
A second-order theory for NL

Stephen Cook and Antonina Kolokolova
University of Toronto

�sacook,kol�@cs.toronto.edu

Abstract

We introduce a second-order theory � -Krom of bounded
arithmetic for nondeterministic log space. This system is
based on Grädel’s characterization of �� by second-order
Krom formulae with only universal first-order quantifiers,
which in turn is motivated by the result that the decision
problem for 2-CNF satisfiability is complete for co�� (and
hence for ��). This theory has the style of the authors’
theory ��-Horn [APAL 124 (2003)] for polynomial time.
Both theories use Zambella’s elegant second-order syntax,
and are axiomatized by a set 2-BASIC of simple formulae,
together with a comprehension scheme for either second-
order Horn formulae (in the case of ��-Horn), or second-
order Krom (2CNF) formulae (in the case of � -Krom). Our
main result for � -Krom is a formalization of the Immerman-
Szelepcsényi theorem that �� is closed under complemen-
tation. This formalization is necessary to show that the
�� functions are ��

� -definable in � -Krom. The only other
theory for �� in the literature relies on the Immerman-
Szelepcsényi’s result rather than proving it.

1. Introduction

The two most prominent approaches to complexity from
logical perspective are descriptive complexity (finite model
theory) and bounded arithmetic; the latter is closely related
to proof complexity. There has been intensive research
in each of these two areas and their relations to the tra-
ditional structural complexity. In particular, the relation-
ship between bounded arithmetic and proof complexity is
well-studied. However, little is known about the direct con-
nection between descriptive complexity and bounded arith-
metic.

In bounded arithmetic, the objects are weak fragments
of arithmetic; complexity classes are represented by classes
of functions provably total in these systems. In descriptive
complexity, the objects are classes of formulae (logics) that
can express properties of certain complexity. So both ap-
proaches study classes of formulae corresponding to com-

plexity classes. Bounded arithmetic studies the complexity
of proving properties of these classes of formulae, whereas
descriptive complexity is concerned with their expressive
power. The most important distinction between different
systems of bounded arithmetic is the strength of their in-
duction (or comprehension) axiom schemes. This leads to
the following question: how does the expressive power of
the class of formulae in the induction axioms relate to the
power of the resulting system?

Each of the complexity classes

��
� � ��

� � ��
� � �� � �� � �

among others has been associated with one or more theo-
ries of bounded arithmetic. In this paper we are concerned
with the class �� (nondeterministic log space). This class
is different from all the others, because the proof that �� is
closed under complementation is difficult (see Immerman
or Szelepcsényi, [Imm88, Sze88]). Closure under comple-
mentation is necessary for �� to have a nice associated func-
tion class, and hence a nice associated theory.

To our knowledge only one other theory has been associ-
ated with the class ��, namely the theory ����� of [CT92].
This theory is axiomatized by induction over encodings of
�� Turing machines, and the authors of [CT92] state that it
is very awkward and hope that it will be a stepping stone to
a better system. We believe that the theory � -Krom that we
present here is such a better system.

Our theory � -Krom is in the same style as the theory
��-Horn for deterministic polynomial time presented in our
previous work [CK03]. The system ��-Horn is a second-
order theory (with sorts for numbers and finite sets of num-
bers, or “strings”) which is axiomatized by a set 2-BASIC
of simple axioms, together with a comprehension axiom
for essentially Grädel’s [Grä92] SO-Horn formulae. (These
formulae capture polynomial time in second-order finite
model theory.) Our new system � -Krom has the same lan-
guage and same set 2-BASIC of simple axioms, but allows
comprehension for essentially S0-Krom formulae instead
of SO-Horn formulae. In the same paper [Grä92], Grädel
showed that these formulae capture the class ��.

We note that the intuitive reason that the two formula



classes capture the two complexity classes is that the satisfi-
ability problem for propositional Horn formulae is complete
for polynomial time, whereas the satisfiability problem for
Krom formulae (2CNF) is complete for co�� (and hence for
��).

In general, in the second-order setting, a relation
����� ��� has natural number variables �� and string variables
��. This relation is in a given complexity class � if, when
inputs �� are presented in unary notation and inputs �� are
presented as bit strings, an appropriate machine or circuit
can determine whether ����� ��� holds using specified re-
sources. In the case of ��, the machine is a nondeterministic
Turing machine, and the resource bound in space �����	�.
A string valued function 
 ���� ��� is in the associated com-
plexity class 
� if its length �
 ���� ���� is bounded by a
polynomial in ���� � ����, and its bitgraph �� is in �, where
�� ���� ��� holds iff the �-th bit of 
 ���� ��� is 1.

However, this class 
� is not closed under composition
unless � is closed under complementation, assuming that
the function which interchanges 0 and 1 is in the class. This
is why the function class 
� did not become interesting
before the Immerman-Szelepcsényi theorem.

Our main result for � -Krom is to show that � -Krom
proves the Immerman-Szelepcsényi theorem. (This was not
shown for the theory ����� of [CT92].) We do this by
showing how to formalize the proof given in [Imm99]. Af-
ter this, we prove that � -Krom “captures”
� in the stan-
dard sense that a function is ��

� -definable in � -Krom iff it
is in 
�.

