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Abstract. In this paper we study the properties of systems of bounded
arithmetic capturing small complexity classes and state conditions suf-
ficient for such systems to capture the corresponding complexity class
tightly. Our class of systems of bounded arithmetic is the class of second-
order systems with comprehension axiom for a syntactically restricted
class of formulas Φ ⊂ ΣB

1 based on a logic in the descriptive complexity
setting. This work generalizes the results of [8] and [9]1.
We show that if the system 1) extends V0 (second-order version of I∆0),
2) ∆1-defines all functions with bitgraphs from Φ, and 3) proves witness-
ing for all theorems from Φ, then the class of ΣB

1 -definable functions of
the resulting system is exactly the class expressed by Φ in the descriptive
complexity setting, provably in this system.

1 Introduction

There has been a lot of research in descriptive complexity and bounded arith-
metic, as well as their connections with complexity theory. However the question
of direct relationship between these two fields did not receive much attention.
The language of bounded arithmetic is richer than that of many logics, but of-
ten logics capture complexity classes over languages that include some arithmetic
predicates (order, plus and times, or, equivalently, BIT predicate).

Bounded arithmetic studies the complexity of proving properties of these
classes of formulas, whereas descriptive complexity is concerned with their ex-
pressive power. The most important distinction between different systems of
bounded arithmetic is the strength of their induction (or comprehension) axiom
schemes. This leads to the following question: how does the expressive power of
the class of formulas in the induction axioms of a system relate to the power
of the resulting system? In which cases the formulas in the comprehension are
more complex than the provably total functions of a system and under which
conditions their complexity coincides?

In this paper, we discuss properties under which the complexity of formulas in
comprehension axioms and of provably total functions of a system of arithmetic
is the same. Our approach is geared towards feasible complexity classes, those
1 More detailed presentation of most of this work can be found in my PhD thesis, [17],
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between P and DLOGTIME (uniform AC0). Restricting our attention to small classes
allows us to use definability by NP predicates (bounded Σ1) for the definition of
capture in the bounded arithmetic setting: we consider exactly the functions with
bitgraphs represented by NP predicates that are provably total in our systems. By
Fagin’s theorem [12], NP predicates are representable by second-order existential
formulas, so the formula classes we consider here are subsets of second-order
existential formulas.

Traditionally, functions are introduced by their recursion-theoretic charac-
terization (see [4] for the original such result or [26]), but since we are trying
to relate the expressive power of the formulas in comprehension and complex-
ity of functions, we introduce function symbols by setting their bitgraphs to be
formulas from the comprehension scheme.

Let C be a complexity class. Suppose that ΦC is a class of (existential second-
order) formulas that captures C in the descriptive complexity setting. We define
a theory of bounded arithmetic V -ΦC to be Robinson’s Q together with compre-
hension over bounded ΦC . The following is an informal statement of our main
result:

Claim: Let AC0 ⊆ C ⊆ P. Suppose that ΦC is closed under first-order operations
provably in V -ΦC (1). Also, suppose that for every φ(x̄, Ȳ ) ∈ ΦC , if V -ΦC � φ
then there is a function F on free variables of φ which is computable in C
and witnesses existential quantifiers of φ (2). Then the class of provably total
functions of V -ΦC is the class of functions computable in C.

It may seems that the second condition, that is witnessing for the ΦC the-
orems, is almost a restatement of the result itself. However, the class ΦC can
be very small, with definition of one complete problem for the class (for exam-
ple transitive closure). Then the second condition states that if this small set
of theorems can be witnessed, then all functions from that complexity class are
provably total in the system.

For conventional systems of bounded arithmetic, such as ones considered by
Clote and Takeuti in [3], it was shown that the class of provably total functions
of a system coincides with the function class in the complexity-theoretic sense.
Under our conditions this is provable within the system itself, so more work is
needed to prove the conditions, but the result is stronger. We hope that our
framework can be useful for proving independence results for weak theories of
arithmetic.

Examples of systems that provably capture complexity classes are V1-Horn
capturing P from [7, 8], V -Krom capturing NL from [9] and V 0 capturing AC0

from [6]. As an example of a similar system that captures a complexity class,
but not (known to be) provably, we present a system of arithmetic V -SymKrom
corresponding to symmetric logspace (SL), based on symmetric second-order 2-
CNF formulas (with ⊕ instead of ∨ between literals). This system can prove
that its class of provably total functions is the AC0 closure of SL functions. By
the recent Reingold’s result [22], SL = L and so symmetric 2-SAT is solvable
in logspace; therefore, AC0(SL) = SL = L. However, this proof, and even the
proof that SL is closed under complementation by Nisan and Ta-Shma [20],
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rely on algebraic properties on expander graphs. In their current form, these
proofs are not formalizable using SL-reasoning: to talk about algebra, we need
at least polynomial time. It is a very interesting open question whether there is
a combinatorial version of Reingold’s proof that is formalizable in a system for
L, and whether our theory for SL is fully conservative over a system for L.

