
A second-order system for polytime reasoning based on Grädel’s

theorem

Stephen Cook and Antonina Kolokolova
University of Toronto

{sacook,kol}@cs.toronto.edu

January 10, 2002

Abstract

We introduce a second-order system V1-Horn of bounded arithmetic formalizing polynomial-
time reasoning, based on Grädel’s [11] second-order Horn characterization of P. Our system
has comprehension over P predicates (defined by Grädel’s second-order Horn formulas) , and
only finitely many function symbols. Other systems of polynomial-time reasoning either allow
induction on NP predicates (such as Buss’s S1

2 or the second-order V 1
1), and hence are more pow-

erful than our system (assuming the polynomial hierarchy does not collapse), or use Cobham’s
theorem to introduce function symbols for all polynomial-time functions (such as Cook’s PV
and Zambella’s P-def). We prove that our system is equivalent to QPV and Zambella’s P-def.
Using our techniques, we also show that V1-Horn is finitely axiomatizable, and, as a corollary,
that the class of ∀Σb

1 consequences of S1
2 is finitely axiomatizable as well, thus answering an

open question.

1 Introduction

1.1 Bounded Arithmetic

The first theory that was explicitly designed in order for all proofs to be feasibly constructible
(i.e., constructible in polynomial time) was the equational theory PV , proposed by Cook in 1975
[5]. There, Cobham’s characterization of polynomial-time was used to construct polynomial-time
functions. One motivation for PV was its close relation with Extended Frege proof systems for the
propositional calculus: theorems of PV give rise to families of tautologies with polynomial-length
proofs.

A major work establishing the relation between complexity theory and bounded arithmetic
was the 1985 PhD thesis of S.Buss [2], where the first-order theories Si2 and various second-order
theories were developed that characterize the levels of the polynomial-time hierarchy, PSPACE and
EXPTIME. The most important of them is the first-order theory S1

2 , consisting of a set of 32 axioms
and an induction-on-notation scheme over Σb

1 (NP) formulas. Buss proves that a function is Σb
1-

definable in S1
2 iff it is polynomial-time. He also shows that S1

2 is ∀Σb
1 conservative over QPV (a

quantified version of Cook’s PV); however general conservativity of S1
2 over QPV would imply

the collapse of the polynomial hierarchy to P/poly [4, 16, 24]. Razborov and, at the same time,
Takeuti [19, 22] introduce a general method (the RSUV isomorphism) for showing the equivalence

1

between certain first-order and second-order theories, which can be used to show that the second-
order theory V 1

1 is equivalent in power to S1
2 [19]. Finally, in 1996 Zambella [24] introduced an

elegant way of presenting a hierarchy of second-order theories equivalent to 〈Si2〉, as well as the
second-order theory P-def, which includes function symbols for all polynomial-time functions and
is equivalent to QPV .

1.2 Descriptive Complexity

While in bounded arithmetic we are interested in the proving power of theories, in descriptive
complexity we are interested in expressive power of formulas. Instead of asking what class of
theorems can be proven, we ask what properties (for example, graph properties) we can express
using certain classes of formulas. This research goes back to Fagin’s 1974 result [9] showing that a
language is in NP iff it corresponds to the set of finite models of an existential second-order formula.
Later Stockmeyer [21] extended this result, characterizing the polynomial hierarchy as the class of
sets of finite models of all second-order formulas.

Finding an elegant descriptive-style characterization of P proved more illusive. One such char-
acterization of P uses the first-order logic augmented with the successor relation and the least
fixed-point operator [23, 13]. Later Leivant [17, 18] found a second-order characterization of P

using the notion of “controlled computational formula”, which is related to Horn formula. (The
motivation for using Horn formulas comes from the existence of a simple polynomial-time algorithm
for solving the satisfiability problem for propositional Horn formulas.) Finally Grädel [10, 11] found
an elegant descriptive characterization of P using SO∃-Horn (second-order existential Horn) formu-
las with successor.

1.3 Our Results

We present a second-order theory V1-Horn of bounded arithmetic based on Grädel’s theorem; our
theory is intended to capture polynomial-time reasoning. We use the elegant syntax of Zambella’s
[24] second-order theories. Our main new feature is a comprehension axiom scheme for second-order
existential Horn formulas, which by Grädel’s theorem represent the polynomial-time predicates.
Our main results are that V1-Horn is finitely axiomatizable, from which it follows that the ∀Σb

1

consequences of S1
2 are finitely axiomatizable, thus answering an open question (see [15], theorem

10.1.2). We also show that V 0 (Zambella’s Σb
0 − comp) is finitely axiomatizable. A major tool

needed for our results is the construction in our theory of a ΣB
1 -Horn formula RunΦ(R, R̃) which

encodes a run of the satisfiability algorithm on the ΣB
1 -Horn formula Φ (see Section 5).

Section 2 contains background information. We define our system V1-Horn and other second-
order theories in Section 3. In Section 4 we show that V1-Horn proves the equivalence of each
formula in several broad syntactic classes to a ΣB

1 -Horn formula. Section 5 contains the description
of the main tool needed for later sections, namely representing the Horn satisfiability algorithm in
V1-Horn by a ΣB

1 -Horn formula. In Section 6 we construct a conservative extension V1-Horn(FP) of
V1-Horn by introducing function symbols for polynomial-time functions, and show the equivalence
of this and Zambella’s P-def[24]. Finally, in Section 7 we demonstrate that both V 0 and V1-Horn
are finitely axiomatizable, and show that this implies that the ∀Σb

1 consequences of S1
2 are finitely

axiomatizable.

2

2 Second-order formulas and complexity classes

The prototype for the underlying language of V1-Horn is the language of second-order bounded
arithmetic introduced by Buss [2]. However our language is closer to the nicer second-order language
introduced by Zambella [24], in that we eliminate the superscript terms t tagging second-order
variables Xt and instead introduce a bounding function |X|.

Our language L2
A has two sorts, called first-order and second-order. (The intention is that first-

order objects are natural numbers and second-order objects are finite sets of natural numbers, or
finite binary strings.) First-order variables are denoted by lower case letters a, b, i, j, ..., x, y, z, and
second-order variables are denoted by upper-case letters P,Q, ...,X, Y, Z.

The first-order function and predicate symbols of L2
A are the standard symbols {0, 1,+, ·;≤,=}

of Peano Arithmetic. To these we add the unary upper-bound function symbol | |, which takes
second-order objects to first-order objects, and the binary membership predicate symbol ∈.

For every second-order variable X we form a first-order term |X| called an upper-bound term.
The first-order terms of L2

A are built from 0, 1, first-order variables, and upper-bound terms using
the function symbols + and ·. The only second-order terms are second-order variables.

The atomic formulas of L2
A have one of the forms s = t, s ≤ t, t ∈ X, where s and t are first-order

terms and X is a second-order variable. We usually write X(t) instead of t ∈ X. Formulas are
built from atomic formulas using the propositional connectives ∧,∨,¬, the first-order quantifiers
∀x,∃x and the second-order quantifiers ∀X,∃X.

We use the usual abbreviations s 6= t for ¬s = t and s < t for s ≤ t∧ s 6= t. Bounded first-order
quantifiers get their usual meaning: ∀x ≤ tφ stands for ∀x(x ≤ t → φ) and ∃x ≤ tφ stands for
∃x(x ≤ t∧φ). We also use bounded second order quantifiers: ∀X ≤ tφ stands for ∀X(|X| ≤ t→ φ)
and ∃X ≤ tφ stands for ∃X(|X| ≤ t ∧ φ).

In the standard model for L2
A first-order variables range over N, and second-order variables

range over finite subsets of N. If X is the empty set, then |X| is interpreted as 0, otherwise |X| is
interpreted as one more than the largest element of the finite set X. The symbols 0,1,+ ·, ∈ get
there usual interpretations.

In complexity theory a member of a language is often taken to be a binary string, but from
our “second-order” point of view we take it to be a finite subset X of N. To relate this to the
string point of view we code a finite set X by the binary string X ′, where X ′ is the empty string
if X is the empty set, and otherwise X ′ is the binary string x0x1, ..., xn−1 of length n = |X| such
that xi = 1 ⇐⇒ i ∈ X, 0 ≤ i ≤ n − 1. (Thus all nonempty string codes end in 1.) If L is a
set of finite subsets of N, then the corresponding set of strings is L′ = {X ′ | X ∈ L}. If C is a
standard complexity class such as AC0, P or NP, then our second-order reinterpretation of C is
{L | L′ ∈ C}. Since the complexity classes considered here are robust, this reinterpretation will
come out the same for any reasonable string coding method.

The role of first-order objects in our theories is that of members of second-order objects, or
equivalently as position indices for binary strings. Thus in determining the complexity of a set of
natural numbers we code a natural number i using unary notation; that is as a string i′ of 1’s of
length i.

Definition 2.1. If φ(z̄, Ȳ) is a formula of L2
A whose free variables are among z1, ..., zk, Y1, ..., Y`

then φ represents a k+ `-ary relation Rφ as follows. If a1, ..., ak are natural numbers and B1, ..., B`
are finite sets of natural numbers, then 〈a1, ..., ak, B1, ..., B`〉 satisfies Rφ iff φ(a1, ..., ak, B1, ..., B`)
is true in the standard model.

3

If C is a complexity class, then we make sense of the statement “Rφ is in C” using the string en-
codings described above. In particular, a relation R(x1, ..., xk, Y1, ..., Ym) is in P iff it is recognizable
in time bounded by a polynomial in (x1, ..., xk, |Y1|, ..., |Ym|).

We now define the classes ΣB
i and ΠB

i of bounded second-order formulas. (A formula is bounded
if all its quantifiers are bounded.) ΣB

0 and ΠB
0 both denote the class of bounded formulas with no

second-order quantifiers. We define inductively ΣB
i+1 as the least class of formulas containing ΠB

i

and closed under disjunction, conjunction, and bounded existential second-order quantification .
The class ΠB

i+1 is defined dually.
The classes ΣB

i and ΠB
i are the formulas in our (Zambella’s) simplified language L2

A which

correspond to the classes Σ1,b
i and Π1,b

i in Buss’s prototype second-order language [2, 15]. They
are the second-order analogs of the first-order formula classes Σb

i and Πb
i , where sharply-bounded

quantifiers correspond to our bounded first-order quantifiers.
The formulas ΣB

1 represent precisely the NP relations, and more generally for i > 1 the ΣB
i

formulas represent the Σp
i relations in the polynomial hierarchy and ΠB

i represent the Πp
i relations

[2, 15]. The formulas ΣB
0 represent precisely the uniform AC0 relations, which are the same as the

class FO (First Order) of descriptive complexity [1] (see Chapter 1 of [14]).
We now define the formulas corresponding to polynomial time.

Definition 2.2. A formula φ of L2
A is Horn with respect to the second-order variables P1, ..., Pk

if φ is quantifier-free in conjunctive normal form and in every clause there is at most one positive
literal of the form Pi(t) (called the head of the clause) and no terms of the form |Pi|. (We do allow
upper-bound terms |X| and any number of positive literals X(t), where X is not among {P1, ..., Pk}.)
A formula is ΣB

1 -Horn if it has the form

∃P1...∃Pk∀x1 ≤ t1...∀xm ≤ tmφ (1)

where k,m ≥ 0 and φ is Horn with respect to P1, ..., Pk, and the bounding terms ti do not involve
x1, ..., xm. More generally a formula is ΣB-Horn if it has the above form except that each second-
order quantifier can be either ∃ or ∀. A formula is Πb

1 Horn with respect to P1, ..., Pk if it has the
form (1) with the existential quantifiers omitted.

Remark 2.3. Note that our definition of ΣB
1 -Horn is somewhat different from the original Grädel’s

definition of second-order existential Horn formulas. Since our setting is that of bounded arithmetic
rather than finite model theory, we bound all quantifiers (explicit bounds on first-order quantifiers
give implicit bounds on second-order ones). We include both + and × as interpreted functions (thus
allowing pairing functions), while Grädel includes only successor. Grädel allows k-ary predicate
symbols for each k, while we allow only unary predicate symbols (but we can simulate k-ary symbols
using pairing functions).

Notice that the second-order quantifiers in ΣB
1 -Horn and ΣB-Horn formulas are not bounded.

However, since no occurrence of |Pi| is allowed, each such formula is equivalent in the standard
model to one in which every quantifier ∃Pi or ∀Pi is bounded by a term t which is an upper bound
on all terms u such that Pi(u) occurs in the formula. On the other hand, if occurrences of |Pi| were
allowed, then an unbounded quantifier ∃Pi can code an unbounded number quantifier ∃|Pi| and
hence undecidable relations would be representable.

It is often convenient to treat second-order objects as multi-dimensional arrays, instead of one-
dimensional strings or sets. An easy way to do so is to use a pairing function < ·, · >, defined

4

by
< x, y >= (x+ y)(x+ y + 1) + 2y (2)

This function is a one-one map from N×N into N, and it is represented by a term in our language.
It is easily generalized to k-tuples by defining 〈x1, ..., xk〉 by the recursion

〈x〉 = x, 〈x1, ..., xk+1〉 = 〈〈x1, ..., xk〉, xk+1〉 (3)

Thus, any finite set P can be treated as a set of k-tuples of variables; P (x1, ..., xk) is defined to be
P (< x1, ..., xk >).

The theorem below is similar to part of Grädel’s Theorem 5.2 [10] (see also Chapter 7 of [20]),
which is stated in the context of descriptive complexity theory. There are technical differences:
Grädel’s language is more general in that it allows predicate symbols of arbitrary arity, but these
can be simulated by the pairing function as just explained. On the other hand our language is more
general in that it allows interpreted function symbols + and · and terms |Yi|, as well as number
variables whose range goes up to any polynomial in the size of the inputs. However none of these
generalizations takes us outside the polynomial-time relations.

Theorem 2.4. A relation R(z1, ..., zk, Y1, ..., Ym) is in P iff it is representable by a ΣB
1 -Horn

formula Ψ. Further Ψ can be chosen with only one existentially quantified second-order variable,
and only two universally quantified first-order variables.