2. System � -Krom.

The system � -Krom defined in this work belongs to
a family of second-order systems with syntax similar to
that of Zambella’s ��

� -comp ([Zam96]). The language of
� -Krom is ��

	 � �	� 
��� �� � ��������, which is a natu-
ral second-order extension of the language of Peano Arith-
metic �	 � �	� 
��� ������. Let �� be a standard struc-
ture with natural numbers and finite sets of natural numbers
in the universe; our first-order objects (denoted by lower-
case letters, called number variables) are natural numbers;
second-order objects (denoted by upper-case letters, called
string variables) are binary strings or, equivalently, (finite)
sets of numbers. Treating a second-order variable � as a
set, its “length” �� � is defined to be the largest element
� � � plus one, or 	 if � is an empty set.

Bounded number quantifiers are defined in the usual
way. A bounded string quantifier 	� � �� stands for
	���� � � � 
 ��, and �� � �� stands for ����� � �
� � ��. We use ��

� to denote the set of formulae with all
number quantifiers bounded and no string quantifiers, and
��
� denotes the class of formulae which begin with zero or

more bounded existential string quantifiers followed by a

��
� formula. The classes ��

� and �
� are defined similarly,

where in all cases string quantifiers must be bounded and
appear in front of the formula.

The system ��� �  	 is axiomatized by the 2-BASIC
axioms together with a comprehension scheme for ��

� for-
mulae. For �  
,�� is RSUV isomorphic to the first-order
theory ��

�. The system � � corresponds to the complexity
class uniform ��

�.
Similarly to ��-Horn from [CK03], the system � -Krom

is defined as 2-BASIC axioms plus the comprehension
scheme over a version of ��	-Krom formulae over � �

	.
By Grädel’s result, ��	-Krom formulae capture �� in the
finite model theory setting (in presence of order).

Definition 2.1. A quantifier-free formula �� �� � ��� ��� is
Krom with respect to �� if � is a CNF formula in which
each occurrence of each �� is as a � -literal ����� or ������
in a clause, where � is a term (� may not involve any term
of the form ����.) Further, each clause may contain at most
two � -literals, although it may contain any number of other
literals.

That is, a Krom formula is essentially a 2-CNF if we only
consider ����� as significant literals, and �� may only occur
as a � -literal.

Definition 2.2. A formula is ��-Krom if it is of the form:

	 ����� � �	�� �� � ��� ��� ���

where �� and �� are free second- and first order variables, �	
are terms not involving �� or �� and � is Krom with respect
to �� .

Let ���� ��� ��� be a ��-Krom formula with first-order
free variables � and �� and second-order free variables ��.
Then a comprehension axiom for � and a variable � is

	��� � ������� ���� ��� ����� (��-Krom-comp)

Note that � could be used to bound the length of � with-
out changing the meaning. Since the only way of intro-
ducing second-order variables into the system is by apply-
ing the comprehension axiom, every second-order variable
could be bounded by a polynomial in first-order variables.

Definition 2.3. The theory � -Krom is the theory over ��
	

axiomatized by 2-BASIC axioms together with a compre-
hension scheme ��-Krom-comp over ��-Krom formulae.

3. Basic properties of � -Krom

Many of the basic properties of � -Krom are proved in
the same way they are for ��-Horn, so in this section we
frequently refer to ��-Horn as presented in [CK03]. Since



B1: �� 
 �� 	 B2: �� 
 � � � 
� � � �

B3: �� 	 � � B4: �� �� � 
� � ��� �� � 

B5: � � 	 � 	 B6:� � �� � 
� � �� � �� � �

B7: 	 � � B9: � � � 
 � � � � � � �

B8: � � �� � B10: �� � � 
 � � ��� � � �

B11: � � � � � � � B12: � � � � � � � � 

B13: � �� 	� 	��� � 
 � ��
L1: ����� � � �� � L2: � � 
 � �� � � ����

Table 1. The 2-BASIC axioms

the length function �� � tells us that a finite nonempty set has
a maximum element, it is easy to show that � -Krom proves
the LNP for finite sets, as well as the induction axiom

��	� 
 �� � ������� ��� � 
��� ����

From this and ��-Krom comprehension it follows that
� -Krom proves the induction scheme and LNP for
��-Krom formulae, and in particular for open formulae.
Using a standard pairing function � -Krom can code a tu-
ple �� of numbers as a single number, and many of our
definitions and results implicitly assume this coding. Also
� -Krom proves the replacement scheme for ��-Krom for-
mulae, just as ��-Horn proves replacement for ��

� -Horn
formulae.

3.1. Simulating ��
� formulae.

Existential first-order quantifiers are not allowed in a
��-Krom formula. That is, a ��

� formula is not automat-
ically a ��-Krom formula, though ��-Krom clearly has
much more expressive power. In this section, we develop
a construction which allows us to convert ��

� formulae to
��-Krom. A similar result holds in ��-Horn, but the con-
struction for � -Krom is quite different.

Theorem 3.1. For every ��
� formula � there is a ��-Krom

formula �� such that

� -Krom � � � ��

From this theorem, the following corollary is easy.

Corollary 3.2. Comprehension over ��
� formulae is a the-

orem of � -Krom. Thus, � -Krom is an extension of � � and
proves the ��

� induction axioms.

The idea behind the proof of Theorem 3.1 is that � � be-
gins with 	�, where� is a multi-dimensional array with one
dimension per each alternation of quantifier in �. For every
dimension corresponding to existential, the first element is
set to false, and the last element to true. The clauses en-
code a pass through the array from the first to last element,

with a property that false values can only become true val-
ues during this pass if a witness to the existential quantifier
was found. �

With the help of Corollary 3.2, � -Krom proves induc-
tion on both ��

� and ��-Krom formulae. By using the
comprehension scheme for both formula classes we can jus-
tify induction over��

� (��-Krom) formulae, and in fact over
formulae built by nesting ��-Krom formulae with bounded
quantifiers and the Boolean connectives. This idea is used
implicitly in later sections.