2 Descriptive Complexity Framework

The name “descriptive complexity” refers to the study of expressive power of
logics: fixing a formula, we look at the complexity of evaluating this formula on
different finite structures. It is more common to call this area “finite model the-
ory”; however, here we stay with the term “descriptive complexity” to emphasize
the complexity theory connection and the richness of the assumed vocabulary.
Please see [11], [16], and [18] for the background.

Following [16], we consider logics over the vocabulary τ = {min,max,+,×,≤
} (we do not include BIT operator since it can be defined from +,× in the
weakest of our systems; see [6] for details). For many results it is sufficient
to assume only the presence of order and successor relations in the vocabulary
(these are the assumptions of [13, 14]); however it is more convenient to work with
a vocabulary containing all basic arithmetic operations. We refer to structures
where the arithmetic symbols of the vocabulary get the standard interpretation
as “arithmetic structures”. The way we connect logics with complexity classes
is stated in this definition (following [18]):

Definition 1 (Capture by a logic). Let C be a complexity class, L a logic
and K a class of finite structures. Then L captures C on K if

1. For every L-sentence φ and every A ∈ K, testing if A |= φ with φ fixed and
an encoding of A as an input can be done in C.

2. For every collection K ′ of structures closed under isomorphism, if this col-
lection is decidable in C then there is a sentence φK′ of L such that A |= φK′

iff A ∈ K ′, for every A ∈ K.

For our purposes, we fix K to be the arithmetic structures. In particular, the
universe of a structure is always considered to be {0, . . . , n− 1}.

Many capture results are obtained by extending first-order logic with addi-
tional operators, such as fixed-point operators. We find it more convenient to
work with restrictions of second-order logics rather than extensions of first-order.
However, in many cases we can switch to the extended first-order logic frame-
work by adding a defining axiom for a new operator, where the defining axiom
is a second-order formula. We use this for theories of non-deterministic logspace
and symmetric logspace (NL and SL), in order to introduce respective transitive
closure operators.

Definition 2. We will use the term restricted SO∃ to refer to formulas of the
form

∃P1 . . . Pk∀x1 . . . xlψ(P̄ , x̄, ā, Ȳ ), (1)
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where k, l are constants, and ψ is a (sub)class of CNF closed under conjunction.
Here, when defining a subclass of CNF we treat only the quantified second-order
variables P̄ as literals.

Note that there are no occurrences of existential first-order quantifiers in
restricted SO∃ formulas. This is because even when the class of ψ is restricted
to 2CNF with at most one occurrence of a positive literal, with presence of
an existential quantifier it is possible to capture all of SO∃ [13, 14]. Universal
first-order and quantifier-free formulas are restricted SO∃.

Schaefer’s theorem ([23]) presents several restrictions on CNF that corre-
spond to different complexity classes. Grädel in [13, 14] described how to use
some of them to capture complexity classes by restricted second-order formulas.
Here we use systems based on the following restrictions of ψ:

Definition 3. A formula ψ(x̄, P̄ , ā, Ȳ ) is Horn with respect to the second-order
variables P1, ..., Pk if ψ is quantifier-free in conjunctive normal form and in every
clause there is at most one positive literal of the form Pi(x̄). It is Krom with
respect to P̄ if ψ is a CNF with at most two occurrences of a P -literal per clause.
It is SymKrom if it is Krom with ⊕ instead of ∨ in every clause (so every clause
is of the form (φi → Li ⊕ L′

i), where the only P -literals are Li and L′
i).

Following Grädel, we can define classes SO∃ Horn and SO∃ Krom and
SO∃ SymKrom as restricted SO∃, in which ψ is, respectively, Horn, Krom and
SymKrom with respect to P̄ .

The following descriptive complexity characterizations provide classes of for-
mulas on which our systems can be based. However, not all of them result in
systems tightly capturing the corresponding complexity class.

Over arithmetic structures,

– First-order logic captures uniform AC0 ([1, 15]).
– Second-order existential logic captures NP ([12]), and in general levels of SO

hierarchy correspond to levels of PH ([24]).
– Second-order Horn, Krom and SymKrom capture P, NL and SL, respectively

([13, 14]).

