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After many years of effort, the main questions of complexity theory remain
unresolved, even though the concepts involved are simple. Understanding the
main idea behind the statement of the “P vs NP” problem does not require
much background (“is it easier to check answers than to produce them?”). Yet,
we are as far from resolving it as ever. Much work has been done to unravel
the intricate structure in the complexity world, the “complexity zoo” contains
hosts of inhabitants. But the main questions are still elusive.

So a natural question comes to mind: is there any intrinsic reason why this
is still unknown? Is there any rationale why the proofs are out of our reach?
Maybe we are not using the right techniques – or maybe we are not pushing
our techniques far enough? After trying to prove a statement and failing we try
to prove its negation; after failing at that, as well, we resort to looking for an
explanation that might give us a hint at why our attempts are failing. Indeed,
in the world of computational complexity there have been several results of this
nature: results that state that current techniques are, in a precise mathematical
sense, insufficient to resolve the main open problems. We call these results
“barriers”.

A pessimistic view of the barrier results would be that the questions are hard,
intrinsically hard. But there is a more optimistic way of interpreting them. The
fact that certain classes of proof techniques, ones that have specific properties,
are eliminated gives us a direction to search for new techniques. It gives us a
method for discovering ways of approaching questions in places where we might
not have been looking, if not for the barrier results.

In this paper, we will focus on three major complexity barriers: Relativiza-
tion [BGS75], Algebrization [AW09], and Natural Proofs [RR97]. Interestingly
enough, all three of those can be recast in the framework of independence of a
theory of logic. That is, theories can be constructed which formalize (almost) all
known techniques, yet for which the main open questions of complexity theory
are independent.

1 Introduction

Complexity theory evolved from computability theory by restricting the notions
of computable to computable efficiently. The main objects of complexity the-
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ory can be viewed as “scaled down” versions of basic objects of computability
theory; here, “scaling down” amounts to limiting computational resources, such
as bounding quantifiers to make quantified objects “small” and requiring all
computation to be “efficient”.

There are problems which are known to be decidable (that is, there is an
algorithm producing a definite answer for every input), but for which the time
to compute the answers is immense, exceeding the number of atoms in the
universe even for relatively small inputs. Here we assume the customary way
of measuring the computational complexity of a problem as a function of the
input size. To make the notion of “computable” more realistic, it is natural to
put a bound on the computational resources allotted to compute the answer:
time for how long the computation is allowed to run (treated here as the length
of the computation, that is, the number of steps of the algorithm), or amount of
memory the algorithm is allowed to use. We bound the running time (memory)
on all possible inputs of a given length, which is the worst-case complexity
measure.

Intuitively, checking whether an input string is a palindrome is a simpler
problem than deciding whether the input is a true statement of Presburger
arithmetic, though the latter also has an algorithm producing an answer for
every input. And in general, a scaled-down version of a problem of finding a so-
lution out of infinitely many possibilities (i.e., finding an accepting computation
of a Turing machine) can be formulated as finding a small solution (comparable
to the size of the input) significantly faster than by brute-force search over all
small answers.

1.1 The early history of efficient time-bounded computa-
tion

What would be a reasonable bound on the length of computation which would
make it “efficient”? In his 1956 letter to von Neumann1, Gödel asks whether
there is an algorithm that, given an n-bit long encoding of a formula, can find a
a short proof in k ·n or k ·n2 steps, where k is a number (providing the k ·n as a
lower bound on such computation); thus, here, “efficient” is kn or kn2. There is
a problem though with defining “efficient” as linear (or quadratic) in the length
of the input: it is too model-dependent. For example, any single-tape Turing
machine needs roughly n2 time to decide if an n-bit string is a palindrome,
whereas there is a two-tape Turing machine which accomplishes this task in
about 2n time.