4. � -Krom(TrCl)

In this section we show how to introduce the transi-
tive closure operator into � -Krom, and use it to prove the
Immerman-Szelepcsényi theorem. We show that � -Krom
can formalize the proof given in [Imm99], sections 9.2–9.5.

4.1. Definitions

We wish to define the transitive closure of a relation
given by a formula ���� �� (which may contain free vari-
ables besides �� �) on the domain �	� 
� ���� 	� 
� of 	 ele-
ments. Any relation���� �� that contains this transitive clo-
sure must satisfy conditions of reflexivity and �-step tran-
sitivity on the domain above. The following formula ��	�

encodes these conditions:

��	������ 	� �

��� �� � � 	����� �� 
 ����� �� 
 ���� ��� ���� ����

We will write just ��	������ when 	 is clear from the
context.

Remark 4.1. It is important for the proof of Theorem 4.3
that the negation of the RHS of (AxTC) is equivalent to a
��-Krom formula if � is quantifier-free. This is because
when ��	������ 	� is put in conjunctive normal form,
each clause has at most two occurrences of �. Note that
an alternative definition of ���� would be to change the
condition ��	������ to a condition ��	�������, where
��	������� asserts that � is reflexive, transitive, and
���� �� � ���� ��. However then the negation of the RHS
of (AxTC) would not be a ��-Krom formula because the
transitivity clause in ��	�� requires three occurrences of
�. Our use of ��	� instead of ��	�� makes the proof of
transitivity of ���� just a little harder (see Lemma 4.4).

Now we define the transitive closure relation ����� to
be the intersection of all relations � satisfying ��	������.

����
������ ����� �� 	�� �����	������ 	�� ���� ���
(AxTC)



We want to extend the vocabulary of � -Krom by includ-
ing instances of TrCl as defined above.

Definition 4.2. The class ��
� (TrCl) is defined inductively

as follows:

��� Every quantifier-free formula of � -Krom is in ��
� (TrCl)

���� If � is in ��
� (TrCl), then so is ����
������ ����� �� 	�

����� Every ��
� combination of formulae in ��

� (TrCl)

is in ��
� (TrCl)

The class ��
� (TrCl�) is defined in the same way, except in

(iii) we allow only ��
� combinations with positive occur-

rences of ��
� (TrCl) formulae.

The system � -Krom(TrCl) is � -Krom augmented with
the class ��

� (TrCl) of formulae, and has (AxTC) for each �

in ��
� (TrCl).

Since the only new axioms in � -Krom(TrCl) are defi-
nitions of new relations, it is a conservative extension of
� -Krom.

Theorem 4.3. � -Krom(TrCl) proves the induction ax-
iom and the comprehension axiom for every formula in
��
� (TrCl).

Proof. The essential point is that the negation of the RHS
of (AxTC) is equivalent to a ��-Krom formula if � is
quantifier-free (see Remark 4.1). The theorem follows by
induction on the depth of nesting of ���� formulae, using
the discussion following the proof of Corollary 3.2.

In the axiom of transitive closure (AxTC), 	 is a bound
on the first-order variables, and the transitive closure re-
lation ������� �� is false unless �� � � 	. In the special
case 	 � 	, ������� �� is always false, and when 	 � 
,
������� �� holds iff � � � � 	.

4.2. Properties of transitive closure

In this section we make frequent tacit use of Theorem
4.3.

First we show that � -Krom proves the transitivity of the
transitive closure relation.

Lemma 4.4. Let ������� �� stand for ���������� ��.
Then for all ��

� (TrCl) formulae �, � -Krom(TrCl) proves

������� �� 
 ������� �� �� ������� ��

Proof. Reasoning in � -Krom(TrCl), fix �� �� � and assume
������� �� and ������� ��. Referring to (AxTC), let �

be any relation satisfying ��	������. It suffices to show
���� ��.

Define �� by the condition

����� ��� �� � � 
���� ��� � �� �� � 
 ���� ���

Note that �� can be defined in � -Krom(TrCl) by compre-
hension. Using the facts ��	������ and ���� �� (because
������� ��) it is easy to show ��	�������. Therefore
����� �� (because ������� ��), and hence ���� �� (by def-
inition of ��).

The definition of transitive closure is robust enough in
that adding �-edges from the left or from the right gives the
same answer. That is, suppose that instead of ��	�, we
define AxTC using ��	�� of the form

��	������� 	� �

��� �� � � 	����� �� 
 ����� �� 
 ���� ��� ���� ���

Define ����� by

�������� ��� �����	������� 	�� ���� ���

Lemma 4.5. � -Krom proves

�������� ��� ���������� �� 	�

Proof. By an argument similar to the proof of Lemma 4.4,
� -Krom proves transitivity of �����. Therefore � -Krom
proves��	���� � �����, from which the right-to-left direc-
tion follows. The left-to-right direction follows by symme-
try.

4.3. Normal form of TrCl

In this section we formalize the proof from [EF95,
Imm99] of the theorem stating, informally, that any
bounded formula with only positive occurrences of transi-
tive closure operator can be converted into a formula with
only one, outermost occurrence of TrCl. Moreover, the
bounds of this transitive closure operator can be arbitrary
(under some restrictions). This is the most technical result
needed for the proof of closure of ��-Krom under comple-
mentation.

In the following result, the notation ��	� �	� stands for � � ��,
where  and � are term coding the tuples �	 and �	, respec-
tively, using standard tupling functions.