In case of restricted second-order formulas, the formula evaluation direction of
the capture proof consists of the following steps. First, the formula is brought into
propositional form by making a copy of its quantifier-free part for every possible
tuple of values of quantified first-order variables. Then first-order terms and free
second-order terms are evaluated. Second-order terms of the form Pi(t(x̄)), where
Pi is quantified and t(x̄) is a term, are assigned propositional variables so that
Pi(t(x̄)) and Pi(t′(x̄)) are assigned to the same variable whenever t(x̄) evaluates
to the same value as t′(x̄), on possibly different tuples x̄. Now the problem is
reduced to testing satisfiability of the resulting propositional formula.

3 Bounded Arithmetic Framework

In descriptive complexity, a language in the traditional complexity theory setting
is thought of as interpretations of a unary predicateX (viewed as a binary string)
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in a set of structures. A class of recursively enumerable languages then naturally
corresponds to a class of formulas: each language in the class corresponds to a
formula which has, as its set of models, the structures with X interpreted as
strings from the language. In the bounded arithmetic setting, the relationship
with complexity classes is slightly different. Here, we consider representations of
languages in the standard model of arithmetic N2 (two-sorted N). So instead of a
set of structures with one predicate getting different interpretation we are talking
about one fixed structure and different (second-order) elements of it satisfying
the formula.

Definition 4 (Representation). A formula A(X) represents a language L if
L = {w(S)|N2 |= A(S)}, where w is some encoding of strings. More generally,
A(x̄, Ȳ ) represents a relation R(x̄, Ȳ ) which holds on x̄, Ȳ iff N2 |= A(x̄, Ȳ ). A
class of formulas Φ represents a complexity class C iff every relation R from C
is representable by a formula from Φ, and every formula from Φ can be evaluated
within C.

This notion is parallel to the notion of “capture” from descriptive complexity
(see definition 1); essentially, they have the same meaning of describing the
expressive power of formulas. But the notion of “capture” we will be using for
systems of bounded arithmetic will be quite different.

The language of our systems of arithmetic is L2
A = {0, 1,+, ·, | |;<,=,∈},

a natural second-order extension of the language of Peano Arithmetic LA =
{0, 1,+, ·;<,=}. Let N2 be a standard structure with natural numbers and finite
sets of natural numbers in the universe; our first-order objects (denoted by lower-
case letters) are natural numbers; second-order objects (denoted by upper-case
letters) are binary strings or, equivalently, (finite) sets of numbers. Treating a
second-order variable X as a set, its upper bound (“length”) |X | is defined to
be the largest element y ∈ X plus one, or 0 if X is an empty set.

Arithmetic terms are constructed using + and × from first-order variables,
constants 0 and 1, and terms of the form |X | where X is a second-order variable.
The atomic formulas of L2

A have one of the forms s = t, s ≤ t, t ∈ X , where s and
t are terms and X is a second-order variable. We usually write X(t) instead of
t ∈ X . Formulas are built from atomic formulas using the propositional connec-
tives ∧,∨,¬, the first-order quantifiers ∀x, ∃x and the second-order quantifiers
∀X, ∃X .

Bounded first-order quantifiers get their usual meaning: ∀x ≤ tφ stands for
∀x(x ≤ t → φ) and ∃x ≤ tφ stands for ∃x(x ≤ t ∧ φ). Second-order quantified
variables are strings of bounded length; the notation ∃Z ≤ b corresponds to
∃Z |Z| ≤ b.

Definition 5. ΣB
0 and ΠB

0 both denote the class of bounded formulas with no
second-order quantifiers. We define inductively ΣB

i+1 as the least class of for-
mulas containing ΠB

i and closed under disjunction, conjunction, and bounded
existential second-order quantification. The class ΠB

i+1 is defined dually. We use
notation ΣB

0 (Φ) to refer to the closure of Φ under first-order operations: that is,
under ∨,∧,¬ and bounded first-order ∀ and ∃.
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3.1 Translation

Let Φ be a descriptive logic over a vocabulary τ . For every φ ∈ Φ, we can define
a translation φ∗ into L2

A with the following properties:

1. Every interpreted symbol from τ that occurs in L2
A gets the standard inter-

pretation, e.g., successor becomes +1, min becomes 0, etc.
2. Translate max as n for a free variable n. For every quantified first-order

variable, set n+1 (more generally, a polynomial of n) as a bound. Note that
then |X | = n+ 1 for a unary second-order predicate.

3. Translate uninterpreted relational symbols of τ occurring in φ as free second-
order variables of φ∗. If a variable is k-ary, use a pairing function to encode
the relational symbol as a unary second-order variable. Then any occurrence
of R(x1, . . . , xk) becomes R∗(〈x1, . . . , xk〉), where 〈x1, . . . , xk〉 is a value ob-
tained by applying the pairing function to x1, . . . , xk.