Example. (Parity(X)) This is a ΣB
1 -Horn formula which is true for strings X that contain an odd

number of 1’s. It encodes a dynamic-programming algorithm for computing parity of X: Podd(i) is
true (and Peven(i) is false) iff the prefix of X of length i contains an odd number of 1’s.

∃Peven∃Podd∀i < |X|
Peven(0) ∧ ¬Podd(0) ∧ Podd(|X|)
∧(¬Peven(i+ 1) ∨ ¬Podd(i+ 1))

∧(Peven(i) ∧X(i)→ Podd(i+ 1)) ∧ (Podd(i) ∧X(i)→ Peven(i+ 1))

∧(Peven(i) ∧ ¬X(i)→ Peven(i+ 1)) ∧ (Podd(i) ∧ ¬X(i)→ Podd(i+ 1))

Proof of theorem. For the if direction, let Ψ(z̄, Ȳ) be a ΣB
1 -Horn formula which represents R(z̄, Ȳ).

Then Ψ has the form
∃P1...∃Pr∀x1 ≤ t1...∀xs ≤ tsφ(x̄, P̄ , z̄, Ȳ) (4)

where φ is Horn with respect to P1, ..., Pr. We outline a polynomial-time algorithm which, given
numbers a1, ..., ak (coded in unary) and finite sets B1, ..., Bm (coded by binary strings) determines
whether Ψ(ā, B̄) is true in the standard model. First note since ā and B̄ are given, each first-order
term u in φ(x̄, P̄ , ā, B̄) becomes a polynomial u(x1, ..., xk), and the coefficients can be computed in
polynomial-time. Each Pi can occur only in the context Pi(u(x̄)) for some such term u, and the
terms t1, ..., ts bounding the xi’s evaluate to constants.

The algorithm proceeds by computing for each possible x̄-value b̄ = (b1, ..., bs), 0 ≤ bi ≤ ti, a
simplified form φ[b̄] of the instance φ(b̄, P̄ , ā, B̄) of φ. In this form all first-order terms and all atomic
formulas not involving the Pi’s are evaluated, and the result is a Horn formula φ[b̄] all of whose
atoms are in the list Pi(0), ..., Pi(T), i = 1, ..., r, where T is the largest possible argument of any Pi

5

in any instance. By taking the conjunction over all b̄ of these instances, we obtain a propositional
Horn formula PROP[φ, ā, B̄]. It is not hard to see that Ψ(ā, B̄) is true in the standard model iff
PROP[φ, ā, B̄] is satisfiable.

Finally, there is a standard polynomial-time algorithm to test satisfiability of a given propo-
sitional Horn formula Φ. Namely, initialize a truth assignment τ to set all atoms to false. Now
repeatedly, for each clause C in Φ not satisfied by the current τ , either C has no positive occurrence
of an atom P , in which case Φ is unsatisfiable, or C has a unique positive occurrence of some atom
P , in which case flip the value of τ on P from false to true.

The proof of the only-if direction resembles the proof of Cook’s theorem that SAT is NP-
complete, and of Fagin’s theorem of finite model theory that second-order existential formulas cap-
ture NP. Let M be a deterministic Turing machine that recognizes a relation R(x1, ..., xk, Y1, ..., Ym)
within time n`, where n = x1 + ... + xk + |Y1| + ... + |Ym| is the length of the input. The entire
computation of M on this input can be represented by a two dimensional array P (i, j) with t(n)
rows and columns, for some polynomial t, where the i-th row specifies the tape configuration at
time i. (P can be represented by a one-dimensional array using a pairing function, as explained
above.) Thus R(x̄, Ȳ) is represented by the ΣB

1 -Horn formula

∃P∃P̃∀i ≤ t(n)∀j ≤ t(n)φ(P, P̃ , i, j, x̄, Ȳ) (5)

Here the variable P̃ is forced to be ¬P in the same way that Peven and Podd are forced to be
complementary in the parity example above. The formula φ(P, P̃ , i, j, x̄, Ȳ) is Horn with respect
to P and P̃ , and each clause specifies a local condition on the computation. These conditions are
(1) the first row of P codes the initial tape configuration for the inputs x̄, Ȳ , (2) for i < t(n) the
i + 1-st row represents the i-th row after one step, and (3) the final state is accepting. To make
(2) easier to specify, it is convenient to represent the state at time i at the beginning of row i by a
string of fixed length, and after the code for the symbol stored at each tape position there is a bit
specifying whether that square is currently scanned by the Turing machine head. In this way rows
i and i+ 1 will be identical except for the state codes at the beginning and the bits coding the old
and new tape squares scanned.

To see that each clause can be designed to meet the Horn condition of at most one positive
occurrence among the atoms of the form P (u), P̃ (u), we include the clause (¬P (i, j) ∨ ¬P̃ (i, j).
Then every bit in row 0 is specified using a clause with a positive literal of one of the forms P (0, u)
or P̃ (0, u), possibly together with other literals involving input variables. For example, if 15 bits
are reserved at the beginning of each row to specify the state, and 3 bits code each tape square,
then one of the clauses might be (5 ≤ j ∧ j ≤ 5 + x1 → P (0, 3 · j + 1)). In general every bit in row
i+1 is specified conditional on a fixed number of bits in row i. A clause is included for each possible
state of these conditional bits, and the conditions are specified using ¬P and ¬P̃ as appropriate.
In this way at least one of P (i, j), P̃ (i, j) must be true for each (i, j) (and hence exactly one). Note
however that if M were nondeterministic, then row i+ 1 would have more than one possible value,
and some clauses would require more than one positive literal so the formula would not be Horn.

To meet the “further” condition stated in the theorem, the two arrays P and P̃ can be combined
into one array Q(i, j, k), where k = 0 for P and k = 1 for P̃ .

Note that above proof also shows that every NP- relation can be represented by a ΣB
1 formula

of the form (5), except that φ is not Horn.

Example. (3Color(n,E)) This is a ΣB
1 formula asserting that the graph with edge relation E on

6

Robinson’s B1 x+ 1 6= 0 B2 x+ 1 = y + 1→ x = y
Theory Q B3 x+ 0 = x B4 x+ (y + 1) = (x+ y) + 1
axioms B5 x · 0 = 0 B6 x · (y + 1) = (x · y) + x

Axioms B7 0 ≤ x B8 x ≤ x+ y
for ≤ B9 x ≤ y ∧ y ≤ z → x ≤ z B10 (x ≤ y ∧ y ≤ x)→ x = y

B11 x ≤ y ∨ y ≤ x B12 x ≤ y ↔ x < y + 1

Predecessor B13 x 6= 0→ ∃y(y + 1 = x)

Upper bound L1 X(y)→ y < |X| L2 y + 1 = |X| → X(y)

Table 1: The 2-BASIC Axioms

nodes {0, 1, ..., n− 1} is three-colorable. We write E(x, y) like a binary relation, although it can be
coded as a unary relation using the pairing function as explained above. The three colors are P,Q,
and R.

∃P∃Q∃R∀x < n∀y < n(P (x) ∨Q(x) ∨R(x))

∧(¬E(x, y) ∨ ¬P (x) ∨ ¬P (y)) ∧ (¬E(x, y) ∨ ¬Q(x) ∨ ¬Q(y)) ∧ (¬E(x, y) ∨ ¬R(x) ∨ ¬R(y))

This formula is ΣB
1 -Horn except for the first clause. Since graph 3-colorability is NP-compete, it

cannot be represented by a ΣB
1 -Horn formula unless P = NP. This example illustrates why we

cannot allow bounded first-order existential quantifiers after the universal quantifiers in ΣB
1 -Horn

formulas, since the first clause could be replaced by ∃i < 3P (i, x) where now P (0, x), P (1, x), P (2, x)
represent the three colors.

3 V1-Horn and other second-order theories

Our second-order theories use the language L2
A described in the previous section. They all share

the set 2-BASIC of axioms in Table 1, which are similar to the axioms for Zambella’s theory Θ
[24] and form the second-order analog of Buss’s first-order axioms BASIC [2]. The set 2-BASIC
consists essentially of the axioms for Robinson’s system Q, together with axioms for ≤, and two
axioms defining the upper-bound terms |X|.

In addition to 2-BASIC, each system needs a comprehension scheme for some set FORM of
formulas.

FORM − COMP : ∃X ≤ y∀z < y(X(z)↔ Φ(z)) (6)

Here, Φ is any formula in the set FORM with no free occurrence of X.
We denote by V i the theory axiomatized by 2-BASIC and ΣB

i -COMP. For i ≥ 0 V i is essentially
the same as Zambella’s Σp

i − comp [24]. For i ≥ 1 V i is essentially the same as V i
1 [15]. (The

latter restricts comprehension to Σ1,b
0 formulas, but allows induction on Σ1,b

i formulas. However

Theorem 1 of Buss [3] shows that V i
1 proves the Σ1,b

i comprehension axioms.) Thus for i ≥ 1 V i

is a second-order version of Si2. In particular, the ΣB
1 -definable functions in V 1 are precisely the

polynomial-time functions [6]. The ΣB
1 -definable functions in V 0 are the uniform AC0 functions

[6] (called rudimentary functions in [24]). The first-order analog of V 0 is S0
2 with a comprehension

scheme for sharply-bounded formulas.

Definition 3.1. V1-Horn is the theory axiomatized by 2-BASIC and ΣB
1 -Horn-COMP.

7

Although 2-BASIC does not include an explicit induction axiom, L2 asserts that a nonempty
set has a largest element. This can be turned into a least number principle, from which induction
follows.

Lemma 3.2. The least number principle is a theorem of V1-Horn, and of V i, i ≥ 0.

LNP: 0 < |X| → ∃x < |X|(X(x) ∧ ∀y < x¬X(y))

Proof. By the comprehension schema there is a set Y such that |Y | ≤ |X| and for all z < |X|

Y (z)↔ ∀i < |X|(X(i)→ z < i)

Thus the set Y consists of those elements smaller than every element in X. We claim that |Y |
satisfies the LNP for X; that is (i) |Y | < |X|, (ii) X(|Y |) and (iii) ∀y < |Y |¬X(y). First suppose
that Y is empty. Then |Y | = 0 by B13 and L2. By assumption 0 < |X|, so (i) holds in this case.
Also X(0), since otherwise Y (0) by B7 and the definition of Y , so (ii) holds. Since ¬y < 0 by B7
and B10 we conclude (iii) holds vacuously.

Now suppose Y (y) for some y. Then y < |Y | by L1, so |Y | 6= 0 so by B13 |Y | = z + 1 for some
z and hence Y (z) by L2. Then ¬Y (z+ 1) by L1. Thus X(z+ 1) by B11, B12 and the definition of
Y , so (ii) holds. Also ¬X(z), so (i) holds. Finally (iii) holds by the definition of Y and B10.

Lemma 3.3. Induction on length of a string is a theorem of V1-Horn, and of V i,≥ 0.

IND: (X(0) ∧ ∀y < z(X(y)→ X(y + 1)))→ X(z)

Proof. We show ¬IND → ¬LNP. By ¬IND we have X(0) ∧ ∀y < z(X(y)→ X(y + 1), and ¬X(z).
By the comprehension schema there is a set Y such that ∀y < z + 1(Y (y) ↔ ¬X(y). Then Y (z),
so 0 < |Y |. By LNP Y has a least element y0. Then y0 6= 0 because X(0), so y0 = x0 + 1 for some
x0, by B13. But then we must have X(x0) and ¬X(x0 + 1), which contradicts our assumption.

This is easy to generalize to allow induction with an arbitrary k as a basis, not just k = 0.
If follows from the above Lemma that each of the theories that we have presented proves an

induction axiom for each formula in its comprehension scheme. In particular, for V1-Horn we have

Corollary 3.4. V1-Horn proves the ΣB
1 -Horn Induction axioms.

ΣB
1 -Horn-IND : (Φ(0) ∧ ∀y < z(Φ(y)→ Φ(y + 1)))→ Φ(z)

where Φ is any ΣB
1 -Horn formula.

Standard arguments show that induction on open formulas using axioms B1 to B13 is enough to
prove simple algebraic properties of + and · such as commutativity, associativity, distributive laws,
and cancellation laws involving +, ·, and ≤. Hence all of our theories prove these properties, and
in the sequel we take them for granted. These simple properties suffice to prove that the tupling
function defined in (2) and (3) is one-one, so these theories all prove

〈x1, ..., xk〉 = 〈x′1, ..., x′k〉 → (x1 = x′1 ∧ ... ∧ xk = x′k) (7)

Lemma 3.5 (k-ary Comprehension). If Φ(x1, ..., xk) is a ΣB
1 -Horn formula with no free occurrence

of Y , then V1-Horn proves the k-ary comprehension formula

∃Y ≤ 〈b1, ..., bk〉∀x1 < b1...∀xk < bk(Y (x1, ..., xk)↔ Φ(x1, ..., xk)) (8)

8

Proof. Let Ψ(i) be the formula

∀x1 < b1...∀xk < bk(i = 〈x1, ..., xk〉 → Φ(x1, ..., xk))

Then the prenex form of Ψ(i) is ΣB
1 -Horn, so by the comprehension scheme V1-Horn proves the

existence of a set Y such that |Y | ≤ t(b1, ..., bk) and ∀i < t(b1, ..., bk)(Y (i)↔ Ψ(i)). Thus V1-Horn
proves ∀x < b1...∀xk < bk(Y (x1, ..., xk)↔ Φ(x1, ..., xk)), using the fact (7) that the tupling function
is one-one.

4 Formulas provably equivalent to ΣB
1 -Horn

Our goal now is to show that every ΣB
0 formula and every ΣB

i -Horn formula, i ∈ N, is provably
equivalent in V1-Horn to a ΣB

1 -Horn formula, and hence can be used in the comprehension and
induction schemes. Later, we also show that the class of formulas provably equivalent to ΣB

1 -Horn
is closed under ¬,∧,∨ and bounded first-order quantification (see 5.3). We start with a simple
observation.