Theorem 4.6. Any ��
� (TrCl�) formula � is equivalent to

�����
��
����	� �	�, where � is quantifier-free. Here, �	 and the
number of variables in the vectors ��� ���� �	� �	 depend on the
structure of �. Moreover, � -Krom(TrCl) proves this equiv-
alence.

Proof. (Sketch) The proof is by structural induction on �,
and formalizes in � -Krom(TrCl) the arguments in [EF95,



Imm99], using results in the previous subsections. For ev-
ery boolean connective (except negation) and quantifier, an
equivalence between the original and constructed formula
is shown by expanding the definitions of transitive closure
via ����, negating both sides, and constructing assign-
ments for the variables under second-order existential quan-
tifiers for one side from the other. Since the negation of
���� for a quantifier-free � is ��-Krom, the existence of
such witnesses is guaranteed by ��-Krom comprehension
axioms.

4.4. Relating ��-Krom and ��
� ������

By the results of the previous sections, a bounded for-
mula with positive occurrences of the transitive closure op-
erator can be converted into a formula with a single outer-
most occurrence of TrCl, and then to a negated ��-Krom
formula by the axioms of transitive closure. This section
shows how to convert an arbitrary ��-Krom formula to
negation of a ��

� ������ formula; by appealing to Theo-
rem 4.6 it is equivalent to a negated transitive closure of a
quantifier-free formula.

4.4.1 ��	-Krom unsatisfiability algorithm

To achieve this goal we formalize the SO Krom satisfiabil-
ity algorithm [Kro67], and represent it as negated transitive
closure formulae. Using a pairing function, we may assume
that we only have one second-order variable. Let � be the
following ��-Krom formula:

� � 	�����	� � � �����	����� ���� (1)

where ���� ��� �

��
����������� � ��

���
�

������ � ��������

Here, �� and ��

� are � or �� , and �� are quantifier-free and
contain no occurrence of � .

The algorithm below reduces the truth of this formula
(given values for the free variables) to reachability in a di-
rected graph. Step 1 reduces truth to the satisfiability of
a propositional CNF formula � with at most two literals
per clause, and Steps 2 and 3 construct a directed graph �

whose nodes are literals in the formula, such that � is unsat-
isfiable iff � has a directed cycle containing some variable
and its negation.

Step 1: Convert a ��	-Krom formula to propositional
2-CNF. Make a conjunction of 	� � � � � � 	� copies of the
formula, one for each ��� � � � ���, and evaluate the terms
in each copy on a corresponding value of �� � � � � ���. If a
clause evaluates to true due to ������ becoming true, delete
the clause. If �� evaluates to false, then if there are no quan-
tified second-order variables in this formula, the whole for-
mula is false. Otherwise delete �� from the clause, evaluate

������ and ������� and assign propositional variables to them
as follows:

Assign a different propositional variable ! � to every
value of a term on a tuple of first-order variables, and make
an occurrence of it negated if the corresponding literal was
�� . There are as many variables as there are possible val-
ues of ��’s on ��, at most �" � 	� � � � � � 	�. If two different
terms evaluate to the same value on possibly different tu-
ples, they get mapped to the same propositional variable.

Step 2: Now we construct a graph of the resulting
propositional formula. The vertices of the graph are the
propositional variables and their negations. For every clause
�!� � !��� create edges �!� � !�� and �!�� � !� .

Step 3: For every propositional variable ! �, check
whether both paths from !� to �!� and from �!� to !� are
in the graph. If there exists !� for which there are both such
paths, then the original formula is unsatisfiable, otherwise
satisfiable.

If there is no variable with both paths in the graph, con-
struct the satisfying assignment by repeating the following
procedure: pick a variable !� to which no value has been
assigned yet. We know that !� �� �!� or �!� �� !�. In the
first case, set !� to true, otherwise set �!� to true; set the op-
posite literal to false. Now set to true all literals reachable
from the literal we set to true (!� or �!�).

4.4.2 Construction

Here is how we construct a formula equivalent to � from
(1), with occurrences of transitive closure and no second-
order quantifiers. If a clause #� is of the form

#� � ����������� � ��

���
�

������ � ��������

where �� and ��

� are positive or negative second-order
atoms, it translates into two clauses corresponding to the
two implications ���� � ��

�� and ����

� � ���. There are
five pieces of information about each clause: values of � �����
and �������, whether �� and ��

� are � or �� , and the value
of ������. There is a step of transitive closure on the trans-
lation of the original clause if one of the two implications
���� � ��

��� ���
�

� � ��� holds.
Introduce for every clause constants �� � �

�

� depending
only on the structure of #� to encode whether �� � �

�

� have
negation: (�� � 	 iff �� � �� , and ��� � 	 iff ��

� � �� ).
Let �$�  �� �%�  �� be variables used in the transitive clo-
sure: a step is �$�  � � �%�  ��, where $� % correspond to
� �$�� � �%�, and  �  � to the negation parameters. For ex-
ample, �$� 
� � �%� 
�means that the implication �� �$��
� �%�� must hold in order for some clause to be satisfied.
Now a translation �� of #� becomes

�������� 
 ������ � $ 
 ��� �  
 ������� � % 
 ��� �  ��

��������� 
 ������� � $ 
 ���� �  
 ������ � % 
 �� �  ��



The nodes of the graph of the propositional formula are
the values of all terms on all tuples of ��. We need to find
a value � � �, where � � ���������	�� �

�

���	��, such that
there are chains of implications from ��� 	� to ��� 
� and from
��� 
� to ��� 	�, corresponding to chains of implications from
�!� to !� and from !� to �!�. Let

���$�  � %�  �� � 	�� � �	
��

���

������

The following formula is equivalent to the negation of �
from (1):

	� � ������������
��$�  � %�  ����	� �
� (NegKrom)


 ����������
��$�  � %�  ����
� �	��

4.4.3 Proof of correctness

Theorem 4.7. Let �� ��� ��� be a ��-Krom formula. Then
there exists a quantifier-free formula � and tuples �	� �	 such
that

� -Krom������ � �� ��� ���� ������
��
����	� �	�

Proof. By Theorem 4.6 (normal form theorem) it suffices
to prove equivalence between � in (1) and the negation of
(NegKrom).