Under this translation, a restricted second-order formula becomes a restricted
ΣB

1 formula with the same restriction on the quantifier-free part. The resulting
Φ∗ represents in the standard model the same complexity class as is captured
by Φ in the descriptive complexity setting.

Table 1. The 2-BASIC axioms

B1: x + 1 �= 0 B2: x + 1 = y + 1 → x = y B4: x + (y + 1) = (x + y) + 1
B3: x + 0 = x B5: x · 0 = 0 B6: x · (y + 1) = (x · y) + x

B7: 0 ≤ x B9: x ≤ y ∧ y ≤ z → x ≤ z B10: (x ≤ y ∧ y ≤ x) → x = y
B8: x ≤ x + y B11: x ≤ y ∨ y ≤ x B12: x ≤ y ↔ x < y + 1

L1: X(y) → y < |X| L2: y + 1 = |X| → X(y) B13: x �= 0 → ∃y(y + 1 = x)

3.2 Systems of Bounded Arithmetic

Now, for a set of formulas Φ, a system V -Φ is axiomatized by 2-BASIC axioms
listed in table above together with a comprehension scheme of the form

∃Z ≤ b∀i < b(Z(i) ↔ φ(i, ā, X̄)), (Φ-comp)

where φ ∈ Φ.
To agree with the common notation, we abbreviate V -ΣB

i as V i, i ≥ 0.
These theories are axiomatized by the 2-BASIC together with a comprehension
scheme for ΣB

i formulas. For i ≥ 1, V i is equivalent to the first-order theory Si
2

by RSUV isomorphism [21, 25]. The system V 0 corresponds to the complexity
class uniform AC0.

4 Definability in V -Φ

4.1 Basic Properties of V 0 and V -Φ

The system V 0 is robust enough to prove many natural properties. In particular,
induction on the length of string (and thus on ΣB

0 combinations of Φ) is a
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theorem of V -Φ extending V 0. Also, V 0 proves properties of the pairing function
and simultaneous comprehension over several variables, resulting in an array (so
several existential second-order quantifiers can be treated as one). We use P [b]

to denote the “b-th row” when P is being used as a 2-dimensional array. If φ(P )
is a formula with no occurrence of |P |, then φ(P [b]) is obtained from φ(P ) by
replacing every atomic formula P (t) by P (b, t).

The following property, Replacement, plays a major role in our definability
proofs. It is a theorem for V 1 and stronger theories, however weaker theories do
not prove full ΣB

1 replacement under cryptographic assumptions by [10]. For our
purpose it is sufficient to prove it for restricted ΣB

1 formulas.

Lemma 1 (Replacement). Let Φ be a class of restricted ΣB
1 formulas. Then

for every formula ∃P̄ φ(y, P̄ ) ∈ Φ, where φ can have additional free variables,
V -Φ proves

∀y < t∃P̄ φ(y, P̄ ) ↔ ∃P̄∀y < tφ(y, P̄ [y]) (Replacement)

where P̄ [y] is P [y]
1 , ..., P

[y]
k .

Proof. The proof is a generalization of a proof of Replacement in [8]. Here we are
using the lack of existential first-order quantifiers and closure under conjunctions
of the quantifier-free parts of Φ-formulas.

4.2 Function Classes

Complexity classes are defined as classes of relations. This is also the interpre-
tation for the descriptive complexity setting. But in bounded arithmetic the
measure of the power of a theory is the complexity of the corresponding func-
tions. So we use relations as graphs to define number functions and as bit graphs
to define string functions. The following definition is very general, but sometimes
does not produce a robust function class: for example, there is nothing in this
definition that would force the functions to be closed under composition. In order
to make the function classes defined this way meaningful, we will need additional
restrictions.

Definition 6. Let C be a complexity class. We define the corresponding class
FC of functions of C as follows: A string function F : N

k × ({0, 1}∗)l → {0, 1}∗
is in FC iff there is a relation R in C and a polynomial p such that F (x̄, Ȳ )(i) ↔
i < p(x̄, |Ȳ |)∧R(i, x̄, Ȳ ) for all i ∈ N. A number function f(x̄, Ȳ ) is in the class
FC if there is a string function in F (x̄, Ȳ ) ∈ FC such that f(x̄, Ȳ ) = |F (x̄, Ȳ )|.
If formula class Φ represents C, then R can be replaced by a formula φ ∈ Φ
representing R.