Lemma 4.1. If Φ1 and Φ2 are ΣB
1 -Horn formulas, then Φ1∧Φ2 is logically equivalent to a ΣB

1 -Horn
formula.

Proof. Take a suitable prenex form of Φ1 ∧ Φ2.

4.1 Simulating first-order bounded existential quantification

A major inconvenience of ΣB
1 -Horn formulas is lack of first-order existential quantifiers. In general

we cannot allow such quantifiers without increasing the apparent expressive power of the formulas,
as pointed out in the 3-colorability example. However, it is possible to introduce bounded existential
quantifiers in some contexts.

Notation. If P is a second-order variable, then P̃ denotes a second-order variable whose intended
interpretation is ¬P .

We now introduce the Horn formulas Searchk, which are Πb
1 Horn with respect to all of

their second-order variables and which will allow a ΣB
1 -Horn formula to represent ∃z < bX(ȳ, z).

Searchk(b̄, b, S, S̃,X, X̃) asserts that S(ȳ, i) holds iff X(ȳ, z) holds for some z < i, where b̄ stands
for b1, ..., bk, and ȳ stands for y1, ..., yk. We use ȳ < b̄ for y1 < b1 ∧ ... ∧ yk < bk.

Definition 4.2. For each k ≥ 1 Searchk(b̄, b, S, S̃,X, X̃) is the Πb
1 Horn formula

∀ȳ < b̄∀i < b(¬S(ȳ, 0) ∧ S̃(ȳ, 0))

∧(¬S(ȳ, i+ 1) ∨ ¬S̃(ȳ, i+ 1))

∧(S(ȳ, i)→ S(ȳ, i+ 1))

∧(X(ȳ, i)→ S(ȳ, i+ 1))

∧(S̃(ȳ, i) ∧ X̃(ȳ, i)→ S̃(ȳ, i+ 1))

9

Lemma 4.3. V1-Horn proves the following:

(i) ∀z < b(X(ȳ, z)↔ ¬X̃(ȳ, z)) ∧ ȳ < b̄ → ∃S∃S̃ Searchk(b̄, b, S, S̃,X, X̃)

(ii) ∀z < b(X(ȳ, z)↔ ¬X̃(ȳ, z)) ∧ Searchk(b̄, b, S, S̃,X, X̃) ∧ ȳ < b̄

→ (S(ȳ, b)↔ ∃z < bX(ȳ, z)) ∧ (S̃(ȳ, b)↔ ∀z < bX̃(ȳ, z))

Proof. First we prove (i). Arguing in V1-Horn, there are two cases. If ∀z < bX̃(ȳ, b) then use
k + 1-ary comprehension (Lemma 3.5) to define S(ȳ, z) false and S̃(ȳ, z) true, for all z < b. The
clauses in the definition of Searchk are clearly satisfied in this case. Otherwise, by the LNP there
is a least number z0 < b such that X(ȳ, x0). Use k + 1-ary comprehension to define S(ȳ, z) false
for z ≤ z0 and true for z0 < z < b, and define S̃(ȳ, z)↔ ¬S(b̄, z). Again Searchk(b̄, b, S, S̃,X, X̃)
holds.

To prove (ii) we use the same two cases as for (i). If ∀z < bX̃(ȳ, b) we use the definition of
Searchk to show by induction on z that S(ȳ, z) is false and S̃(ȳ, z) is true for z ≤ b, so (ii) holds
in this case. For the second case we know from above what S and S̃ must be, and we again prove
our claim by induction on z. Again (ii) follows.

4.2 The ΣB
0 formulas are provably equivalent to ΣB

1 -Horn

Consider a ΣB
0 formula Q1y1 < b1...Qkyk < bkφ(ȳ), where each Qi is either ∀ or ∃. The proof of

the following Lemma shows how to conjoin copies of Search(...) to define arrays S0, ..., Sk such
that Si(y1, ..., yk−i)↔ Qk−i+1yk−i+1 < bk−i+1φ(ȳ). These are used to form an equivalent ΣB

1 -Horn
formula.

Lemma 4.4. Let ψ(ȳ) be a ΣB
0 formula which may have other free variables besides ȳ but does not

involve any of the variables S, S̃, W̄ . Then there is a formula ψ∗(b̄, S, S̃, W̄) not involving ȳ but
which may have other variables of ψ not indicated and which is Πb

1 Horn with respect to S, S̃, W̄
such that V1-Horn proves the following:

(i) ∃S∃S̃∃W̄ψ∗(b̄, S, S̃, W̄)

(ii) ψ∗(b̄, S, S̃, W̄)→ ∀ȳ < b̄[(S(ȳ)↔ ψ(ȳ)) ∧ (S̃(ȳ)↔ ¬ψ(ȳ))]

Proof. We may assume that ψ is in prenex form, and proceed by induction on the number of
quantifiers. For the base case ψ is quantifier-free, and we take ψ∗(b̄, S, S̃) to be equivalent to

∀ȳ < b̄[(S(ȳ)↔ ψ(ȳ)) ∧ (S̃(ȳ)↔ ¬ψ(ȳ))]

The formula in brackets can be written in conjunctive normal form, in which case ψ∗(b̄, S, S̃) is Πb
1

Horn with respect to S and S̃ and obviously satisfies (ii). Also (i) is easily proved by defining S
and S̃ using ΣB

1 -Horn comprehension.
For the induction step, assume that ψ(ȳ) is ∃z < tφ(ȳ, z), where t is a term not involving z. By

the induction hypothesis applied to φ there is a formula φ∗(b̄, b, S1, S̃1, W̄) not involving ȳ, z which
is Πb

1 Horn with respect to S1, S̃1, W̄ which satisfies (i) and (ii) (with φ, φ∗, S1 for ψ,ψ∗, S). In fact
the induction hypothesis (ii) states

φ∗(b̄, b, S1, S̃1, W̄)→ ∀ȳ < b̄∀z < b(S1(ȳ, z)↔ φ(ȳ, z)) ∧ (S̃1(ȳ, z)↔ ¬φ(ȳ, z))

10

We define ψ∗(b̄, S, S̃, S1, S̃1, W̄) to be the prenex form of

φ∗(b̄, t, S1, S̃1, W̄) ∧ Searchk(b̄, t, S, S̃, S1, S̃1) (9)

Note that this is Πb
1 Horn with respect to the displayed second-order variables. By the induction

hypothesis (i) there exists S1, S̃1, W̄ satisfying φ∗. By the induction hypothesis (ii) we have S1 ↔
¬S̃1. Hence by (i) of Lemma 4.3 we know S, S̃ exist satisfying (i) in the present Lemma for ψ∗ as
defined above.

To prove (ii), assume ȳ < b̄ and ψ∗(b̄, S, S̃, S1, S̃1, W̄). By the induction hypothesis (ii) for φ∗

and (ii) of Lemma 4.3 we have S(ȳ, t)↔ ∃z < tφ(ȳ, z) and S̃(ȳ, t)↔ ∀z < b¬φ(ȳ, z), as required.
For the induction step in case ψ(ȳ) is ∀z < tφ(ȳ, z) we simply modify the arguments of Searchk

in (9) by interchanging S with S̃ and S1 with S̃1.

Corollary 4.5. Every ΣB
0 formula is provably equivalent in V1-Horn to a ΣB

1 -Horn formula.

Proof. Let ψ be a ΣB
0 formula not involving y and let ψ∗(b, S, S̃, W̄) result from applying the above

Lemma to ψ(y). Then ψ(y)↔ ψ(0) so V1-Horn proves

ψ(y)↔ ∃S∃S̃∃W̄ (ψ∗(1, S, S̃, W̄) ∧ S(0))

The right hand side is easily equivalent to a ΣB
1 -Horn formula.

Thus V1-Horn proves the induction and comprehension schemes for ΣB
0 formulas, and hence it

is an extension of V 0.

4.3 Collapse of V -Horn to V1-Horn

Grädel [10] showed that it is possible to represent a SO∃-Horn formula preceded by alternating SO
quantifiers by a SO∃-Horn formula, which implies the collapse of SO-Horn hierarchy to SO∃-Horn.
Here we formalize Grädel’s proof in V1-Horn.

First we show that V1-Horn proves a version of the replacement scheme.

Notation. We use P [b] to denote the “b-th row” when P is being used as a 2-dimensional array.
If φ(P) is a formula with no occurrence of |P |, then φ(P [b]) is obtained from φ(P) by replacing
every atomic formula P (t) by P (b, t) (i.e. P (〈b, t〉): see (2)).

Lemma 4.6 (Replacement). If φ(y, P̄) is a Πb
1 Horn formula with respect to P̄ and t is a term not

involving y, then V1-Horn proves

∀y < t∃P̄ φ(y, P̄)↔ ∃P̄∀y < tφ(y, P̄ [y])

where P̄ [y] is P
[y]
1 , ..., P

[y]
k . Further the RHS is a ΣB

1 -Horn formula.

Proof. The last statement is immediate from the definition of ΣB
1 -Horn formula. To prove the first

statement we move the quantifier ∀y < t past each ∃Pi in turn, using the following lemma.

Lemma 4.7. If V1-Horn proves that ∃P∀y < bΦ(y, P) is equivalent to some ΣB
1 -Horn then V1-Horn

proves
∀y < b∃PΦ(y, P)↔ ∃P∀y < bΦ(y, P [y])

11

Proof. To prove the right-to-left implication, assume that P satisfies the existential quantifier on
the right and suppose y < b. Use the V1-Horn comprehension axiom to define P ′ such that

∀i < b(P ′(i)↔ P (y, i))

Then P ′ satisfies the existential quantifier on the left.
To prove the left-to-right direction define

Ψ(z) ≡ ∃P∀y < zΦ(y, P [y])

Then by assumption Ψ(z) is equivalent to a SO∃-Horn formula, so we may use the IND scheme
(Corollary 3.4) to conclude Ψ(b). It suffices to prove that the LHS ∀y < b∃PΦ(y, P) implies the
basis and induction steps. The basis is trivial, since when b = 0 Ψ(0) is vacuously true.

For the induction step, by the induction hypothesis Ψ(z) we may assume z < b and P satisfies
∀y < zΦ(y, P [y]). Setting y = z in the LHS we have Q such that Φ(z,Q). Now we use binary
comprehension (Lemma 3.5) to define P ′(y, i) by

P ′(y, i)↔
{
P (y, i) if y < z
Q(i) if y = z

Then we conclude in V1-Horn the formula ∀y < z + 1Φ(y, P ′[y]), and hence Ψ(z + 1).

We are now ready to prove the main result of this subsection.

Theorem 4.8. Every SO Horn formula is provably equivalent in V1-Horn to a SO∃-Horn formula.

This follows from the Replacement Lemma and the following Lemma.

Lemma 4.9. If φ(P, Q̄) is Πb
1 Horn with respect to P, Q̄ then V1-Horn proves

∀P∃Q̄φ(P, Q̄)↔ ∀y ≤ u∃Q̄φ′(y, Q̄)

where if P (t1), ..., P (tk) is a list of all occurrences of P in φ, then u is the term t1 + ... + tk + 1,
and φ′(y, Q̄) is obtained from φ(P, Q̄) by replacing each P (ti) by ti 6= y.

Proof. First note that V1-Horn proves ti < u, for i = 1, ..., k. To prove the left-to-right direction,
for each y simply use comprehension to define P by the condition

∀i ≤ u(P (i)↔ i 6= y)

The proof of the converse is more complicated. Given P we use ΣB
0 comprehension to define the sets

Q̄ in terms of P and the Q̄ from the RHS. There are two cases. The easy case is that ∀z < uP (z)
holds. Then take y = u, and the Q̄ which satisfy the RHS will also satisfy the LHS, since ti 6= y
for each i.

Now suppose ∃z < u¬P (z). By the Replacement Lemma applied to the RHS there are Q̄′

satisfying ∀y ≤ uφ′(y, Q̄′[y]). For each Qj ∈ Q̄ use ΣB
0 comprehension to define Qj by the condition

∀z < uj(Qj(z)↔ ∀y < u(P (y) ∨Q′[y]
j (z)))

where uj is an upper bound on all terms v such that Qj(v) occurs in φ.

12

It remains to argue in V1-Horn that this definition of Q̄ satisfies φ(P, Q̄). We argue the contra-
positive: If ¬φ(P, Q̄) then ¬φ′(y, Q̄′[y]) for some y. Recall that φ begins with a string of bounded
universal quantifiers ∀x̄ ≤ w̄, followed by a quantifier-free formula ψ which is Horn with respect
to P, Q̄. Fix values for the variables x̄ which cause some clause C(x̄, P, Q̄) in ψ to be false. We
will show that the corresponding clause C ′(x̄, y, Q̄′[y]) in φ′ is false for a suitable choice of y. If
the head of C is P (ti), then take y = ti. If the head of C is Qj(v), then choose y ≤ u satisfying

(¬P (y) ∧ ¬Q′[y]
j (v)). Such a y must exist because ¬Qj(v). Otherwise choose any y ≤ u. In each

case it is easy to see that C ′(x̄, y, Q̄′[y]) is false.

5 Encoding the Horn SAT algorithm by a ΣB
1 -Horn formula

Here we show that a run of the Horn satisfiability algorithm described in the proof of Theorem
2.4 can be represented by a ΣB

1 -Horn formula Run. This result is needed for sections 6 and 7. A
simple corollary is that the negation of a ΣB

1 -Horn formula is provably equivalent to a ΣB
1 -Horn

formula. In other words, V1-Horn proves that P is closed under complementation.

Theorem 5.1. Let Φ be a ΣB
1 -Horn formula which does not involve R or R̃. Then there is a

formula RunΦ(R, R̃) whose free variables include those of Φ in which the only atomic subformulas
involving R and R̃ are R(0) and R̃(0) and such that ∃R∃R̃RunΦ(R, R̃) is a ΣB

1 -Horn formula and
V1-Horn proves the following:

(i) ∃R∃R̃ RunΦ(R, R̃)

(ii) RunΦ(R, R̃)→ [(R(0)↔ Φ) ∧ (R̃(0)↔ ¬Φ)]

Corollary 5.2. If Φ is ΣB
1 -Horn, then ¬Φ is provably equivalent in V1-Horn to a ΣB

1 -Horn formula
NegΦ.