Let � � 	���� � �	���� ��� be the formula (1). We need
to prove the equivalence

	���� � �	���� ����

�� � �	&���	����� &� ��� ��� 
 ��&��	� �
� � �&��
� �	���
(2)

where

��	����� &� ��� ��� � �$� %� ' � �� �  ��  �� � �

&�$ � $ � 
 ����$ � % �� 
&�% �� ' ���� &�$ � ' ����

First, note that �� does not depend on �. The second part
is equivalent to

	& ��	����� &� ��� ���
 �� � ���&��	� �
���&��
� �	��

The easy direction of the proof is to show that given
a satisfying assignment � to the original formula we can
construct &. We define & such that &�$�� %(� holds iff
the variable corresponding to $� implies the variable cor-
responding to %(, under the truth assignment � . Explic-
itly, we define & by cases: &�$	� %	� � �� �%� � � �$��,
&�$	� %
�� ��� �$� � �� �%��, &�$
� %	�� �� �$� �
�� �%��, &�$
� %
�� �� �$�� � �%��.

It is clear that for & defined in this fashion �&��
� �	� �
�&��	� �
� for all �, because exactly one of them will be
� � �. If � ��� holds, then &��
� �	� is false, otherwise

&��	� �
� fails. Also, this definition trivially satisfies reflex-
ivity.

To show that & satisfies step-transitivity, consider
����$ � % �� � �&�% �� ' ��� � &�$ � ' ���. Suppose that
&�% �� ' ��� and �&�$ � ' ��� hold. In case of  �  � �
 �� � 
, that corresponds to � �%� � � �'� and ��� �$� �
� �'��. That can happen only when � �$� � �, and
� �'� � �. Then � �%� � � by &�%
� '
�. It remains to
be shown that ���$
� %
� fails. Suppose there exists �� � �	
and �� such that ������ $� 
� %� 
� holds. The original clause
corresponding to �� is ��� �$� � � �%� � ������. Since ��

holds, ������, and since � �$� � � and � �%� � �, this
clause is not satisfied by � , contradicting the assumption
that � is a satisfying assignment. The cases for other val-
ues of  �  ��  �� are similar.

The more complicated direction is to construct a satisfy-
ing assignment � given &. Let


��#)���  � � &��� � � � � �	( � �

&�(	� (
� 
&�(
� � � �&�(
� (	� 
&�(	� � ��


��#)��� 
� holds if � ��� is directly forced to �, that is,
if either ��� ���� � ���� or ���(�� � ���� and ��(� � �,
where � is either � or �� . 
��#)��� 	� means � ��� � �.
Let *	
��#)���� � �
��#)��� 	� 
 �
��#)��� 
�.

The hard case is when nothing is forcing � ��� to be
� or � except consistency with already assigned values.
The idea here is to set the minimal of every set of unas-
signed variables to � and make sure that we account for
all variables forced to some values by this decision. Since
& contains transitive closure, for all variables � forced by
� �(� �  to � ��� �  �, &�( � � ��. So, we say that � is
assigned  if

�  �+	���  � � 	( � ��, � �*	
��#)��(�


�*	
��#)��,�� ,  (� 
&�(
� � ��

Now � is defined as follows:

� ���� �
��#)��� 
� � *	
��#)���� 
 �  �+	��� 
��

Suppose for the sake of contradiction that � is not a satis-
fying assignment, that is, there exists an assignment ��� to ��
and a clause ������������ ���

���
�

������� � �������� that eval-
uates to � under � . The proof proceeds by cases: � � and
��

� can be negated literals or not, and in each combination
of negations the cases depend on the reason why � � and ��

�

are set to false (forced vs. assigned � ���).

4.5. Immerman-Szelepcsényi’s construction

Now we can formalize Immerman’s construction.



Theorem 4.8. For any ��
� (TrCl�) formula � there is a

��
� (TrCl�) formula �� such that

� -Krom������ � � � ���

Thus, by theorem 4.7 and ����, for any ��-Krom formula
� there exists a ��-Krom formula �� such that � -Krom �
�� ���.

We would like to construct a formula)+������� �� 	�
with only positive occurrences of transitive closure operator
such that

� -Krom � ���������	� ��� )+������� �� 	��

We associate with the pair �� 	 a graph with 	 vertices
numbered 	 through 	-
, and with an edge $� % whenever
��$� %� holds. The question becomes the reachability of a
vertex numbered � from the vertex numbered 	.

The main idea of Immerman’s construction is counting,
for every distance � � 	, the exact number of vertices
reachable from 	 in � steps, as well as counting the num-
ber of vertices other than � reachable from 	 in � steps. If
the two numbers are the same, then � is not reachable from
	 in � steps, and if � � 	� 
, then � is not reachable from
	 at all, so �	� �� is not in the transitive closure of �. In the
subsequent formulae, %� % � correspond to the vertices of the
graph, # and #� are the values of the counter, and 	� is the
number of vertices reachable from 	 in � steps.