For string functions, we are only concerned with the bits with indices smaller
than p(x̄, Ȳ ). Therefore, a string corresponding to the value of a function will
be of length less than p(x̄, Ȳ ). In particular, by the length axioms, all bits with
indices larger than p(x̄, Ȳ ) are 0.
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This definition of FC does not directly impose any “robustness” conditions
such as closure under function composition. To allow for that, we define an AC0

closure of FC as follows.

Definition 7. A (string) function F (x̄, Ȳ ) is AC0 reducible to a set of function
symbols L (denoted F ∈ AC0(L)) iff there is a sequence F1 . . . Fn of string func-
tions such that Fn = F and Fi is in ΣB

0 (L ∪ {F1 . . . Fi−1}) for i = 1, . . . , n. If
for any F ∈ AC0(L), F ∈ L we say that L is closed under AC0 reductions.

In case FC is definable by formulas from Φ, the definition naturally general-
izes to AC0(Φ).

Definition 8. A relation R(x̄, Ȳ ) is ∆B
1 -definable in V -Φ iff there exist formulas

φ, φ̃ ∈ ΣB
1 such that R(x̄, Ȳ ) is represented by φ(x̄, Ȳ ) and V -Φ � φ(x̄, Ȳ ) ↔

¬φ̃(x̄, Ȳ ). A string function F is ΣB
1 -definable in V -Φ if it has a defining axiom

Z = F (x̄, Ȳ ) ↔ φ(Z, x̄, Ȳ )), with φ ∈ ΣB
1 such that V -Φ � ∀x̄∀Ȳ ∃!Zφ(Z, x̄, Ȳ )).

By the second-order version of Parikh’s theorem (see [6]), we can use ΣB
1 -

definability and Σ1-definability interchangeably. Also, ∆B
1 -definable relations

and ΣB
1 -definable boolean functions are the same (consider characteristic func-

tions of predicates).
Using definition 8, we can state the definition of “capture” in the bounded

arithmetic setting. This gives us a way of measuring the power of a system of
arithmetic.

Definition 9 (Capture in bounded arithmetic). A system of arithmetic
T captures a complexity class C if the class of ΣB

1 -definable functions of T is
exactly FC. That is, FC is the class of functions representable by ΣB

1 formulas
that are provably total in T .

Note that this is quite different from the descriptive complexity notion of
“capture” from definition 1: descriptive complexity “captures” is bounded arith-
metic “representable”. The reason we are using the same word is that in both
cases we are relating a logic (system of arithmetic) and a complexity class; “cap-
ture” here is a generic name for such a connection.

4.3 Properties

The first property that we consider is (provable) closure under AC0 reductions.
We emphasize the provability part here: in the previous work, e.g., by Clote and
Takeuti [2], the fact that the classes in question were closed under complemen-
tation was used but not proven within the system.

Property 1 (Closure). Let Φ represent a complexity class C and let FC be as in
definition 6. Then the closure property holds if Φ is closed under AC0 reductions.
In particular, FC is closed under composition and substitution of a term for a
variable. In addition, Φ is strongly closed if for every φ∗ ∈ ΣB

0 (Φ) there exists
φ ∈ Φ such that V -Φ � φ∗ ↔ φ.
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If this property holds, the corresponding C must be closed under comple-
mentation and Φ extends ΣB

0 (that is, defines all of first-order). For some Φ,
notably restricted ΣB

1 , it is not syntactically true that ΣB
0 ⊆ Φ, but it can be

proved that for any ΣB
0 formula there is an equivalent formula of Φ.

In order for a logic to translate into a “nice” system of arithmetic, the logic
has to be in some sense “natural”. That is, its properties such as closure under
composition and complementation have to be provable using only simple con-
cepts. Moreover, it should be easy to verify whether a given formula holds on a
structure. More formally, we need the following property:

Property 2 (Constructiveness). Let Φ be a class of restricted ΣB
1 formulas,

and let Φ represent C. This Φ has the constructiveness property if the following
two conditions hold. Firstly, every φ ∈ Φ defines a relationR that is∆B

1 -definable
in V -Φ, with φ being its ΣB

1 definition. Secondly, there are witnessing functions
F̄ with bit graphs in ΣB

0 (Φ) such that F̄ (ā, Ȳ ) witness the existential quantifiers
of the prenex form of φ ∨ φ̃.

If, additionally, Φ is strongly closed, that is, has property 1, then the conclu-
sion of the constructiveness property can be stated simpler as follows.

Property 2’ (Strong constructiveness) For every φ ≡ ∃P̄ψ(P̄ , ā, Ȳ ) ∈ Φ such
that V -Φ � φ there are functions F̄ witnessing P̄ such that bitgraphs of F̄ are
in Φ.