Proof. We may take NegΦ to be RunΦ(⊥,>); that is RunΦ(R, R̃) with each occurrence of the
formula R(0) replaced by ⊥ (FALSE) and each occurrence of the formula R̃(0) replaced by >
(TRUE).

Corollary 5.3. The class of formulas provably equivalent in V1-Horn to a ΣB
1 -Horn formula is

closed under ¬, ∧, ∨, and bounded first-order quantification.

Proof. The preceding corollary handles the case of ¬, Lemma 4.1 handles the case of ∧, and the
Replacement Lemma 4.6 handles the case of ∀y < t. The other cases follow by DeMorgan’s laws.

Theorem 5.1 can be generalized to the case in which arrays R(ȳ) and R̃(ȳ) code values of Φ(ȳ)
and ¬Φ(ȳ).

Corollary 5.4. Let Φ(ȳ) be a ΣB
1 -Horn formula which does not involve R or R̃. Then there is

a formula RunΦ(ȳ)(b̄, R, R̃) which does not have ȳ free but whose free variables include any other

free variables of Φ such that ∃R∃R̃RunΦ(ȳ)(R, R̃) is a ΣB
1 -Horn formula and V1-Horn proves the

following:

(i) ∃R∃R̃ RunΦ(ȳ)(b̄, R, R̃)

(ii) RunΦ(ȳ)(b̄, R, R̃)→ ∀ȳ < b̄[(R(ȳ)↔ Φ(ȳ)) ∧ (R̃(ȳ)↔ ¬Φ(ȳ))]

13

Proof. We take RunΦ(ȳ) such that V1-Horn proves

RunΦ(ȳ)(b̄, R, R̃)↔ ∀ȳ < b̄∃R′∃R̃′[RunΦ(R′, R̃′) ∧ (R(ȳ)↔ R′(0)) ∧ (R̃(ȳ)↔ R̃′(0))]

We may take RunΦ(ȳ) to be ΣB
1 -Horn by placing the subformula enclosed in [...] above by a suitable

prenex form and applying Corollary 5.3. To prove (i) we use ΣB
1 -Horn comprehension to define

R(ȳ) satisfying R(ȳ)↔ Φ(ȳ) and use ΣB
1 -Horn comprehension together with corollary 5.2 to define

R(ȳ) ↔ ¬Φ(ȳ) and then apply (i) and (ii) of Theorem 5.1 to R′ and R̃′. To prove (ii) we use (ii)
in Theorem 5.1.

We begin the proof of Theorem 5.1 by observing that one existential quantifier is enough in a
ΣB

1 -Horn formula. (Recall the notation P [b] for the “b-th row” of P in section 4.3.)

Lemma 5.5. Every ΣB
1 -Horn formula is provably equivalent in V1-Horn to a ΣB

1 -Horn formula with
a single existential quantifier. Specifically, if φ is Πb

1-Horn with respect to P1, ..., Pk then V1-Horn
proves

∃P1...∃Pmφ(P1, ..., Pm)↔ ∃Pφ(P [1], ..., P [m])

Proof. For the left-to-right direction, use binary comprehension (Lemma 3.5) to define P satisfying

P (i, x)↔ (i = 1 ∧ P1(x)) ∨ ... ∨ (i = m ∧ Pm(x))

For the other direction, for i = 1, ...,m use ΣB
1 -Horn comprehension to define Pi such that Pi(x)↔

P (i, x).

Thus it suffices to prove the Theorem for ΣB
1 -Horn formulas of the form

Φ ≡ ∃P∀x1 ≤ t1...∀xk ≤ tkφ(x̄, P) (10)

where φ is Horn with respect to P .
The algorithm we wish to represent has two main steps (see the proof of Theorem 2.4): First

create a propositional Horn formula PropΦ (which depends on the values for the free variables in Φ),
and second apply the Horn Sat algorithm to determine whether PropΦ is satisfiable. We represent
PropΦ using the arrays C,D, V , and we will present a ΣB

1 -Horn formula PropΦ(C, C̃,D, D̃, V, Ṽ)
which defines these arrays and their negations. Besides the indicated free variables, PropΦ also
has as free variables the free variables of Φ. For the second step we present a ΣB

1 -Horn formula
HornSat(a, b, C, C̃,D, D̃, V, Ṽ , R, R̃) (with all free variables indicated) which is independent of Φ
and which sets the result variable R(0) true iff PropΦ is satisfiable.

The arrays C,D, V together with the scalars a, b completely specify the formula PropΦ as
follows. The atoms of PropΦ are P (0), ..., P (a − 1), and the clauses are cl0, ..., clb−1. We allow
both the empty clause and the special clause True. The arrays C,D, V are defined as follows: For
0 ≤ x < b, 0 ≤ v < a

• C(x, v) asserts that clause clx contains the negative literal ¬P (v).

• D(x, v) asserts that clause clx contains the positive literal P (v).

• V (x) asserts that clause clx is the clause True.

14

Since PropΦ is a Horn formula, for each x, D(x, v) can be true for at most one v.
The array bounds a, b are represented by terms â, b̂ in the free variables of Φ and are determined

as follows. For each term s in φ(x̄, P) in (10) let ŝ be the result of replacing each variable x1, ..., xk
by its respective upper bound t1, ..., tk. Then the upper bound â on the arguments of P () is

â ≡ ŝ1 + ...+ ŝ`

where s1, ..., s` is a list of all terms such that P (si) or ¬P (si) occurs in Φ.
The upper bound b̂ on the number of clauses in PropΦ is

b̂ ≡ 〈t1, ..., ts,m〉

where t1, ..., ts are as in (10), m in the number of clauses in φ(x̄, P), and 〈...〉 is the tupling function
(2).

Using the abbreviation
Q̄ ≡ C, C̃,D, D̃, V, Ṽ

we can now choose RunΦ(R, R̃) to be a ΣB
1 -Horn formula such that

RunΦ(R, R̃) ↔ ∃Q̄[PropΦ(Q̄) ∧HornSat(â, b̂, Q̄, R, R̃)] (11)

In fact we take RunΦ(R, R̃) to be a suitable prenex form of the right hand side.

5.1 Definition of PropΦ(C, C̃,D, D̃, V, Ṽ)

Below we define three ΣB
0 formulas ψC(x, v), ψD(x, v), ψV (x) which characterize the three arrays

C,D, V .

Lemma 5.6. PropΦ(Q̄) can be defined in such a way that ∃Q̄PropΦ(Q̄) is ΣB
1 -Horn and V1-Horn

proves

(i) ∃Q̄PropΦ(Q̄)

(ii) PropΦ(Q̄) → ∀v < â∀x < b̂

[(C(x, v)↔ ψC(x, v)) ∧ (D(x, v)↔ ψD(x, v)) ∧ (V (x)↔ ψV (x))

∧ (C̃(x, v)↔ ¬ψC(x, v)) ∧ (D̃(x, v)↔ ¬ψD(x, v)) ∧ (Ṽ (x)↔ ¬ψV (x))]

Proof. We apply Lemma 4.4 once each for ψC , ψD, ψV with S in the Lemma taken to be C,D, V ,
respectively, to obtain three ΣB

1 -Horn formulas ψ∗C , ψ
∗
D, ψ

∗
V , and then let PropΦ(Q̄) be a prenex

form of their conjunction.

To define ψC , ψD, ψV let the Horn formula φ(x̄, P) in (10) be the conjunction of the clauses
CL0, ..., CLm−1. For j = 0, ...,m − 1 let φj(x̄) be the quantifier-free formula which results by
deleting all literals involving P from CLj . Then we define

ψV (x) ≡ ∀x1 ≤ t1, ...,∀xk ≤ tk
[(x = 〈x1, ..., xk, 0〉 → φ0(x̄)) ∧ ... ∧ (x = 〈x1, ..., xk,m− 1〉 → φm−1(x̄))]

15

Now let S be the set of indices j such that the clause CLj has a positive literal of the form
P (u), and let for j ∈ S let that literal be P (uj(x̄)). Then we define

ψD(x, v) ≡ ¬ψV (x) ∧ ∃x1 ≤ t1, ...,∃xk ≤ tk
∨
j∈S

[x = 〈x1, ..., xk, j〉 ∧ v = uj(x̄)]

For j = 0, ...,m− 1 let ¬P (u0
j), ...,¬P (u

nj−1)
j) be the literals involving ¬P in CLj . Then

ψC(x, v) ≡ ¬ψV (x) ∧ ∃x1 ≤ t1, ...,∃xk ≤ tk
m−1∨
j=0

nj−1∨
i=0

[x = 〈x1, ..., xk, j〉 ∧ v = uij(x̄)]

5.2 Definition of HornSat(a, b, C, C̃,D, D̃, V, Ṽ , R, R̃)

Although the Horn satisfiability algorithm is easy to describe informally, it is not straightforward
to formalize in V1-Horn. The propositional Horn satisfiability problem is complete for P, [12], and
hence cannot be represented by a ΣB

0 formula. We need a more general form of Lemma 4.4 which
allows us to use a ΣB

1 -Horn formula to define an array representing a given ΣB
0 formula, now in the

presence of complementary variables U, Ũ which we want to existentially quantify.

Lemma 5.7. Let ψ(ȳ, U) be a ΣB
0 formula which may have free variables not indicated, but does

not involve any of the variables S, S̃, W̄ , Ũ and has no occurrence of |U |. Then there is a formula
ψ∗(b̄, S, S̃, W̄ , U, Ũ) not involving ȳ but which may have other variables of ψ not indicated and which
is Πb

1 Horn with respect to S, S̃, W̄ , U, Ũ such that V1-Horn proves the following:

(i) ∃S∃S̃∃W̄ψ∗(b̄, S, S̃, W̄ , U, Ũ)

(ii) ψ∗(b̄, S, S̃, W̄ , U, Ũ) ∧ ∀z < s(U(z)↔ ¬Ũ(z))

→ ∀ȳ < b̄[(S(ȳ)↔ ψ(ȳ, U)) ∧ (S̃(ȳ)↔ ¬ψ(ȳ, U))]

where the term s is a provable upper bound on all terms r such that U(r) occurs in ψ. A similar
statement applies more generally to formulas ψ(ȳ, U1, ..., U`) where the arrays Ui may have various
dimensions.

Proof. We proceed by induction on the number of quantifiers in ψ, as in the proof of Lemma 4.4.
The induction step is the same as before, but the base case now becomes more interesting. In
this case ψ is quantifier-free, and we observe that the formula (S(ȳ) ↔ ψ(ȳ, U) can be put into
a conjunctive normal form which is Horn with respect to S,U, Ũ by taking the original CNF and
replacing each positive literal of the form U(r) by ¬Ũ(r). A similar remark applies to the formula
(S̃(ȳ)↔ ¬ψ(ȳ, U).

The algorithm represented by HornSat(a, b, C, Q̄, R, R̃) attempts to find a satisfying assign-
ment to the Horn formula PropΦ described by the parameters a, b, C,D, V . This is done by filling in
an array T (t, v), where T (t, v) is the truth value assigned to the atom P (v) after step t, 0 ≤ t, v < a.
Initially T (0, v) is false, and at step t + 1 T (t + 1, v) sets each P (v) true such that P (v) occurs
positively in some clause not satisfied after step t. Once P (v) is set true, it is never changed to
false.

16

The following ΣB
0 formulas describe the array T and its negation T̃ . First, Init initializes T .

Init ≡ ∀v < a(T̃ (0, v) ∧ ¬T (0, v))

In general we need to define a ΣB
0 formula Step(v, T [t]) which expresses the value of T (t+ 1, v) in

terms of the values T [t] of T at time t. We define Step using the one-dimensional array T1 for T [t].
First we need to define ClauseSat(x, T1) which asserts that assignment T1 satisfies clause clx in
PropΦ.

ClauseSat(x, T1) ≡ V (x) ∨ ∃v < a[(C(x, v) ∧ ¬T1(v)) ∨ (D(x, v) ∧ T1(v))]

Now Step(v, T1) holds iff either P (v) is true under T1 or there is a clause not satisfied by T1 which
has a positive literal P (v).

Step(v, T1) ≡ T1(v) ∨ ∃x < b(¬ClauseSat(x, T1) ∧D(x, v)) (12)

Now we apply Lemma 5.7 taking ψ to be Step and Ū to be C,D, V, T1 to obtain the formula
Step∗(a, S, S̃, W̄ , Q̄, T1, T̃1) which is Πb

1-Horn with respect to all of its displayed second-order vari-
ables and for which V1-Horn proves the following versions of (i) and (ii) in the Lemma.

(i)′ ∃S∃S̃∃W̄Step∗(a, S, S̃, W̄ , Q̄, T1, T̃1)

(ii)′ Step∗(a, S, S̃, W̄ , Q̄, T1, T̄1) ∧Neg ∧ ∀v < a(T1(v)↔ ¬T̃1(v))

→ ∀v < a[(S(v)↔ Step(v, T1)) ∧ (S̃(v)↔ ¬Step(v, T1))]

where we define Neg by

Neg(a, b, Q̄) ≡ ∀v < a∀x < b[(C(x, v)↔ ¬C̃(x, v)) ∧ (D(x, v)↔ ¬D̃(x, v)) ∧ (V (x)↔ ¬Ṽ (x))]
(13)

Next we use the following formula to define the array T , where we have substituted T [t+1] for S
and T [t] for T1 in Step∗.