The two main formulae used in the construction are
-.�� ��� �� and -.�� ��� ��"�, stating, respectively,
that � is reachable from 	 in � steps for-.�� and that there
are at least " vertices reachable from 	 in � steps not includ-
ing � for -.�� . The final formula )+������� �� 	�
states, essentially, that there is some number , of vertices
reachable from 	 and the number of vertices reachable from
	 not including � is at least ,. The bulk of the proof is show-
ing, inductively, that for every distance � there is a unique
number 	� such that there are exactly 	� vertices reachable
from 	 in � steps.

Since the construction is based on counting, we we intro-
duce a notion of “counters” to formalize Immerman’s proof.

Definition 4.9. A counter (transitive closure counter) is
a formula of the form CNT�%#� % �#�� � �#� � #�
 

��%� %�� #� � #� � # 
 ���%� %�� #��, where � and �� are
��
� (TrCl�). A counter is fair if # and #� are not free vari-

ables of � and ��. A fair counter is linear if, additionally,

�%� � %�
� is either a part of the counter formula, or the
part of both � and ��. In the first case, � and �� only take
one argument, usually % �. A counter is exact if �� � ��;
otherwise a counter is sloppy.

Usually we are interested in the value of transitive
closure over a counter, with the ranges on vertices and

on counter variables as bounds. ����������� CNT���� �)�
means that there exists a �-path from � to � of length at
least ) � �. The “at least” part of this statement is due to
overlapping � and �� steps: if there are , steps on which
both � and �� hold, then ����������� CNT���� �)� holds for
, consecutive values of ). Since for fair counters the actual
values of counter variables do not matter (only the differ-
ence does), most counters start at % � 	� # � 
 or # � 	 and
go to % � 	, with the second boundary value of # being the
object of interest.

The simplest counter in Immerman’s construction is / �
����%� %�� � % � %�� 
 #� � #�
�, with �� � ���%� %�� �
% � %�� and ��� � �. It is used to define -.�� ��� �� �
�����������/�		� ���. The meaning is that there is a �-path
from 	 to � of length at most �. The counter / is fair, but
not linear and not exact.

All formulae under transitive closure in the Immerman’s
construction (/� 0� 1 and Æ) are counters. Of them, Æ is
the only unfair counter, and 0 and 1 are linear, where 0

is sloppy, and 1 can be shown to be exact. The following
lemmas are the bulk of the proof:

Lemma 4.10. Let LCNT�%#� %�#�� be an exact linear
counter. Then

� -Krom � �� � 		�� � 	�����������LCNT�	
� ���

Proof. We prove this statement by induction on �. The only
two cases to consider for the induction step are whether
��� � 
� or ���� � 
� holds; in either case the value of �

is clear.

Lemma 4.11. Let LCNT��%#� %
�#�� and LCNT��%#� %

�#�� be
two linear counters with �% � 	���%� � ���%� and
����%� � ����%�, and let LCNT� be exact. Then, provably
in � -Krom, LCNT� cannot count to a larger value than
LCNT�. Moreover, if for some % � � ���%�
�
����%�
�,

�����������LCNT��	
� ���� ������������ LCNT��	
� ����

otherwise (that is, if �% � �����% � 
�� ���% � 
��,

�����������LCNT��	
� ���� �����������LCNT��	
� ���

Proof. The proof is by induction on �. We omit details.

The body of the proof of Immerman’s theorem is by in-
duction on the number of steps � of the outermost counter
(that is, on the length of paths starting at 0). The formula
1 defining the value of 	� for every step is a linear counter
with �� � -.�� �%�� ��
� and

��� � �� � 	�-.�� ��� ��"� � �� �� %� 
 ����� %�����

Intuitively, 1 increments its counter variable # for ev-
ery % reachable in � � 
 steps and does not increment



the counter for unreachable (in � � 
 steps) vertices, un-
der the assumption that there are at least " vertices reach-
able in � steps. The induction statement is that for a step
�, 1 is an exact counter giving a unique value 	� and
�� � 	�-.�� ��� ��	�� � �-.�� ��� ���. The first
part is proven by using Lemma 4.10 with LCNT � 1; the
second part by applying Lemma 4.11 with LCNT� � 1

and LCNT
 being the counter formula of -.�� , 0, with
�� � -.�� �%�� �� 
 % �� � and ��� � �.

For � � 	 � 
 this statement implies that if there are
, � 	��� vertices reachable from 	 and by the formula
-.�� ��� 	 � 
�	���� the vertex � is not one of them,
then�-.�� ��� 	�
�. The proof is completed by showing
that -.�� ��� 	� 
�� ��������	� ��.

5. Definability in � -Krom

In this section the goal is to prove that � -Krom indeed
captures �� tightly.

Definition 5.1. A predicate ����� �2 � is ��
� -definable in a

second-order system of arithmetic � if there are ��
� formu-

las � and � such that � satisfies

����� �2 �� ����� �2 ��

and
� � ������ �2 �� ������ �2 �

� captures a complexity class � if the ��
� -definable predi-

cates of � are exactly the predicates of �.

Theorem 5.2. A predicate ����� �2 � is ��
� -definable in

� -Krom iff it is in ��.

Proof. By Grädel’s theorem, every co-�� predicate (and by
Immerman-Szelepcsényi every �� predicate) is definable by
a ��-Krom formula. From Theorem 4.8 and the fact that
��-Krom formulae are also ��

� formulae, it follows that ev-
ery �� predicate is ��

� -definable in � -Krom. The converse
follows from Theorem 5.7 (witnessing) below.