It is enough to consider φ-theorems of V -Φ because if Φ is closed, then φ̃ ∈ Φ
and so is φ∨ φ̃. Also, the assumption that bitgraphs of F̄ are in ΣB

0 (Φ) becomes
bitgraphs ∈ Φ.

Sometimes we use the term “weak constructiveness” to refer to the original
constructiveness property, and “strong constructiveness” for the second version.

4.4 Main Results

Now we are ready to state the main theorem of this paper.

Theorem 1 (Definability theorem). Suppose that Φ is restricted ΣB
1 or ΣB

0 ,
constructive, and represents a complexity class C. Then all functions from FC
are ΣB

1 -definable in V -Φ and all ΣB
1 -definable functions of V -Φ are in AC0(FC).

Suppose, additionally, that Φ is strongly closed. In this case, the class of
ΣB

1 -definable functions of V -Φ coincides with FC provably in V -Φ.

We will refer to the first statement as “weak definability” and the second state-
ment as “strong definability”.

The proof of this theorem consists of two parts. The part that FC is ΣB
1 -

definable in V -Φ follows by the fact that we have comprehension for ΣB
0 (Φ)-

formulas, which gives us replacement for both φ and its ΣB
1 negation.

The second part, which we call the generalized witnessing theorem, is used to
show that the class of witnessing functions for φ-formulas is AC0(FC).
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Theorem 2 (Generalized witnessing theorem). Let Φ be a class of re-
stricted ΣB

1 formulas representing C. Suppose that Φ is constructive. Then ΣB
1 -

theorems of V -Φ can be witnessed by functions from AC0(FC) provably in V -Φ.
That is, if V -Φ � ∃Zφ(x̄, Ȳ , Z), where φ ∈ ΣB

1 , then there is a string function
F (x̄, Ȳ ) in AC0(FC) such that

V -Φ,AX(F ) � φ(x̄, Ȳ , F (x̄, Ȳ )),

where AX(F ) is a defining axiom for F . If Φ is strongly closed and constructive,
then V -Φ proves that the defining axiom for F is equivalent to a formula from
Φ.

The witnessing theorem looks similar to the constructiveness property, but
they talk about different classes of formulas. Whereas constructiveness is con-
cerned with witnessing an existential quantifier in a φ ∈ Φ (or finding a coun-
terexample to φ), the witnessing theorem describes the power of a system in
terms of the strength of ΣB

1 -theorems that the system in question can prove.
The theorem 2 is a generalization of the witnessing theorem for V 0 as pre-

sented in [6] (hence the name “Generalized witnessing”). The proof uses proof-
theoretic techniques. Taking a ΣB

1 theorem of V -Φ, we analyze its anchored
proof in a second-order version of quantified Gentzen calculus LK2 and prove,
by induction on the structure of the proof, that in every line existential quanti-
fiers can be witnessed by the functions of given complexity. To ensure that every
line in the proof has only ΣB

1 formulas, we replace the comprehension axiom
of V -Φ by a statement of the form ∃Z < t∀i ≤ t(φ(i) ∧ Z(i)) ∨ (φ̃(i) ∧ ¬Z(i)),
φ ∈ Φ, where φ̃ is a ΣB

1 formula equivalent to the negation of φ, provided by
the constructiveness property. This gives us the base case (witnessing for the
axioms). The witnesses in the rest of the cases are AC0 combinations of witnesses
in the previous steps.

Note that if the conditions do not hold, then the class of witnessing functions
can be smaller than representable by formulas in the comprehension axiom. An
example of that is the theory V 1, with comprehension over NP predicates. By
the second-order version of Buss’ witnessing theorem [6, 26], the class of ΣB

1 -
definable functions of V 1 is P. But not every ΣB

1 formula is ∆B
1 -definable in V 1.

Moreover, even if NP = coNP and for every ΣB
1 formula there is an equivalent ΠB

1

formula, it might not be the case that these equivalences are provable in V 1.

5 Applications of the Definability Theorem

In this section we restate several previously known capture results in our frame-
work. Three such examples when the strong case of Theorem 1 applies are V 0

itself, V1-Horn and V -Krom. Below, we show that these theories are built on
classes of formulas satisfying our two properties.