TDef(a, b, Q̄, T, T̃) ≡ Init(T, T̃) ∧ ∀t < a∃W̄Step∗(a, T [t+1], T̃ [t+1], W̄ , T [t], T̃ [t]) (14)

Lemma 5.8. V1-Horn proves

(i) ∃T∃T̃ TDef(a, b, Q̄, T, T̃)

(ii) TDef(a, b, Q̄, T, T̃) ∧Neg

→ ∀t < a∀v < a[(T (t+ 1, v)↔ Step(v, T [t])) ∧ (T̃ (t+ 1, v)↔ ¬Step(v, T [t]))]

Proof. To prove (i), let TDef′ be obtained from TDef by replacing the bounded quantifier ∀t < a
in the above definition of TDef by ∀t < y. Define

Φ(y) ≡ ∃T∃T̃ TDef′(y, a, b, Q̄, T, T̃)

By the Replacement Lemma Φ(y) is equivalent to a ΣB
1 -Horn formula, so we may use the induction

scheme for Φ(y). This will establish (i), which is simply Φ(a).
For the base case y = 0 we need only satisfy Init, so we use the comprehension scheme to define

T to be identically false and T̃ to be identically true.

17

Now assume the induction hypothesis and suppose that T, T̃ satisfy the existential quantifiers
in Φ(y). Let S, S̃ satisfy the existential quantifiers in (i)′ when T1, T̃1 are replaced by T [y], T̃ [y]. Use
comprehension to define the arrays T ′, T̃ ′ by

T ′(t, v)↔
{
T (t, v) if t ≤ y
S(v) if t > y

and

T̃ ′(t, v)↔
{
T̃ (t, v) if t ≤ y
S̃(v) if t > y

It follows from Φ(y) and (i)′ that T ′, T̃ ′ satisfy the existential quantifiers in Φ(y + 1).
To prove (ii) we first claim that V1-Horn proves

TDef ∧Neg→ ∀t ≤ a∀v < a(T (t, v)↔ ¬T̃ (t, v)) (15)

V1-Horn proves the RHS by induction on t, assuming TDef ∧ Neg. For the base case t = 0 this
follows from Init(T, T̃). The induction step t → t + 1 follows from (ii)′ above with T [t+1], T̃ [t+1]

substituted for S, S̃ and T [t], T̃ [t] substituted for T1, T̃1.
Now (ii) follows from (15) and (ii)′ with this same substitution.

Now we define Sat(T1) to assert that the truth assignment T1 satisfies PropΦ.

Sat(T1) ≡ ∀x < bClauseSat(x, T1)

The next lemma asserts that if the formula Prop is satisfied at step t, then it remains satisfied for
each subsequent step.

Lemma 5.9. V1-Horn proves

TDef ∧Neg → [t ≤ y ≤ a ∧ Sat(T [t])→ Sat(T [y])]

Proof. This follows by applying induction on y to the RHS using Lemma 5.8 (ii).

Let Sat∗(b, S, S̃, W̄ , Q̄, T1, T̃1) be the result of applying Lemma 5.7 to Sat(y, T1), where we
have introduced the new variable y as a placeholder. Now we define HornSat to assert that there
are arrays T, T̃ which satisfy TDef and such that R(0) is true iff the truth assignment T at step
a satisfies PropΦ. Thus

HornSat(a, b, Q̄, R, R̃) ≡ ∃T∃T̃ [TDef(a, b, Q̄, T, T̃) ∧ ∃W̄Sat∗(1, R, R̃, W̄ , Q̄, T [a], T̃ [a])] (16)

It is clear from Lemma 5.7 that we may assume that the only atomic subformulas involving R or
R̃ in HornSat are R(0) and R̃(0) (by replacing R(y) by R(0) and R̃(y) by R̃(0)), as required by
the statement of Theorem 5.1.

Lemma 5.10. V1-Horn proves ∃R∃R̃ HornSat(a, b, Q̄, R, R̃).

Proof. This is immediate from Lemma 5.8 and Lemma 5.7 (i) applied to Sat.

18

5.3 Proof of Theorem 5.1

Part (i) asserts that V1-Horn proves ∃R∃R̃ RunΦ(R, R̃), where RunΦ is defined in (11). This
follows immediately from Lemma 5.6 (i) and Lemma 5.10.

The proof of (ii) requires formalizing the correctness proof of the Horn Sat algorithm. Correct-
ness asserts that assuming Q̄ is a proper code for a Horn formula Prop, then HornSat implies
R(0) iff Prop is satisfiable. To clarify the formal statement of correctness we write Sat(T1) as
Sat(a, b, Q̄, T1) with all of its free variables indicated.

Lemma 5.11 (Correctness of HornSat). V1-Horn proves

HornSat(a, b, Q̄, R, R̃) ∧Neg

→ (R(0)↔ ∃T1Sat(a, b, Q̄, T1)) ∧ (R̃(0)↔ ¬∃T1Sat(a, b, Q̄, T1))

Proof. Reasoning in V1-Horn, assume the hypotheses HornSat and Neg, and let T, T̃ , W̄ sat-
isfy the existential quantifiers in the definition (16) of HornSat. By Lemma 5.7 (ii) applied to
Sat(y, a, b, Q̄, T1) (where we have added the new variable y as a placeholder) with R for S and T [a]

for T1 we have

(ii)′′ Sat∗(1, a, b, R, R̃, W̄ , Q̄, T [a], T̃ [a]) ∧Neg ∧ ∀z < a(T [a](z)↔ ¬T̃ [a](z))

→ (R(0)↔ Sat(T [a])) ∧ (R̃(0)↔ ¬Sat(T [a]))

By (15), (16) and the hypotheses to the Correctness Lemma we conclude the hypotheses to (ii)′′

and hence we conclude
(R(0)↔ Sat(T [a])) ∧ R̃(0)↔ ¬Sat(T [a])) (17)

From this we conclude R(0)→ ∃T1Sat(T1) thus establishing one direction each in the two equiva-
lences on the RHS of the Correctness Lemma (since (ii)′′ → (R(0)↔ ¬R̃(0)).

Showing the other direction amounts to showing that under our hypotheses, ∃T1Sat(T1) →
Sat(T [a]). In other words, we must show that if Prop is satisfiable, then it is satisfied by the final
truth assignment given by the the Horn Sat algorithm. Formally it suffices to show that V1-Horn
proves

TDef ∧Neg ∧ Sat(T1) → Sat(T [a]) (18)

First we show that T [a] is contained in every truth assignment satisfying Prop.

Lemma 5.12. V1-Horn proves

TDef ∧Neg ∧ Sat(T1) → ∀t < a∀v < a(T (t, v)→ T1(v))

Proof. The RHS is proved by induction on t. The base case t = 0 is vacuous because the condition
Init(T, T̃) in the definition (14) of TDef implies T [0] is identically false.

For the induction step we apply Lemma 5.8 (ii) and the definition (12) of Step(v, T [t]). Thus
the only way that T (t + 1, v) can hold but not T (t, v) is if some clause clx is not satisfied by T [t]

and contains a positive literal P (v). But by the induction hypothesis and our assumption that T1

satisfies clx we have ¬ClauseSat(x, t[t])→ T1(v).

19

Now if Sat(T1) but ¬Sat(T [a]) then there is a clause clx such that ClauseSat(x, T1) but
¬ClauseSat(x, T [a]). Hence by the above Lemma clx contains a positive literal P (v) such that
¬T (a, v). Thus V1-Horn proves

TDef ∧Neg ∧ Sat(T1) ∧ ¬Sat(T [a]) → ∃v < a¬T (a, v) (19)

There are only a atoms P (0), ..., P (a − 1) to be set, and as long as at least one clause is not
satisfied every step sets at least one atom. It follows that after a steps T [a] must be identically
true, contradicting (19).

To formalize the last part of the argument we introduce in the next subsection a counting
formula NumOnes(a, y,X), which asserts that the number of true values among X(0), ..., X(a−1)
is at least y. Using results in that subsection we now claim that V1-Horn proves

TDef ∧Neg ∧ ¬Sat(T [a]) ∧ Sat(T1) → NumOnes(a, t, T [t]) (20)

This follows by applying induction on t to the RHS, using Lemma 5.14 (i) for the basis t = 0. For
the induction step t → t + 1 we use Lemma 5.15 with T [t] for X, T [t+1] for Y , and t for y, and
Lemma 5.8 (ii). The existence of v such that ¬T (t, v) ∧ T (t + 1, v) follows from our assumptions
¬Sat(T [a]) (and hence ¬Sat(T [t]) by Lemma 5.9) and Sat(T1) using Lemmas 5.8 (ii) and 5.12.

Finally (18) follows from (20) (with t = a) together with Lemma 5.14 (ii) and (19). This
completes the proof of Lemma 5.11.

We can now complete the proof of Theorem 5.1 (ii). By the definition (11) of RunΦ and Lemma
5.11 if suffices to show that V1-Horn proves the following two formulas.

PropΦ(Q̄)→ Neg(â, b̂, Q̄) (21)

PropΦ(Q̄) → [Φ↔ ∃T1(Sat(â, b̂, Q̄, T1)] (22)

That (21) is provable follows from the definition (13) of Neg and Lemma 5.6 (ii).
To show (22) is provable we refer to the definition (10) of Φ and show that V1-Horn proves

PropΦ(Q̄) → ∀x1 ≤ t1...∀xk ≤ tk[φ(x̄, P)↔ Sat(â, b̂, Q̄, P)] (23)

Recall (see the proof of Lemma 5.6) that φ(x̄, P) is the conjunction of the clauses CL0, ..., CLm−1.
By Lemma 5.6 (ii) and the definitions of ΨC ,ΨD,ΨV , V1-Horn proves for j = 0, ...,m− 1

PropΦ(Q̄) → ∀x̄ ≤ t̄[CLj(x̄, P)↔ ClauseSat(〈x̄, j〉, P)]

This establishes the right-to-left direction of the equivalence in (23). To establish the other direction
we also need the fact that V1-Horn proves (assuming PropΦ(Q̄)) that if x is not of the form
〈x1, ..., xk, j〉 then ΨV (x) and hence V (x) and hence ClauseSat(x, P).

5.4 Counting in V1-Horn

The results in this subsection are needed to complete the proof of Lemma 5.11 (Correctness of
HornSat).

We define a ΣB
1 -Horn formula NumOnes(a, y,X) which asserts that the number of true values

among X(0), ..., X(a − 1) is at least y. First we define a formula Count(a,M, M̃,X) which is

20

Πb
1-Horn with respect to M,M̃ and which defines complementary arrays M, M̃ so that for t, y ≤ a,

M(t, y) holds iff the number of true values among X(0), ..., X(t−1) is at least y. We give recurrence
equations in the style of the definition of Parity(X) given after Theorem 2.4.

Count(a,M, M̃,X) ≡ ∀t ≤ a∀y ≤ a
M(t, 0) ∧ ¬M̃(t, 0) ∧ ¬M(0, y + 1) ∧ M̃(0, y + 1)

∧(¬M(t, y + 1) ∨ ¬M̃(t, y + 1))

∧(M(t, y) ∧X(t)→M(t+ 1, y + 1))

∧(M(t, y + 1)→M(t+ 1, y + 1))

∧(M̃(t, y)→ M̃(t+ 1, y + 1))

∧(M̃(t, y + 1) ∧ ¬X(t)→ M̃(t+ 1, y + 1))

Lemma 5.13. V1-Horn proves

(i) ∃M∃M̃Count(a,M, M̃,X)

(ii)Count(a,M, M̃,X)→ [t ≤ a→ ∀y ≤ a(M(t, y)↔ ¬M̃(t, y))]

Proof. Since (i) is a ΣB
1 -Horn formula we may use induction on a. When a = 0 we use compre-

hension to explicitly define M such that M(0, 0), M(1, 0), ¬M(0, 1), and (M(1, 1) ↔ X(0)), and
similarly for M̃ . For the induction step a→ a+ 1 we use comprehension to define the new values
of M,M̃ using the recursion equations and the old values given by the induction hypothesis, in the
style of the proof of Lemma 5.8 (i).

The proof of (ii) uses the induction scheme applied to Φ(t), where Φ(t) is the RHS.

This result allows us to use ¬M and M̃ interchangeably, and we shall do this freely in what
follows.

Now we give the definition

NumOnes(a, y,X) ≡ ∃M∃M̃ [Count(a,M, M̃,X) ∧M(a, y)]

Lemma 5.14. V1-Horn proves the following:

(i) NumOnes(a, 0, X)

(ii) NumOnes(a, a,X)→ ∀v < aX(v)

Proof. (i) follows immediately from the definitions of NumOnes and Count.
To prove (ii) we first show that V1-Horn proves

Count(a,M, M̃,X)→ ∀y < a(t < y → ¬M(t, y)) (24)

This follows by induction on t applied to the RHS, using the definition of Count.
Next we show that V1-Horn proves

Count(a,M, M̃,X) ∧ ¬X(v)→ [v < t ≤ a→ ¬M(t, t)] (25)

This also follows by induction on t applied to the RHS, using (24).
Now (ii) follows from (25) by setting t = a.

21

We introduce the abbreviation

X ⊆a Y ≡ ∀y < a(X(y)→ Y (y))

Lemma 5.15. V1-Horn proves

X ⊆a Y ∧ v < a ∧ ¬X(v) ∧ Y (v) ∧ y < a→ [NumOnes(a, y,X)→ NumOnes(a, y + 1, Y)]

Proof. First we claim that V1-Horn proves each of the following formulas using induction on t; the
second uses the first.

X ⊆a Y ∧Count(a,M, M̃,X) ∧Count(a,M ′, M̃ ′, Y)→ ∀y < a(t ≤ a ∧M(t, y)→M ′(t, y))

X ⊆a Y ∧¬X(v) ∧ Y (v) ∧Count(a,M, M̃,X) ∧Count(a,M ′, M̃ ′, Y)

→ ∀y < a(v < t ≤ a ∧M(t, y)→M ′(t, y + 1))

Now the lemma follows from Lemma 5.13 and the formula immediately above with t = a.

