For an integer i ≥ 0, define V i to be the system with compre-
hension over ΣB

i formulas (e.g., V 1 has comprehension over ∃SO formulae).
For a general class Φ of formulas, V -Φ is the system with comprehension over



Φ. In particular, V -Horn and V -Krom are the systems with comprehension over
SO∃-Horn and SO∃-Krom, respectively.

Note that even in V 0, the weakest of this class of systems with its compre-
hension over formulae with no second-order quantifiers, it is possible to prove
induction and minimization principles for the respective class of formulae from
comprehension and length axioms. That is, an induction axiom of the form
(Z(0) ∧ ∀i < n(Z(i) → Z(i + 1))) → Z(n) is provable directly from the (ΣB

0 )
comprehension scheme and length axioms. Thus there is no need for an explicit
induction axiom as in Buss’s systems or Peano Arithmetic.

An interested reader can find much more information about bounded arith-
metic and related areas in [Kra95,Bus86,HP93,Coo03] and an upcoming book
by Stephen Cook and Phuong Nguyen [CN08].

5 Defining functions in the bounded arithmetic setting

In the setting of bounded arithmetic, the “hardness” is usually taken to be the
complexity of properties provable in this system. In particular, the correspon-
dence with complexity-theoretic notion of hardness is via the provability of the
function totality. That is, the strength of a system of arithmetic is associated
with the computational complexity of functions that this system proves total.
For example, a version of Peano Arithmetic with one unbounded existential
quantifier allowed in induction formulae (IΣ1) proves the totality of primitive
recursive functions, and V 0 where all quantifiers are bounded does the same for
AC0 functions (in the second-order setting).

Definition 5. (Capture by a system of arithmetic) A system of arithmetic cap-
tures a function class if it proves totality of all and only functions in this class.

Traditionally, functions are introduced by their recursion-theoretic charac-
terization (see [Cob65] for the original such result or [Zam96]). For example,
Cobham’s characterization of P uses limited recursion on notation:

F (0, x̄, Ȳ ) = G(x̄, Ȳ )
F (z + 1, x̄, Ȳ ) = cut(p(z, x̄, Ȳ ),H(z, x̄, Ȳ , F (z, x̄, Ȳ ))).

Here, the function cut(x, y) cuts out the rest ofH(..) beyond the bound p(z, x̄, Ȳ ),
where p() is a polynomial (that is, a term in the language).

Since we are trying to relate the expressive power of the formulas occurring
in the in comprehension axiom scheme and complexity of functions, we introduce
function symbols by setting their bitgraphs to be formulas from the comprehen-
sion scheme as follows.

Definition 6. Let Φ be a logic capturing a complexity class C in the descriptive
setting. We define a corresponding function class FC by defining functions f
and F in FC as follows:

z = f(x̄, Ȳ ) ↔ φ(z, x̄, Ȳ ) F (x̄, Ȳ )(i) ↔ i < t ∧ φ(i, x̄, Ȳ )



Here, f and F are number and string functions, respectively, and φ ∈ Φ. That is,
define functions by formulae from Φ by stating that graphs of number functions
and bitgraphs of string functions are representable by formulae from Φ.

In particular, NL functions are the ones definable by SO∃-Krom formulae and
bitgraphs of polynomial-time functions are described by SO∃-Horn formulae.

With these definitions we obtain the following capture results.

– System V 0 captures complexity class AC0. [Zam96,Coo02]
– Systems V -Horn and V -Krom with comprehension over SO∃-Horn and
SO∃-Krom, respectively, capture P and NL. [CK01,CK03]

– System V 1 also captures P. [Zam96]

Recently, Kuroda [Kur07] characterized the complexity class LogCFL using
the same framework. He used comprehension over essentially the descriptions
of uniform semi-unbounded fan-in circuits (which form a class SAC1 equivalent
to LogCFL) to capture this class, and showed that he can prove all the main
properties of the class inside the resulting system. In particular, he formalized
within his system V -QSAC the inductive counting algorithm for closure of SAC1

under complementation due to [BCD+89].
Note that the system V 1, although likely stronger than (that is, not con-

servative over) V -Horn because it reasons with NP-predicates, also captures P
by our definition of capture. That is, ΣB