Example 1([5, 6, 26]) Functions bit-definable by ΣB
0 formulas in V 0 are AC0

functions, and ΣB
0 formulas correspond to the first-order logic which captures

AC0 in the descriptive sense ([1]). The constructiveness property is satisfied triv-
ially, since ΣB

0 is closed under complementation syntactically and there are no
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quantifiers to witness. It was shown in [5, 26] that AC0 functions are closed under
composition and thus under AC0 reductions. Therefore, theorem 1 applies, so the
class of ΣB

1 -definable functions of V 0 is FAC0.
Example 2 ([7, 8]) The class of ΣB

1 -Horn formulas comes from SO∃-Horn
formulas capturing P in the descriptive setting. The resulting system V1-Horn
defines polynomial-time functions by ΣB

1 -Horn formulas, and is equivalent in
power to Zambella’s P-def (and thus PV ). In this case, the properties hold with
Φ = ΣB

1 -Horn and FC = FP . So by the definability theorem ΣB
1 -definable

functions of V1-Horn are precisely polynomial-time functions. The bulk of work
is a formalization of the satisfiability algorithm for propositional Horn formulas,
which is needed already to prove closure ofΣB

1 -Horn formulas under complemen-
tation. This algorithm is constructive: a satisfying assignment (or, equivalently,
values for quantified second-order variables) is obtained as part of the algorithm
(the value T [a] in the description of Run). This gives the constructiveness prop-
erty.

Example 3([9]) Now take the class of ΣB
1 -Krom formulas, a translated ver-

sion of Grädel’s SO∃-Krom (second-order 2CNF). It is possible to formalize
Immerman-Szelepcsényi’s proof of closure of NL under complementation in the
resulting theory V -Krom ([9]). Also, proving that transitive closure function is
ΣB

1 -definable in V -Krom results in a proof of constructiveness for V -Krom: val-
ues for quantified second-order variables are expressed as ΣB

0 combination of
transitive closure function calls.

The next example, a system of arithmetic for SL, presents a case when we were
not able to prove the strong version of the properties; this led to the formulation
of the weaker properties.

6 Weak Case of the Definability Theorem

A class of ΣB
1 -SymKrom formulas is very similar to ΣB

1 -Krom, except it is based
on symmetric 2CNF (that is, 2CNF with XOR instead of disjunctions). From
the same Grädel’s paper as before, [14], we know that SO∃-SymKrom captures
SL. We define V -SymKrom to be V -Φ with Φ ≡ ΣB

1 -SymKrom.
It seems that showing that a system V -SymKrom would capture FSL should

be straightforward. However, the methods used to prove closure of SL under
complementation (Nisan and Ta-Shma, [20]), and, recently, that SL = L (Rein-
gold, [22]) use properties of expander graphs and rely on algebraic methods for
the proofs. But those are not known to be formalizable in less complexity than
P. By Reingold’s result, the class of ΣB

1 -definable functions of V -SymKrom is
thus all logspace functions, but this is not known to be provable in V -SymKrom
itself, as opposed to the cases of AC0, NL and P. It might still be possible that
such a theory for SL is not fully conservative over a theory for L.

6.1 Symmetric Transitive Closure

To simplify proofs, we introduce symmetric transitive closure operator by the
following axiom:
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STCx,yφ(x, y, ā, Ȳ )[a, b, n] ↔ ∀R(CondS(φ,R, n) → R(a, b)), (AxSTC)

where

CondS(φ,R, n) ≡ ∀x, y, z < n(R(x, x) ∧ (φ(x, y) → (R(y, z) ↔ R(x, z))))

Note that if φ is quantifier-free except for bounded existential first-order
quantifiers, then the negation of the STCx,yφ(x, y)[a, b, n] defining axiom is
equivalent to a ΣB

1 -SymKrom formula. Therefore, V -SymKrom proves induc-
tion on ΣB

0 combinations of STC functions.
By the same reasoning as for V -Krom in [9], STC defined in this manner

is reflexive, transitive and robust against adding an edge on the left versus on
the right (that is, conditions with φ(x, y) → (R(x, z) ↔ R(y, z)) and φ(y, z) →
(R(x, z) ↔ R(x, y)) are equivalent). It is also provable in V -SymKrom that STC
is symmetric: STC(a, b, n) ↔ STC(b, a, n).

To see that V 0 ⊂ V -SymKrom, we encode a first-order formula as a graph and
apply the STC operator to it. A first-order existential quantifier in ∃z < nψ(z)
is simulated by STC applied to the graph with an edge relation defined by
E(x, y) ↔ ¬ψ(x) ∧ y = x + 1. That is, a graph is a path from vertex 0 to
vertex n with every edge (z, z+ 1) labeled ¬ψ(z); if ψ(z) holds for some z0 then
the edge (z0, z0 + 1) is absent so the start of the path and the end of it are
disconnected. Similarly, a first-order universal quantifier is encoded by a graph
with E(x, y) such that E(s, u) ↔ E(u, t) ↔ ¬ψ(u). This construction is applied
for every block ∃z < n∀u < nψ(z, u): such block is encoded as a path with every
edge replaced by a “nested diamonds” gadget encoding a universal quantifier. A
vertex 〈n, n〉 is reachable from the vertex 〈0, 0〉 iff ∃z < n∀u < nψ(z, u) holds.