6 Equivalence of V1-Horn, P-def and QPV

The first-order theory QPV (called PV1 in [15]) has function symbols for all polynomial-time
computable functions, and the axioms include defining equations for these functions (based on
Cobham’s Theorem) and induction on the length of numbers. The theory has been extensively
studied [5, 2, 8, 15, 7] and shown to robustly capture the notion of “polynomial-time reasoning”.
Zambella’s [24] theory P-def is a second-order version of QPV, and can shown to be equivalent to
QPV by the method of RSUV isomorphism (see [15]). Here we show that V1-Horn is equivalent in
power to P-def. This implies that V1-Horn is equivalent in power to QPV , but is most likely not
as powerful as S1

2 (see Section 1). We begin by showing how to add function symbols to V1-Horn.

6.1 Adding function symbols to V1-Horn

In section 2 we defined the class P in our second-order setting to consist of all relations of the form
R(x1, ..., xk, Y1, ..., Ym) recognizable in time bounded by a polynomial in (x1, ..., xk, |Y1|, ..., |Ym|).
In the same spirit we now define the class FP to consist of all functions F (x1, ..., xk, Y1, ..., Ym)
computable in time bounded by a polynomial in (x1, ..., xk, |Y1|, ..., |Ym|). There are two kinds of
functions in FP; string functions, denoted by upper-case letters F , take second-order objects as
values, and number functions, denoted by lower-case letters f , take first-order objects as values. As
before, number values are expressed in unary notation when defining computation time.

We say that a function has arity 〈k,m〉 if it takes k number arguments and m string arguments.
It is convenient to represent a string function F (x̄, Ȳ) by its bit graph BF (x̄, Ȳ), defined by the

condition
BF (i, x̄, Ȳ)⇔ F (x̄, Ȳ)(i)

That is, BF (i, x̄, Ȳ) holds iff the i-th bit of F (x̄, Ȳ) is 1. The following characterization of FP is
straightforward.

22

Lemma 6.1. (i) A string function F (x̄, Ȳ) is in FP iff |F (x̄, Ȳ)| is bounded by a polynomial in
(x̄, |Ȳ |) and its bit graph BF is in P.
(ii) A number function f(x̄, Ȳ) is in FP iff f(x̄, Ȳ) = |F (x̄, Ȳ)| for some string function F in FP.

We now define a conservative extension V1-Horn(FP) of V1-Horn by introducing function symbols
for polynomial time functions with defining equations based on the above Lemma.

Definition 6.2 (Specification of V1-Horn(FP)). The language L2
A(FP) is the language L2

A of V1-Horn
extended by new function symbols. We define function symbols, terms, formulas, and ΣB

1 -Horn
formulas for V1-Horn(FP) by simultaneous recursion as follows. In general x̄ = x1, ..., xk and
Ȳ = Y1, ..., Ym.

(i) To every first-order term `(x̄, Ȳ) and ΣB
1 -Horn formula Φ(i, x̄, Ȳ) we associate an arity 〈k,m〉

string function symbol F with defining formulas (renaming ` as `F and Φ as ΦF)

|F (x̄, Ȳ)| ≤ `F (x̄, Ȳ) (26)

∀i < `(x̄, Ȳ)[F (x̄, Ȳ)(i)↔ ΦF (i, x̄, Ȳ)] (27)

To every arity 〈k,m〉 string function symbol F we associate an arity 〈k,m〉 number function symbol
f with defining formula

f(x̄, Ȳ) = |F (x̄, Ȳ)| (28)

(ii) First-order variables and 0 and 1 are first-order terms and second-order variables are second-
order terms.

(iii) If t1, t2 are first-order terms then t1+t2 and t1 ·t2 are first-order terms. If T is a second-order
term then |T | is a first-order term.

(iv) If t1, ..., tk are first-order terms and T1, ..., Tm are second-order terms, and f and F are
arity 〈k,m〉 number and string function symbols, respectively, then f(t̄, T̄) is a first-order term and
F (t̄, T̄) is a second-order term.

(v) If s, t are first-order terms and T is a second-order term then s = t, s ≤ t and T (t) are
atomic formulas. Formulas are built from atomic formulas as in V1-Horn using ∧,∨,¬ and the first
and second-order quantifiers.

(vi) ΣB
1 -Horn formulas are defined as in Definition 2.2, with term and formula understood in

the present context, and with the restriction that no term may include any quantified second-order
variable Pi as a proper subpart. (This generalizes the restriction that |Pi| may not appear. However
formulas Pi(t) may appear for any term t satisfying this restriction.)

The axioms of V1-Horn(FP) are the same as for V1-Horn except that the comprehension scheme
is generalized to allow comprehension for all ΣB

1 -Horn formulas of V1-Horn(FP), and the defining
formulas introduced in (i) for all function symbols are included.

We refer to function symbols F and f introduced by (i) as derived function symbols, to dis-
tinguish them from the original function symbols 0, 1,+, ·, | | of V1-Horn. In reasoning about
V1-Horn(FP) it is useful to define the rank of each function symbol by assigning rank 0 to the orig-
inal function symbols and in general assigning 1 + the maximum of the ranks of function symbols
in `F and ΦF to each function symbol F introduced by (i) above, and 1 + the rank of F for each
function symbol f introduced by (i) above.

We claim that (a) every function symbol introduced by (i) represents a polynomial-time function,
and (b) each ΣB

1 -Horn formula Φ of V1-Horn(FP) represents a relation in P. Claims (a) and (b)

23

are proved simultaneously by induction on the rank of the function symbol introduced in (a), and
the maximum of the ranks of the function symbols occurring in Φ for (b). The base case follows
from Theorem 2.4, and for the induction step (a) follows from (b) and Lemma 6.1. To prove (b),
we observe that the proof of the if direction of Theorem 2.4 still goes through. In particular, given
values for the free variables z̄, Ȳ and the quantified variables x̄ in (4), every first-order term can
be evaluated to a number and every second-order term can be evaluated to a string, because the
restriction in the definition (vi) of ΣB

1 -Horn insures that no term involves quantified second-order
variables Pi.

It is not hard to check that the results in the previous two sections apply to V1-Horn(FP) as
well as to V1-Horn. This is true in particular to the main theorem on RunΦ.

Theorem 6.3. Theorem 5.1 on RunΦ, and its corollaries, apply to V1-Horn(FP). Any derived
function symbol occurring in RunΦ, NegΦ, etc. also occurs in Φ.

Proof. The formula RunΦ(R, R̃) is constructed from the two formulas PropΦ and HornSat. The
formula HornSat describes the propositional Horn satisfiability algorithm, is independent of Φ,
and is the same in the present context. The formula PropΦ describes the propositional version of
Φ. This does depend on Φ but it is constructed in the present context exactly as before.

The following lemma is needed for the proof of the theorem below.

Lemma 6.4 (Term Bounding). (Here all variables are fully indicated.) For each first-order term
t(x̄, Ȳ) of V1-Horn(FP) there is a first-order bounding term `t(x̄, ȳ) of V1-Horn such that

V1-Horn(FP) ` t(x̄, Ȳ) ≤ `t(x̄, |Ȳ |)

For each second-order term T (x̄, Ȳ) there is a first-order bounding term `T (x̄, ȳ) of V1-Horn such
that

V1-Horn(FP) ` |T (x̄, Ȳ)| ≤ `T (x̄, |Ȳ |)

Proof. The two assertions are proved simultaneously by double induction, first on the highest rank
of any function symbol occurring in t or T , and second on the maximum nesting depth of derived
function symbols in t and T .

Theorem 6.5. For every ΣB
1 -Horn formula Φ′(x̄, Ȳ) of V1-Horn(FP) there is a ΣB

1 -Horn formula
Φ of V1-Horn such that

V1-Horn(FP) ` Φ′(x̄, Ȳ)↔ Φ(x̄, Ȳ)

Corollary 6.6 (Conservativity). Every theorem of V1-Horn(FP) in the language of V1-Horn is a
theorem of V1-Horn.

Proof. It suffices to show that every model M of V1-Horn has an expansion M ′ to the language
L2
A(FP) which is a model of V1-Horn(FP). To define M ′ it suffices to specify functions on the

universes of M interpreting each function symbol F and f introduced in Definition 6.2 (i), in
such a way that the defining formulas are satisfied. First note that the value of each first-order
function f is uniquely specified by (28) as a first-order element of M (assuming that F has been
specified). Next note that for each tuple of values for the arguments of F , (26,27) uniquely specify
the value of F (x̄, Ȳ) as a set of first-order elements of M . Further by the theorem, the formula
ΦF specifying the bit graph of F is equivalent to a ΣB

1 -Horn formula of V1-Horn, and therefore

24

by ΣB
1 -Horn comprehension this set of elements is realized in M as a second-order object. Finally

the comprehension axioms for all ΣB
1 -Horn formulas of V1-Horn(FP) are satisfied by M ′, by the

Theorem.

Proof of the Theorem. The proof that each such Φ′ can be converted to an appropriate Φ is carried
out by triple induction, first on the highest rank r of any function symbol occuring in Φ′, second on
the maximum nesting depth d of derived functions in any term in Φ′ containing a function symbol
of rank r, and third on the number of such maximal terms occurring in Φ′. The base case, r = 0,
is trivial since we may take Φ = Φ′. Now suppose r > 0 and let

Φ′(x̄, Ȳ) ≡ ∃P1...∃Pa∀z1 < t1...∀zb < tbφ
′(z̄, P̄ , x̄, Ȳ) (29)

where φ′ is a quantifier-free Horn formula satisfying the conditions in Definition 2.2. We may
suppose that none of the quantifier bounding terms ti contains a function symbol not in V1-Horn
since by the Term Bounding Lemma 6.4 we can replace ∀xi < ti by its ∀xi < `ti and add the clause
xi < ti as a conjunct to φ′.

We may replace each occurrence f(...) of a first-order derived function symbol f by its definition
|F (...)| increasing the rank or nesting depth of derived function symbols. Therefore we may assume
that no first-order derived function symbol occurs in Φ′.

Let r be the maximum rank of any function symbol occurring in Φ′, let d be the maximum
nesting depth of derived function symbols in terms of rank r, and let T be a second-order term
in Φ′ containing a function symbol of rank r and let T have derived nesting depth d. Then T
has the form F (s̄, S̄) where F is a second-order function symbol, s̄ are first-order terms and S̄ are
second-order terms. There are two cases, depending on how T occurs in Φ′:

Case I: T occurs in a term |F (s̄, S̄)|.

Case II: T occurs in an atomic formula F (s̄, S̄)(t).

For Case I, suppose that F (ȳ, Z̄) is defined from `F (ȳ, Z̄) and ΦF (ȳ, Z̄) in (i) of Definition
6.2. Then according to the axioms of V1-Horn, |F (ȳ, Z̄)| is 1 + the largest j < `F (ȳ, Z̄) such that
ΦF (j, ȳ, Z̄), or 0 if no such j exists. Therefore

V1-Horn(FP) ` [i = |F (ȳ, Z̄)| ↔ Ψ(i, ȳ, Z̄)] (30)

where Ψ(i, ȳ, Z̄) is the formula

(i = 0 ∧ ∀j < `F (ȳ, Z̄)¬ΦF (j, ȳ, Z̄))

∨∃i′ < i[i = i′ + 1 ∧ ΦF (i′, ȳ, Z̄) ∧ ∀j < `F (ȳ, Z̄)(i ≤ j ⊃ ¬ΦF (j, ȳ, Z̄))]

Notice that by definition of rank, any function symbol occurring in ΦF or `F has smaller rank
than that of F , and therefore rank less than r. Therefore by Corollary 5.3 and Theorem 6.3, Ψ is
provably equivalent to a ΣB

1 -Horn formula all of whose derived function symbols have rank less than
r, and hence by the induction hypothesis provably equivalent to a ΣB

1 -Horn formula of V1-Horn.
Thus we may assume that Ψ(i, ȳ, Z̄) is a ΣB

1 -Horn formula with no derived function symbol.
Define Ψ′(i, x̄, z̄, Ȳ) ≡ Ψ(i, s̄, S̄) where we have indicated all possible free variables of Ψ′. Then

by (30)
V1-Horn(FP) ` [i = |F (s̄, S̄)| ↔ Ψ′(i, x̄, z̄, Ȳ)] (31)

25

The derived nesting depth of terms in s̄, S̄ is less than that of F (s̄, S̄), and hence by the induction
hypothesis we may assume that Ψ′(i, x̄, z̄, Ȳ) is a ΣB

1 -Horn formula with no derived function symbol.
We now apply Corollary 5.4 to Ψ′(i, z̄) (that is, we don’t change Ψ′, but now only indicate

the variables i, z̄) to obtain a ΣB
1 -Horn formula RunΨ′(i,z̄)(b, c̄, R, R̃, x̄, Ȳ) satisfying the Corollary.

Here b is a bounding variable for i, c̄ are bounding variables for z̄, and we have indicated the free
variables x̄, Ȳ which RunΨ′(i,z̄) inherits from Ψ′.

Referring to (29), let φ′i be φ′ with each occurrence of |F (s̄, S̄)| replaced by the variable i. Then
by Corollary 5.4 and (31), noting that RunΨ′(i,z̄) does not contain any of i, z̄, P̄ free,

V1-Horn(FP) ` [Φ′(x̄, Ȳ)↔ Φ′′(x̄, Ȳ)]

where Φ′′(x̄, Ȳ) is the formula

∃R∃R̃∃P̄∀z̄ < t̄∀i < `F (s̄, S̄)[RunΨ′(i,z̄)(`F (s̄, S̄), t̄, R, R̃, x̄, Ȳ) ∧ (¬R(i, z̄) ∨ φ′i(z̄, P̄ , x̄, Ȳ)]

Note that Φ′′ can be converted to an equivalent ΣB
1 -Horn formula by first putting it into a suitable

prenex form and then putting a copy of the literal ¬R(i, z̄) inside every clause of φ′i to make the
disjunction into a Horn formula. The resulting ΣB

1 -Horn formula has one fewer occurrence of a
term of derived depth d containing a function symbol of rank r (since T was removed from φ′ in
forming φ′i and RunΨ′(i,z̄) has no derived function symbol). Hence by the induction hypothesis, Φ′′

is provably equivalent to a ΣB
1 -Horn formula with no derived function symbol.