1 -theorems of V 1 and V -Horn are the
same, but it is likely that V -Horn does not prove the comprehension axiom of
V 1, which is a ΣB

2 statement. This leads to the following question:

6 When do systems based on formulas describing a
complexity class capture the same class?

What makes systems such as V 0, V -Horn and V -Krom “minimal” among sys-
tems capturing the corresponding classes? They operate only with objects from
the class, and yet prove totality of all functions they can define. The informal
answer is provable closure under first-order operations. If a system can prove
its own closure under AC0 reductions such as conjunction, disjunction and com-
plementation, then, with some additional technicalities, this system can prove
totality of all functions definable by objects in its comprehension axiom.

Let C be a complexity class. Suppose that ΦC is a class of (existential second-
order) formulas that captures C in the descriptive complexity setting. We define
a theory of bounded arithmetic V -ΦC to be V 0 together with comprehension
over bounded ΦC . The following is an informal statement of the general result:

Claim. [Kol04,Kol05] Let AC0 ⊆ C ⊆ P. Suppose that ΦC is closed under first-
order operations provably in V -ΦC . Also, suppose that for every φ(x̄, Ȳ ) ∈ ΦC ,
if V -ΦC ` φ then there is a function F on free variables of φ which is computable
in C and witnesses existential quantifiers of φ. Then the class of provably total
functions of V -ΦC is the class of functions computable in C.



Examples of such systems are V -Horn, V -Krom and Kuroda’s V -QSAC ; V 0

is another example of a system like this, although in its case the conditions
are vacuously true. In particular, V -Horn formalizes and proves correctness of
Horn formula satisfiability algorithm. Although V -Horn is provably in the sys-
tem equivalent to limited recursion-based systems of polynomial-time reason-
ing, it has an additional nice feature: it is finitely axiomatizable. The system
V -Krom formalizes the non-trivial inductive counting algorithm of Immerman
[Imm88,Sze88], used to prove the closure of NL (and thus SO∃-Krom) under
complementation. A version of inductive counting is also used to prove closure
of LogCFL under complementation [BCD+89], which Kuroda showed to be for-
malizable using LogCFL reasoning.

However, we don’t know whether NP = coNP and thus whether the class of
predicates in the comprehension axiom of V 1 is closed under complementation.
Moreover, even if it is proven that NP = coNP, the proof has to be constructive
enough to be formalizable within V 1 to allow us to apply the claim.

This brings up an interesting meta-question: when are the properties of a
complexity class itself provable within this class? We were able to prove the basic
properties of P and NL with reasoning no more complex then the class itself.
Somewhat surprisingly, Kuroda proved that this holds for the class LogCFL
which is not even known to be equal to any of Schaefer’s classes [Sch78]. However,
for classes such as symmetric logspace, now proven to be equal to L [Rei05], it
is not clear whether the proof of complementation (or the proof of equivalence
with L) are formalizable using only reasoning within this class.

7 Formalizing complexity theory

This line of research leads to a more general meta-question in complexity the-
ory: what proof techniques could be used to prove separations and collapses of
complexity classes? Here, we briefly mention some of the directions of research
in this area.

In complexity theory there were several meta-results showing that a certain
class of proof techniques cannot resolve long-standing open problems such as P vs.
NP: relativization of [BGS75], natural proofs of [RR97] (under some assumptions)
and, recently, algebrization of [AW08]. All of them have a flavour of independence
results – the answers to complexity-theoretic questions are somehow independent
of the assumptions implicit in the current techniques.