Now we need to show the weak constructiveness property. First, we show
how to witness formulas from ΣB

1 -SymKrom using ΣB
0 (STC). Second, we give

a ΣB
1 predicate equivalent to the negation of STC and show how to witness it:

since the value of every formula can be expressed using STC, this is sufficient
for ∆B

1 -definability of ΣB
1 -SymKrom.

6.2 Constructing a Witness for a ΣB
1 -SymKrom Formula

Given a ΣB
1 -SymKrom formula φ∗ ≡ ∃P∀x̄ < n̄ψ(P, x̄), we create a formula

φ′(u, s, v, s′) encoding the structure of ψ; this encoding is similar to the en-
coding used in [9] for ΣB

1 -Krom formulas. For every clause, φ′(u, s, v, s′) says
that P -literals contain terms evaluating to u and v, with s and s′ being 0 if
the literal is negated and 1 otherwise. A propositional version of the formula is
satisfiable if the corresponding graph is bipartite, that is, ∃R∀u, v < b∀s, s′ <
2(φ′(u, s, v, s′) → ¬R(u, s) ↔ R(v, s′)). Now, to use STC to test bipartiteness
we use the standard technique of “doubling” the graph, with every vertex hav-
ing “even” and “odd” version and every edge connecting the literals on opposite
sides. There is an odd cycle in the original graph (and thus the formula evalu-
ates to false) iff there is a path from a vertex on one side to the same numbered
vertex on the other; this can be expressed using STC. From the witness to the
negation of STC we construct a value for P (all literals on the same side as the
constant � are set to true).
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6.3 ∆B
1 -Definability of STC

Saying that a pair (a, b) is in the symmetric transitive closure of a graph is
equivalent to the statement that b is reachable from a in an undirected graph.
The following ΣB

0 predicate ReachCond(R,E, n + 1, a) states that R(x, i) is
true iff x is at most distance i from a:

∀x ≤ n∀i ≤ n(R(x, 0) ↔ x = a)∧
(R(x, i+ 1) ↔ (∃y ≤ nR(y, i) ∧ (E(y, x) ∨ y = x)))

Let φ be a formula defining an edge relation of a graph. Let

UDistφ(x, y, d) ≡ STC(u,c),(v,c′)α[(x, 0), (y, d), (n, n)],

where α(u, c, v, c′) ≡ (c′ = c+ 1 ∧ (φ(u, v) ∨ u = v)). For simplicity, we assume
that φ is represented by the corresponding graph E, and write UDist(x, y, d) in
that case. Then, R(x, i) ≡ UDist(a, x, i) satisfies ∃RReachCond(R,E, n+1, a),
and V -SymKrom � STC(a, b, n) ↔ ∃RReachCond(R,E, n+ 1, a) ∧R(b, n).

Now, we showed that the weak constructiveness property holds. Therefore,
every SL function is ΣB

1 -definable in V -SymKrom and every ΣB
1 -definable func-

tion of V -SymKrom is in AC0(FSL) provably in V -SymKrom. We know that
AC0(FSL) = FL, that is every AC0(SL) function is already computable in logspace,
but this is not known to be provable in V -SymKrom. Also, just like V -Krom,
V -SymKrom is finitely axiomatizable by finite set of axioms of V 0 together with
comprehension over ¬AxSTC.

7 Conclusion

In this work we present a general framework for constructing systems of arith-
metic with predefined power based on descriptive complexity results. The setback
is that whereas for capture results in the descriptive complexity setting it is suf-
ficient to have “some” proof of capture, in our bounded arithmetic framework we
need an “easy” proof of capture, getting in return a “provable” capture result.
It is interesting to see in which cases the complexity classes behave nicely, like
P or NL, and in which cases, like SL, the proofs use concepts not (known to be)
formalizable within the class itself.

A general witnessing theorem applying to slightly different types of theories
was presented recently by Cook and Nguyen [19]. Their framework applies to
theories equivalent to universal theories. They have a large number of applica-
tions, including different theories for NL, SL and P. However, they do not talk
about provable capture.

Yet another property, uniqueness, that can be used instead of constructive-
ness was suggested to me by Sam Buss. This property states that for every
formula from Φ there is an equivalent ΣB

1 formula with at most one witness to
the quantifiers. The uniqueness property immediately implies constructiveness.

In general, it is interesting to explore the “robustness” of complexity classes
such as provability of their properties. We hope that our framework provides a
natural setting for such study.
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