We define the function class 
� associated with �� in
the standard way for the second-order setting (see [Coo02,
Coo04]): number functions are defined from �� predicates
using bounded minimization, and string functions must be
polybounded and have �� bit graphs. The following defi-
nition provides a way of introducing function symbols for

� functions in a theory. It makes sense because the ��
predicates are precisely those definable by��-Krom formu-
lae.

Definition 5.3. A number function 3 � � ����	� 
���� � �

is ��-definable iff there is a formula � � ��-Krom and a
polynomial ! such that 3 has defining axiom

3���� �2 � � ��� � � !���� � �2 ������ ��� �2 �

A string function 
 � �� � ��	� 
���� � �	� 
�� is ��-
definable iff there is a formula � � ��-Krom and a polyno-
mial ! such that 
 has defining axiom


 ���� �2 ����� � � !���� � �2 �� 
 ���� ��� �2 �

Lemma 5.4. Let � be a ��
� formula with possible occur-

rences of string and number function symbols from the def-
inition 5.3. Then there exists a ��-Krom formula with no
occurrences of function symbols that is provably in � -Krom
equivalent to �.

Proof. Structural induction on �, using Theorems 4.6, 4.7,
and 4.8.

Definition 5.5. A string function 
 ���� �2 � is ��
� -definable

in � -Krom iff there is a ��
� formula � such that

� � 
 ���� �2 �� ����� �2 � ��

and
� -Krom � ���� �2 	������� �2 � ��

Similarly for number functions.

Theorem 5.6. A function (string or number) is ��
� -

definable in � -Krom iff it is in 
�.

Proof. �� number functions are ��
� -definable because

� -Krom proves bounded minimization for ��-Krom for-
mulae, and �� string functions are ��

� -definable because
� -Krom proves ��-Krom comprehension. The converse
follows from the following witnessing theorem.

Theorem 5.7 (Witnessing theorem for � -Krom). If
� -Krom � 	�4���� �2 � ��, where 4 � ��

� , then there is
a string function 
 ���� �2 � � 
� such that

� -Krom� ���
 � � 4���� �2 � 
 ���� �2 ���

where ���
 � is a defining axiom for 
 .

The proof is based on a cut-elimination argument using
the method pioneered by Buss [Bus86] (see [Coo02] for a
second-order version). The idea is to put proof of the ��

�

formula into a normal form in which every formula is ��
� .

Unfortunately the ��-Krom comprehension axioms are ��
�

formulae, so we need a modified system in which the com-
prehension axioms are indeed ��

� formulae.

5.1. ��
� -axiomatized version of � -Krom

Here we give a system that has comprehension formulae
which are “general��

� ”. That is, they have a prenex form in
which bounded number quantifiers precede a ��

� formula.
The main thing is that they can be easily witnessed in ��.

By Theorem 4.8 we know that for every ��-Krom for-
mula � there is a ��-Krom formula �� such that � -Krom �
�� ���. Now we can replace a negated occurrence of � in
the comprehension axiom of � -Krom by ��.



Definition 5.8. The system �� -Krom consists of axioms
2-BASIC, together with sequents �� �� �� and �� �� ��
for every � � ��-Krom, and a comprehension scheme

	��� � �������� ����� 
 ������� ��������
(��-Krom-comp�)

Lemma 5.9. The systems � -Krom and �� -Krom have the
same theorems.

Proof. Since � -Krom proves � � � ��, it suffices to ob-
serve that the revised scheme (��-Krom-comp�) is equiva-
lent to the original scheme (��-Krom-comp) under the as-
sumption � � ��.

Lemma 5.10. The scheme (��-Krom-comp�) is equivalent
in �� -Krom to a ��

� formula.

Proof. Consider the subformula of ��-Krom-comp� with
� as a free variable. Now it is a ��-Krom formula,
preceded by a universal first-order quantifier. Let � �
	 �� ���� � ����� ������� ��� �� �� ��� ��� and �� � 	 �&����� �
������ ��� ����� ���� �&�� ��� ���; assume without loss of general-
ity that � � ��. Putting the subformula under 	��� � � in
prenex form, and encoding, using pairing function, vectors
of second-order variables as single variables, get

	� �	&����� ��� � ����� ��������� ���� ��� � ���


������� ����� ���� &����

Applying replacement, obtain

	�	&�� � ����� ��� � ����� ��������� ���� ��� � �����


������� ����� ���� &������

Since all free variables, in particular �, are implicitly
universally quantified in this formula, existence of � satis-
fying the first formula implies existence of � satisfying the
second (and, in fact, � can be the same).

5.2. Proof of the witnessing theorem.

Since � -Krom and �� -Krom are equivalent theories, to
prove Theorem 5.7 if suffices to prove the statement with
�� -Krom replacing � -Krom. The proof follows the same
steps as the proof of � � witnessing theorem in [Coo02].
The only difference is in proving the base case, the case of
comprehension axiom.

Lemma 5.11. The string quantifiers in ��-Krom-comp� can
be witnessed by �� functions.

Proof. By Lemma 5.10 and using pairing function to com-
bine several second-order variables into one, ��-Krom-
comp� is equivalent to the following formula (omitting the

free variables):

	�	�	&�� � ����� ��� � ����� ��������� ���� ��� � �����


������� ����� ���� &�����

It is very easy to witness �: simply use a function de-
fined by the bit graph of �. To witness � and & we again
appeal to transitive closure.