The proof for Case II is similar, but easier. By reasoning as before, we can find a ΣB
1 -Horn

formula Ψ′(i, x̄, z̄, Ȳ) with no derived function symbol such that (analogously to (31))

V1-Horn(FP) ` [F (s̄, S̄)(i)↔ Ψ′(i, x̄, z̄, Ȳ)] (32)

Again we apply Corollary 5.4 to Ψ′(i, z̄) to obtain a ΣB
1 -Horn formula RunΨ′(i,z̄)(b, c̄, R, R̃, x̄, Ȳ)

satisfying the corollary. Again referring to (29), let φ′R be φ′ with each positive occurrence of
F (s̄, S̄)(t) replaced by ¬R̃(t, z̄) and each occurrence of ¬F (s̄, S̄)(t) replaced by ¬R(t, z̄). (In this
way φ′R is Horn with respect to R, R̃ in Definition 2.2.) Then by Corollary 5.4 and (32),

V1-Horn(FP) ` [Φ′(x̄, Ȳ)↔ Φ′′(x̄, Ȳ)]

where now Φ′′(x̄, Ȳ) is the formula

∃R∃R̃∃P̄∀z̄ < t̄[RunΨ′(i,z̄)(`F (s̄, S̄), t̄, R, R̃, x̄, Ȳ) ∧ φ′R(z̄, P̄ , x̄, Ȳ)]

Again Φ′′ can be converted to an equivalent ΣB
1 -Horn formula by putting it into a suitable prenex

form, and hence by the induction hypothesis Φ′′ is provably equivalent to a ΣB
1 -Horn formula with

no derived function symbol.

6.2 Specification of P-def

We present a version of Zambella’s [24] P-def which fits our notation and axioms. It is the same in
spirit to Zambella’s system. The system P-def is obtained from a Base Theory BT by introducing
function symbols for all functions in FP, based on Cobham’s recursion-theoretic characterization of
the polynomial-time computable functions.

26

The Base Theory BT has the language L2
A(=), which is L2

Awith second-order equality. System
BT has the same terms and formulas as V1-Horn, except that atomic formulas include equations
X = Y between second-order variables. The axioms of BT consist of the axioms B1,...,B13,L1,L2
of V1-Horn, the axiom E of extensionality (below) and the comprehension scheme for ΣB

0 formulas.

E : X = Y ↔ [|X| = |Y | ∧ ∀i < |X|(X(i)↔ Y (i))] (33)

As mentioned in Section 2, the ΣB
0 formulas represent precisely the AC0 relations. Analogously

to FP, we define FAC0 to be those polynomially-bounded string and number functions whose bit
graphs are AC0 relations. (The functions in FAC0 are termed rudimentary in [24].) After [24], we
define the R-def to be BT augmented with function symbols for functions in FAC0 and their defining
formulas.

More precisely, the language of R-def is L2
A(=) augmented with new function symbols, which

are defined by simultaneous recursion along with terms, formulas and ΣB
0 formulas, as in Definition

6.2 with the following changes. In (i), ΣB
1 -Horn formula is replaced with Σ0

B formula. In (v), we
now allow S = T as an atomic formula, where S, T are second-order terms. In (vi) we replace the
definition of ΣB

1 -Horn formula by that of ΣB
0 formula, which is a bounded formula in the language

of R-def with no second-order quantifier.
The axioms of R-def are the axioms B1,...,B13,L1,L2, and E, together with comprehension over

the ΣB
0 formulas of R-def and the defining formulas for all derived function symbols.

By an easier version of the proofs of Theorem 6.5 and Corollary 6.6 we can show that R-def is
a conservative extension of the Base Theory BT .

We next name a string function symbol Chop of R-def of arity 〈1, 1〉, where Chop(x, Y) is
intended to be the initial segment of Y of length at most x. The defining equations of Chop are

|Chop(x, Y)| ≤ x
∀i < x[Chop(x, Y)(i)↔ Y (i)]

We define P-def to be the extension of R-def obtained by introducing new function symbols and
their defining formulas as follows:

To every first-order term `F (z, x̄, Ȳ) of P-def and function symbols GF , HF of P-def of arities
〈k − 1,m〉, 〈k,m+ 1〉 we associate an arity 〈k,m〉 string function F with defining formulas

F (0, x̄, Ȳ) = Chop(`F (0, x̄, Ȳ), G(x̄, Ȳ)) (34)

F (z + 1, x̄, Ȳ) = Chop(`F (z, x̄, Ȳ), H(z, x̄, Ȳ , F (z, x̄, Ȳ))) (35)

In addition we allow new function symbols to be introduced as in (26,27,28), where now ΦF is any
ΣB

0 formula in the language of P-def.
The axioms for P-def are the same as for R-def, except we include the defining formulas for the

new function symbols, and ΣB
0 formulas allow the new function symbols.

We remark that (26,27,28) allow the introduction of a function symbol for the composition of
other function symbols. For example, we could take ΦF (i, x̄, Ȳ) to be G(H(x̄, Ȳ))(i).

6.3 Relating V1-Horn and P-def

Theorem 6.7. P-def is a conservative extension of V1-Horn.

27

The next two lemmas prove the two directions. The proofs of the lemmas and of Theorem 6.5
actually show how to translate V1-Horn(FP) and P-def back and forth in such a way that V1-Horn
is fixed.

Lemma 6.8. Every theorem of V1-Horn is a theorem of P-def.

Proof. It suffices to show that every ΣB
1 -Horn-COMP axiom is a theorem of P-def. Since P-def

allows the ΣB
0 -COMP axioms, this amounts to showing that P-def proves that each ΣB

1 -Horn for-
mula is equivalent to some ΣB

0 formula in the language of P-def. This can be done by defining
function symbols in P-def for witnessing the second-order quantifiers in the ΣB

1 -Horn formula (1)
and proving them correct. This amounts to describing the Horn satisfiability algorithm in P-def, or
more precisely formalizing the proof of Theorem 5.1 (describing RunΦ) in P-def. We will not carry
out the details here, since as mentioned in the beginning of this section of the power of QPV (and
hence P-def) has been well established.

Lemma 6.9. Every theorem of P-def in the language of V1-Horn is a theorem of V1-Horn.

Proof. First note that using the extensionality axiom E (33), every equation S = T between second-
order terms is provably equivalent in P-def to a ΣB

0 formula (denoted E(S = T)) not involving
second-order =. Therefore we may assume that formulas in P-def do not involve such second-order
equations.

Now we claim that for every derived function symbol F of P-def there is a function symbol F ′

of V1-Horn(FP) which represents the same function, such that V1-Horn(FP) proves the translation
of the defining formula for F . The translation is carried out by replacing each function symbol
G in the defining formula by its V1-Horn(FP) counterpart G′, and by replacing each second-order
equation S = T by E(S = T). ¿From this property a simple model-theoretic argument shows
that for every formula Φ of P-def, if Φ is a theorem of P-def then its translation Φ′ is a theorem of
V1-Horn(FP). The Lemma follows.

We define the translation of F to F ′ by induction on the rank of F . If F is introduced in
P-def by (26,27) where ΦF is a ΣB

0 formula, then we introduce F ′ in V1-Horn(FP) by (26,27) where
`F ′ is `′F (the translation of `F into vhorn(FP)) and ΦF ′ is a ΣB

1 -Horn formula equivalent to Φ′F ,
using Corollary 4.5 and Theorem 6.3. If f is introduced in P-def by (28) then f ′ is introduced in
V1-Horn(FP) using (28) with F ′ for F .

Now suppose that F is introduced in P-def by (34,35). The idea is to fix the arguments (z, x̄, Ȳ)
of F and present a formula defining an array P (i, y) (and its negative counterpart P̃ (i, y)) giving
the i-th bit of F (y, x̄, Ȳ), 0 ≤ i < `′F (y, x̄, Ȳ), 0 ≤ y ≤ z, where `′F is the translation of `F as a term
of V1-Horn(FP). The formula will recursively define all values of P (i, y) and P̃ (i, y) successively for
y = 0, 1, ..., z. To give the step from y to y + 1 we must translate the formula H(z, x̄, Ȳ , Z)(i) into
one which is “Horn with respect to Z”. In what follows we will suppress the variables x̄, Ȳ .

Applying Theorem 6.5, let Ψ(i, y, Z) be a ΣB
1 -Horn formula of V1-Horn equivalent to the formula

H ′(y,Chop(`′F (y), Z))(i). Next apply Corollary 5.4 to obtain the formula RunΨ(i)(b, R, R̃, y, Z).
Now apply Lemma 6.11 below to RunΨ(i), using the bound `′F (y) for ` to obtain an equivalent

ΣB
1 -Horn formula not involving |Z|. Further modify this formula by replacing each positive subfor-

mula of the form Z(t) by (t < `′F (y) ∧ ¬Z̃(t)) (distribute ∨ over ∧ to keep the quantifier-free part
in CNF) and each occurrence of the form ¬Z(t) by (¬Z(t) ∨ `′F (y) < t). The result is a formula
RunΨ(i)(b, R, R̃, y, Z, Z̃) which is ΣB

1 -Horn with respect to Z, Z̃ whose truth is unchanged if Z is

28

replaced by Chop(`′F (y), Z). Further, defining the hypothesis Hypo(Z, Z̃) to be the formula

Hypo ≡ ∀j < `′F (y)(Z(j)↔ ¬Z̃(j))

it follows by Corollary 5.4 that V1-Horn(FP) proves

Hypo→ ∃R∃R̃ RunΨ(i)(b, R, R̃, y, Z, Z̃) (36)

[Hypo ∧RunΨ(i)(b, R, R̃, y, Z, Z̃)]

→ ∀i < b[(R(i)↔ H ′(y,Chop(`′F (y), Z))(i)) ∧ (R̃(i)↔ ¬R(i))] (37)

Referring to (26,27), we take the defining term `F ′(z) for F ′(z) in V1-Horn(FP) to be `′F (z), and
the bit graph formula ΦF ′(i, z) for F ′(z) to be a suitable prenex form of

ΦF ′(i, z) ≡ ∃P∃P̃ (P (i, z) ∧ Φ̂(z, P, P̃))

where Φ̂ is

Φ̂(z, P, P̃) ≡ ∀j < `′F (0)[(P (j, 0)↔ G′()(j)) ∧ (P̃ (j, 0)↔ ¬G′()(j))]∧
∀y < z RunΨ(i)(`

′
F (y + 1), P (∗, y + 1), P̃ (∗, y + 1), y, P (∗, y), P̃ (∗, y))]

where for example the notation P (∗, y + 1) indicates that each occurrence of the form R(t) in
RunΨ(i) is replaced by P (t, y + 1).

It remains to show that the translations of (34,35) follow in V1-Horn(FP) from (26,27). First
note that Chop′ = Chop, since the defining formulas for Chop in P-def are also in V1-Horn(FP).
Next note that by (26) for F ′, the RHS’s of the translations of (34,35) can be replaced by the
second argument of Chop in each case; that is by G′() and H ′(z, F ′(z)) respectively. Now (34)
follows easily from the definition of Φ̂(0, P P̃).

To establish the translation of (35) we make a series of Claims.

Claim 1: V1-Horn(FP) ` Φ̂(z, P, P̃)→ ∀y ≤ z Hypo(P (∗, y), P̃ (∗, y))

This follows using induction on z and (37).

Claim 2: (Uniqueness of P) V1-Horn(FP) proves

[Φ̂(z, P, P̃) ∧ Φ̂(z,Q, Q̃)]→ ∀y ≤ z∀i < `′F (y)(P (i, y)↔ Q(i, y))

Again this follows using induction on z and (37) and Claim 1.

Claim 3: V1-Horn(FP) ` Φ̂(z, P, P̃)→ ∀y ≤ z∀i < `′F (y)[P (i, y)↔ ΦF ′(i, y)]

The left-to-right direction of the equivalence is immediate from the definition of Φ̂. The right-
to-left direction requires Claim 2.

Claim 4: V1-Horn(FP) ` ∃P∃P̃ Φ̂(z, P, P̃)

This follows using induction on z, (36), and Claim 1.

29

Claim 5: V1-Horn(FP) ` ∀i < `′F (z)[ΦF ′(i, z + 1)↔ H ′(z, F ′(z))(i)]

The left-to-right direction follows from the definition of ΦF ′ , Claim 1, (37), and Claim 3. The
right-to-left direction uses Claim 4 in addition.

Finally the translation of (35) follows immediately from Claim 5.
This completes the proof of Lemma 6.9, except for the Lemmas below.

Lemma 6.10. If Φ(Z) is a ΣB
1 -Horn formula not involving |Z|, then RunΦ does not involve |Z|.

Proof. Inspection of the proof of Theorem 5.1 (in particular (11)) shows that all terms appearing
in RunΦ are constructed from variables and terms appearing in Φ, using 0, 1,+, ·.

Lemma 6.11. Let ` be a term not involving |Z| and let Φ(Z) be a ΣB
1 -Horn formula. Then there

is a ΣB
1 -Horn formula Ψ(Z) not involving |Z| such that V1-Horn proves

|Z| ≤ ` ⊃ [Φ(Z)↔ Ψ(Z)]

Proof. This argument is similar to Case II in the proof of Theorem 6.5. We can define the relation
i = |Z| by a ΣB

0 formula B(i, Z) not involving |Z| but using the upper bound ` on |Z|, so

V1-Horn ` |Z| ≤ ` ⊃ [i = |Z| ↔ B(i, Z)] (38)

Using Corollary 4.5 (or Corollary 5.3 and the Lemma above) we may assume that B(i, Z) is
ΣB

1 -Horn. Let Φ′(Z) be the formula

∃R∃R̃∀i < `[RunB(i)(R, R̃, Z) ∧ (¬R(i) ∨ Φi(i, Z))]

where Φi(i, Z) is obtained from Φ(Z) by replacing each occurrence of |Z| by i. Then by the above
Lemma Φ′(Z) does not contain |Z|, and by Corollary 6.3 and (38) V1-Horn proves

|Z| ≤ ` ⊃ [Φ(Z)↔ Φ′(Z)]

It remains to show that Φ′(Z) is provably equivalent to a ΣB
1 -Horn formula Ψ(Z) which does

not introduce an occurrence of |Z|. We write Φ′(Z) as ∃R∃R̃φ(R, R̃, Z) and apply Corollary 5.3
to φ(R, R̃, Z) to obtain a ΣB

1 -Horn formula φ′ equivalent to φ in which no terms |R|, |R̃|, |Z| are
introduced and take Ψ(Z) to be ∃R∃R̃φ′(R, R̃, Z). We may assume Ψ is ΣB

1 -Horn by replacing any
positive occurrence of R in φ′ by ¬R̃ and any positive occurrence of R̃ by ¬R.