In case of relativization, this notion of independence was made precise in
the work of Arora, Impagliazzo and Vazirani [AIV92]. A technique is said to
relativize if it is oblivious to the presence of oracles (in arithmetic setting, to
undefined predicate symbols): that is, to whether an algorithm can ask queries
“is a given string in O” for some fixed language O, and get a reply in constant
time. Baker, Gill and Solovay showed that there are oracles A and B such that
PA = NPA and PB 6= NPB . Thus, no technique oblivious to the presence of oracles
can resolve P vs. NP question.



Although formalization of computation with oracles goes back to Buss [Bus86],
authors of [AIV92] chose a different route by presenting a theory of arithmetic
RCT ) all standard models of which correspond exactly to classes of polynomial-
time functions with an oracle, the difference between the models corresponding
to differences between oracles. That is, any standard model of their system can
be viewed as PO for some language O, and for any O there would be a corre-
sponding model. So a complexity-theoretic concept of a relativized complexity
class becomes a model-theoretic notion of a standard model of some theory.
In this context the notion of a non-relativizing technique became very clear: a
technique is non-relativizing iff it is independent of RCT . This theory, based on
Cobham’s axiom without the minimality condition on the class of functions, is
similar to PV1, but it has an unrestricted induction scheme and some additional
axioms.

Another line of research studies which complexity-theoretic questions might
be solvable already with the limited power of systems of bounded arithmetic.
Such are the formalizations of closures under complementation in V -Horn, V -Krom
and related systems. Rephrasing classical result from Buss’s thesis [Bus86] in our
framework, if the system V 1 proves that a certain function is in NP∩ coNP, then
this function is in polynomial-time. It is consistent with our knowledge that
NP ∩ coNP might not collapse to P, but if this is the case, then V 1 does not
prove totality of functions that are both in NP and in coNP and yet are not
polynomial-time computable. So provability of complexity-theoretic properties
in a weak system of arithmetic is an indicator that this property is “relatively
not too complex” in a very precise sense.

It is natural that the stronger the theory, the stronger are the complexity-
theoretic statements it can prove. A study of this with the focus on consequences
of coNP ⊆ P/poly was done by Cook and Krajicek [CK07].

There are many more results and formalizations relating complexity-theoretic
concepts and the concepts in bounded arithmetic and proof complexity. Books
and papers by Cook, Krajicek, Buss, Pudlak, Jerabek, Nguyen and others would
be a good source for an interested reader.

8 Conclusions

In this paper we touch upon one example of a connection between two different
notions of hardness: the hardness of describing a property versus the hardness
of proving a property. Although there are well-established relationships of both
of these areas with complexity theory, studying the direct relationship helped us
obtain new results.

For the other examples of such connections one can look at the relationship
between proof complexity and areas of bounded arithmetic, as one example,
and the finite model theory and constraint satisfaction on as another. In proof
complexity, the object of study is proof systems such as resolution system and
Frege system; there, the lengths of proofs is the main complexity measure. For
many systems of bounded arithmetic there are proof systems that are their



non-uniform counterparts (that is, the system of arithmetic proves soundness
of the proof system and the proof systems proves the axioms of the system of
arithmetic).

The line of research exploring connections between finite model theory and
proof complexity is pursued by Atserias. He uses his results in finite model theory
to obtain resolution proof system lower bounds [Ats02], and, in his later work
with Kolaitis and Vardi, uses constraint satisfaction problems as a generic basis
for a class of proof systems [AKV04].

Complexity in logic is a broad area of research, with many problems still
unsolved. Little is known about connections among different settings and notions
of hardness. Here we have given one such example and have mentioned a couple
more; other connections among various notions of complexity in logic are waiting
to be discovered.

Acknowledgments. The results on connections between finite model theory and
bounded arithmetic mentioned here come from my joint work with Stephen Cook
(which resulted in my PhD thesis). I am very grateful to him for suggesting many
of the ideas, as well as the framework in which these connections became natural.
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[Grä91] E. Grädel. The Expressive Power of Second Order Horn Logic. In Proceedings
of 8th Symposium on Theoretical Aspects of Computer Science STACS ‘91,
Hamburg 1991, volume 480 of LNCS, pages 466–477. Springer-Verlag, 1991.
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