Define a transitive closure function ���� ��� ��� 	���� ��
by setting its bitgraph to be AxTC. The existence and
uniqueness of the graph of this function is proven by com-
prehension over the negation of AxTC (that is, there ex-
ists ����� �� � ������� �� and ���� �� � �� ���� �� for
�� � � 	). Now for all � � 	 � ��� and &��� can be de-
fined by the construction from Section 4.4.3, using ���

and �� 	� respectively instead of & and �& in the formula
(2). By Lemma 5.4, a ��

� formula with occurrences of ��

is equivalent to a ��-Krom formula, which in turn defines
an NL function, which is a witnessing function for � ���

and &���. From there we obtain functions 
����� �� �� and


������ �� �� (with free variables of � and ��), which witness

� and &, respectively.

The proof of the witnessing theorem here uses proof-
theoretic techniques similar to those of Buss’ original proof
of ��

� witnessing theorem from [Bus86]. We use Gentzen-
style sequent calculus system, extended by second-order
quantifier introduction rules; such system is anchored if the
cut rule can only apply to axioms (logical or non-logical).

We start by considering an anchored �5 �- �� -Krom
proof of �� 	�4���� �����. Since it is anchored, the cut
rule is only applied to formulae in axioms of �� -Krom. The
last formula in the proof is ��

� , so every formula in the
proof that is ��

� as well.
The most interesting case is the base case. Suppose that

the sequent is an axiom of �� -Krom. If it only involves open
axioms B1-B13, L1,L2, then no witnessing function is nec-
essary. If it is an instance of comprehension scheme, the
three quantifiers are witnessed according to Lemma 5.11.

The remaining cases are �� �� �� and �� �� �� . The
second case does not need witnessing, and the first case can
again be witnessed by construction from Lemma 5.11, omit-
ting �.

The rest of the proof of witnessing theorem is exactly the
same as in the case of � � from [Coo02].

6. � -Krom is finitely axiomatizable.

Since it is possible to encode ��-Krom satisfiability as
a ��-Krom formula, we can show that � -Krom is finitely
axiomatizable in a similar fashion to the proof that ��-Horn
is finitely axiomatizable.



We know that � �, axiomatized by 2-BASIC with com-
prehension scheme over ��

� formulae, is finitely axioma-
tizable (see [CK03] for the proof). Since the ��

� compre-
hension scheme is provable in � -Krom, � -Krom can be
viewed as � � extended by the ��-Krom comprehension
axiom scheme. If we can show that finitely many occur-
rences of ��-Krom comprehension are sufficient, we prove
that � -Krom is finitely axiomatizable.

In proving Theorem 4.7 we showed that every � �-Krom
formula�� ��� �� ��� is provably equivalent to a negated tran-
sitive closure. This is done by showing that � is provably
equivalent to the negation of the formula (NegKrom), which
involves the transitive closure of a formula � ��$�  � %�  ��.
Inspection of the latter argument shows that this equivalence
can be proved in � �. Notice that �� is a ��

� formula, and
has free variable parameters �� ��� ��, which we will indicate
by writing ���$�  � %�  �� �� ��� ���. We can use ��

� compre-
hension to define a string variable 6�$�  � %�  �� ��, which
for fixed �� and �� a codes the values of � �. Thus

� � �	6�$� % � �� �  � � ��� � �

�6�$�  � %�  �� ��� ���$�  � %�  �� �� ��� ����

The proof of Theorem 4.7 shows that �� ��� �� ��� is equiv-
alent to the RHS of (2), and this is provable in � �. Let
���� 6� be the result of replacing each occurrence of � � in
the RHS of (2) by 6. Then it suffices to add the following
single comprehension axiom for � to � � to get � -Krom.

	��� � ������� ���� 6��

This is because the comprehension axiom for �� ��� �� ���
follows from this one comprehension axiom by reasoning in
� �, and this axiom is the same for every ��-Krom formula
�.

7. Future work

Another natural way of representing �� is to define a
system of arithmetic by augmenting � � by adding a string
function ���6� 	�, together with axioms defining it as the
transitive closure of the edge relation 6 restricted to the
nodes �	� ���� 	� 
�. This could be made a universal theory
by adding ��� functions, similar to the way that � � is made
into a universal theory � � in [Coo04]. The resulting theory
should be a universal conservative extension of � -Krom.

A more interesting direction, however, is to extend this
��
� -definability result to classes of formulae other than

��	-Krom, and thus to other complexity classes. Suppose
that a class of formulae is (provably) closed under �� � re-
ductions and its descriptive complexity and complexity of
satisfiability coincide. Construct a system of arithmetic by
adding comprehension over that class of formulae to � �,
just as � -Krom is � � with comprehension over ��-Krom

formulae. Then ��
� -definability properties of this system

should be similar to � -Krom: namely, descriptive complex-
ity and complexity of ��

� -definable predicates in that sys-
tem should be the same.
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nals of Pure and Applied Logic, 124:193–231, 2003.

[Coo02] S. A. Cook. CSC 2429S: Proof Complexity
and Bounded Arithmetic. Course notes, URL:
”http://www.cs.toronto.edu/�sacook/csc2429h”,
Spring 1998-2002.

[Coo04] S. Cook. Theories for complexity classes and their
propositional translations. submitted, pages 1–36, 2004.

[CT92] P. Clote and G. Takeuti. Bounded arithmetic for NC,
ALOGTIME, L and NL. Annals of Pure and Applied
Logic, 56:73 – 117, 1992.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite model theory.
Springer Verlag, 1995.
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