7 Finite Axiomatizability

Here we show that both V 0 and V1-Horn are finitely axiomatizable, and that the ∀ΣB
1 consequences

of V1-Horn and the ∀Σb
1 consequences of S1

2 are each finitely axiomatizable.
Since V 0 defines the uniform AC0 functions, it seems plausible that V1-Horn could be axiomatized

by V 0 together with a formula expressing the comprehension axiom for some predicate which is
complete for P under uniform AC0 reductions. Hence the finite axiomatizability of V1-Horn should
follow from that for V 0. In our proof of Theorem 7.5 below, that predicate is the Horn satisfiability
problem, which is complete for P [12].

Theorem 7.1. V 0 is finitely axiomatizable.

30

Proof. We must show that all ΣB
0 -COMP axioms follow from finitely many theorems of V 0 (see

section 3).
Let 2−BASIC+ (or simply B+) denote the 2−BASIC axioms along with finitely many the-

orems of V 0 asserting basic properties of + and · such as commutativity, associativity, distributive
laws, and cancellation laws involving +, ·, and ≤. These can be proved from the 2−BASIC axioms
by induction on ΣB

0 formulas, as discussed in Section 3.
It suffices to show that k-ary comprehension (8) for all ΣB

0 formulas follow from B+ and finitely
many such comprehension instances. We use the notation Φ[ā, Q̄](x̄) to indicate that the ΣB

0

formula Φ can contain the free variables ā, Q̄ in addition to x̄ = x1, ..., xk. Then COMPΦ(ā, Q̄, b̄)
denotes the comprehension formula

∃Y ≤ 〈b1, ..., bk〉∀x1 < b1...∀xk < bk(Y (x̄)↔ Φ(x̄)) (39)

We will show that COMPΦ for the following 12 formulas Φ will suffice.

Φ1(x1, x2) ≡ ∃y ≤ x1(x1 = 〈x2, y〉)
Φ2(x1, x2) ≡ ∃z ≤ x1(x1 = 〈z, x2〉)
Φ3[Q1, Q2](x1, x2) ≡ ∃y ≤ x1(Q1(x1, y) ∧Q2(y, x2))
Φ4[a](x, y) ≡ y = a
Φ5[Q1, Q2](x, y) ≡ ∃z1 ≤ y∃z2 ≤ y(Q1(x, z1) ∧Q2(x, z2) ∧ y = z1 + z2)
Φ6[Q1, Q2](x, y) ≡ ∃z1 ≤ y∃z2 ≤ y(Q1(x, z1) ∧Q2(x, z2) ∧ y = z1 · z2)
Φ7[Q1, Q2, c](x) ≡ ∃y ≤ c(Q1(x, y) ∧Q2(x, y))
Φ8[Q1, Q2, c](x) ≡ ∃y1 ≤ c∃y2 ≤ c(Q1(x, y1) ∧Q2(x, y2) ∧ y1 ≤ y2)
Φ9[X,Q, c](x) ≡ ∃y ≤ c(Q(x, y) ∧X(y))
Φ10[Q](x) ≡ ¬Q(x)
Φ11[Q1, Q2](x) ≡ Q1(x) ∧Q2(x)
Φ12[Q, c](x) ≡ ∀y ≤ cQ(x, y)

In the following lemmas, we abbreviate COMPΦi(...) by Ci.

Lemma 7.2. For each k ≥ 2 and 1 ≤ i ≤ k let

Ψik(y, z) ≡ ∃x1 ≤ y...∃xi−1 ≤ y∃xi+1 ≤ y...∃xk ≤ y(y = 〈x1, ..., xi−1, z, xi+1, ..., xk〉)

Then
B+, C1, C2, C3 ` COMPΨik

Proof. We proceed by induction on k. For k = 2 we have Ψ1,2 ≡ Φ1 and Ψ2,2 ≡ Φ2. For k > 2,
recall 〈x1, ..., xk〉 = 〈〈x1, ..., xk−1〉, xk〉. Thus Ψkk ≡ Φ2. For 1 ≤ i < k use COMPΦ3 with Q1

defined by COMPΦ1 and Q2 defined by COMPΨi,k−1
.

Lemma 7.3. Let t(x̄) be a term which in addition to variables x̄ may involve other variables ā, Q̄.
Let Ψt[ā, Q̄](x̄, y) ≡ y = t(x̄). Then

B+, C1, ..., C6 ` COMPΨt(ā, Q̄, b̄, d)

Proof. By using algebraic theorems in B+ we may suppose that t(x̄) is a sum of monomials in
x1, ..., xk, where the coefficients are terms involving ā, Q̄. The case t ≡ u, where u does not involve
any xi is obtained from COMPΦ4 with a ← u. The cases t ≡ xi are obtained from Lemma 7.2.
We then build monomials using COMPΦ6 repeatedly, and build the general case by repeated use
of COMPΦ5 .

31

Lemma 7.4. Let t1(x̄), t2(x̄) be terms with variables among x̄, ā, Q̄. Suppose

Ψ1[ā, Q̄](x̄) ≡ t1(x̄) = t2(x̄)
Ψ2[ā, Q̄](x̄) ≡ t1(x̄) ≤ t2(x̄)
Ψ3[ā, Q̄,X](x̄) ≡ X(t1(x̄))

Then B+, C1, ..., C9 ` COMPΨi, for i = 1, 2, 3.

Proof. COMPΨ1(ā, Q̄, b̄) follows from COMPΦ7(P1, P2, c, b) with for i = 1, 2, Pi defined from
COMPΨti

in Lemma 7.3 with d← t1(b̄) + t2(b̄) + 1, so

∀x̄ < b̄∀y < t1(b̄) + t2(b̄) + 1(Pi(x̄, y)↔ y = ti(x̄))

In COMPΦ7 we take c ← t1(b̄) and b ← 〈b1, ..., bk〉. We proceed similarly for COMPΨ2 , using
COMPΦ8 .

For COMPΨ3(ā, Q̄,X, b̄) we use COMPΦ9(X,P, c, b) with c← t1(b̄) and b← 〈b1, ..., bk〉 and P
defined from Lemma 7.3 similarly to P1 above.

Now we can complete the proof of the theorem. Lemma 7.4 takes care of the case when Φ is an
atomic formula. Then by repeated applications of COMPΦ10 and COMPΦ11 we handle the case
in which Φ is quantifier-free.

Now suppose Φ(x̄) ≡ ∀y ≤ t(x̄)φ(x̄, y). We assume as an induction hypothesis that we can
define Q satisfying

∀x̄ < b̄∀y < t(b̄) + 1[Q(x̄, y)↔ (y ≤ t(x̄)→ φ(x̄, y)]

Then COMPΦ(b̄) follows from COMPΦ12(Q, c, b) with c← t(b̄) and b← 〈b1, ..., bk〉.

Theorem 7.5. V1-Horn is finitely axiomatizable.

Proof. It suffices to show that Corollary 5.4 (i) and (ii) can be proved for any ΣB
1 -Horn formula

Φ(y) using finitely many theorems of V1-Horn as axioms. We first will show how to do this for
Theorem 5.1 (i) and (ii), and then explain how to modify the proof to get the corollary.

First note that for each ΣB
1 -Horn formula Φ we can define a version of PropΦ such that (i)

and (ii) in Lemma 5.6 are theorems of V 0. Thus we include the finite set of axioms for V 0 from
Theorem 7.1 among the finite axioms for V1-Horn. The proof of Theorem 5.1 depends on Lemma
5.6 (which we have established) and some properties of HornSat. Since HornSat is independent
of Φ, we can take these properties as axioms.

To generalize the proof of Theorem 5.1 in order to prove Corollary 5.4, we incorporate the
variable y in Φ(y) as an argument of each of the arrays C,D, V, C̃, D̃, Ṽ to define the formula
PropΦ(y) in a modified Lemma 5.6. Then y is not free in PropΦ(y) (although it could be free
in PropΦ). The definition (16) of HornSat is modified so that the parameter y is incorporated
as an argument of each of the arrays R, R̃, T, T̃ . Then Corollary 5.4 follows in the same way as
Theorem 5.1.

Theorem 7.6. V1-Horn is axiomatized by its ∀ΣB
1 consequences.

Proof. It suffices to show that each ΣB
1 -Horn comprehension axiom is a consequence of ∀ΣB

1 the-
orems of V1-Horn. First we show that the second-order quantifiers in ΣB

1 -Horn formulas (1)
can be bounded. That is, for each ΣB

1 -Horn formula Φ there is a ΣB
1 formula ΦB such that

∀ΣB
1 V1-Horn ` (Φ ↔ ΦB). To construct ΦB replace each second-order quantifier ∃P in Φ by a

32

bounded quantifier ∃P ≤ t, where t is a provable upper bound on all terms u such that P (u)
occurs in Φ. The equivalence of Φ and ΦB requires only Ψ-COMP instances for formulas Ψ with
no second-order quantifiers, and these instances are ∀ΣB

1 formulas.
The comprehension axiom (6) for Φ(z) follows from Corollary 5.4 (i) and (ii). The ΣB

1 form of
(i) we need is

∃R ≤ y∃R̃ ≤ y Run′Φ(z)(y,R, R̃)

where Run′Φ(z) has suitable bounds on its second-order quantifiers. For (ii) we do not need the

clause involving R̃. If we replace Φ by ΦB then a suitable prenex form of the result is ∀ΣB
1 .

Corollary 7.7. The ∀ΣB
1 consequences of V1-Horn are finitely axiomatizable. The ∀Σb

1 conse-
quences of S1

2 are finitely axiomatizable.

Proof. The first sentence follows by compactness from Theorems 7.6 and 7.5. Since V 1 is ∀ΣB
1

conservative over P-def [24], it follows from Theorem 6.7 that the ∀ΣB
1 consequences of V 1 and of

V1-Horn are the same, and hence are finitely axiomatizable. The second sentence of the Corollary
is equivalent to asserting that the ∀ΣB

1 consequences of V 1 are finitely axiomatizable, by the RSUV
isomorphism.

References

[1] D. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of Computer
and System Sciences, 41(3):274 – 306, 1990.

[2] S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.

[3] S. Buss. Axiomatizations and conservation results for fragments of bounded arithmetic. Contemporary
Mathematics, 106:57–84, 1990.

[4] S. Buss. Relating the bounded arithmetic and polynomial time hierarchies. Annals of Pure and Applied
Logic, 75:67–77, 1995.

[5] S. A. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings of the Seventh
Annual ACM Symposium on Theory of Computing, pages 83 –97, 1975.

[6] S. A. Cook. CSC 2429S: Proof Complexity and Bounded Arithmetic. Course notes, URL:
”http://www.cs.toronto.edu/∼sacook/csc2429h”, Spring 1998.

[7] S. A. Cook. Relating the provable collapse of P to NC1 and the power of logical theories. DIMACS
series in Discrete mathematics and theoretical computer science, 39:73–91, 1998.

[8] S. A. Cook and Alasdair Urquhart. Functional interpretations of feasibly constructive arithmetic. Annals
of Pure and Applied Logic, 63(2):103 – 200, 1993.

[9] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity of compu-
tation, SIAM-AMC proceedings, 7:43–73, 1974.

[10] E. Grädel. The Expressive Power of Second Order Horn Logic. In Proceedings of 8th Symposium
on Theoretical Aspects of Computer Science STACS ‘91, Hamburg 1991, volume 480 of LNCS, pages
466–477. Springer-Verlag, 1991.

[11] E. Grädel. Capturing Complexity Classes by Fragments of Second Order Logic. Theoretical Computer
Science, 101:35–57, 1992.

[12] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation. Oxford University Press,
1995.

33

[13] N. Immerman. Relational queries computable in polytime. Information and Control, 68:86 –104, 1986.

[14] N. Immerman. Descriptive complexity. Springer Verlag, New York, 1999.

[15] J. Krajiček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge University
Press, New York, USA, 1995.

[16] J. Krajiček, P. Pudlák, and G. Takeuti. Bounded arithmetic and the polynomial time hierarchy. Annals
of Pure and Applied Logic, 52:143–153, 1991.

[17] Daniel Leivant. Characterization of complexity classes in higher-order logic. In Proceedings of the Second
Annual Conference on Structure in Complexity Theory, pages 203–217, 1987.

[18] Daniel Leivant. Descriptive characterizations of computational complexity. Journal of Computer and
System Sciences, 39:51–83, 1989.

[19] A. Razborov. An equivalence between second-order bounded domain bounded arithmetic and first-order
bounded arithmetic. In P. Clote and J. Krajiček, editors, Arithmetic, proof theory and computational
complexity, pages 247–277. Clarendon Press, Oxford, 1993.

[20] U. Schöning and R. Pruim. Gems of theoretical computer science. Springer, Berlin, 1998.

[21] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1977.

[22] G. Takeuti. RSUV isomorphism. In P. Clote and J. Krajiček, editors, Arithmetic, proof theory and
computational complexity, pages 364–386. Clarendon Press, Oxford, 1993.

[23] M. Vardi. Complexity of relational query languages. Information and Control, 68:137 –146, 1986.

[24] D. Zambella. Notes on polynomially bounded arithmetic. The Journal of Symbolic Logic, 61(3):942–966,
1996.

34