A few more papers in the early 1960s deal with the notions of efficient
computation and computational difficulty of problems. Hartmanis and Stearns
[HS64, HS65] introduced time and space complexity classes and proved, using
computability-theoretic techniques, that giving a Turing machine more time
or space allows it to solve more problems (when time and space bounds are

1This letter, though it outlines many of the central concepts of complexity theory, was only
rediscovered in 1988, well after these concepts were defined independently
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computable functions). Edmonds [Edm65] discusses the notion of efficient algo-
rithms in the paper where he provides a better than brute-force search algorithm
for finding a maximum matching in a general graph. And in his talk at the In-
ternational Congress on Logic Methodology and Philosophy of Science in 1964,
Cobham [Cob64] formulates the notion of efficient computation that became the
standard in complexity theory: the number of steps of a computation should be
bounded by some fixed polynomial function of the length of an input. There,
Cobham also presents a recursion-theoretic characterization of polynomial time
which we will discuss at greater length later in this paper.2

As the class of recursive (decidable) languages scales down to the class
of polynomial-time computable languages (which we will denote P), the re-
cursively enumerable (semi-decidable) languages become NP, non-deterministic
polynomial-time computable languages. That is, this is a class of languages such
that for every string in the language there is a certificate (of size at most poly-
nomial in the length of the input), which can be verified by a (polynomial-time)
computable predicate. Rather than asking for an existence of a finite computa-
tion that can be computably verified, we ask for an existence of a polynomial-
length witness which can be checked in time polynomial in the length n of the
input string. Note that there are only exponentially many strings of length
polynomial in n, so finding such a witness is always computable in exponential
time (EXP): just try all possible small witnesses and see if one of them works.

Is trying all possible witnesses necessary, or is it always possible to do signifi-
cantly better? This question is sometimes referred to as the problem of avoiding
exhaustive search, also known as a “perebor problem” (проблема перебора) in
Russian-language literature. This question was formalized as the “P vs. NP”
question in the seminal papers of Stephen Cook [Coo71] in which the notion of
NP-completeness was first presented; independently, very similar notions have
been formulated by Leonid Levin [Lev73]. Unlikely as it seems, this question
is wide open: though we know from the Hartmanis-Stearns paper [HS65] that
P ( EXP, that is there are languages computable in exponential time, but not
in polynomial time, and that P ⊆ NP ⊆ EXP, we are still not able to rule out
either of these two inclusions being equalities.

1.2 Bounding other resources

There are many more beasts of the complexity zoo roaming in this range between
P and EXP. Probably the most notable one is PSPACE, the class of languages
computable by algorithms using only the amount of memory polynomial in the
size of the input. The canonical complete problem for this class is True Quan-
tified Boolean Formulae (TQBF) with arbitrary nesting depth of quantifiers; a
number of other PSPACE-complete problems ask if there is a winning strategy

2This paragraph is by no means intended to give a full history of development of these
concepts. There are numerous books and surveys that address this question much better.
My main goal is to give a quick introduction to how complexity classes came from the cor-
responding classes in computability theory, and motivate why we focus on polynomial-time
computation.
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in a two-player game: there, the alternating quantifiers code alternating moves
by the two players.

Naturally, P ⊆ PSPACE, since even visiting a different memory location at
every time step there are only polynomially many locations that can be touched.
Similarly, NP ⊆ PSPACE: just notice that the algorithm that checks all possible
witnesses can be implemented with only the polynomial amount of memory:
each check takes polynomial time (and thus polynomial space), and the counter
to keep track of the witnesses is bounded by the length of the largest witness.
Also, PSPACE ⊆ EXP, since for a given language L and its input, there are ex-
ponentially many possible configurations (say, of the tape of a Turing machine
deciding this language with polynomial amount of space). Then the question of
whether this Turing machine accepts becomes a reachability question: is there a
path from the start configuration to some accepting configuration in the configu-
ration graph of this computation, where there is an edge from one configuration
to another if the latter can be obtained from the former by a single transition.
Since reachability for polynomial-size graphs can be tested in polynomial time
using numerous algorithms starting from depth first search/breadth first search,
reachability for exponential-size graphs such as this configuration graph can be
decided in exponential time. Note that his also works for non-deterministic
setting, when there are multiple possible transitions out of a given configura-
tion, so even for non-deterministic polynomial-space computable languages can
be computed in EXP. It turns out that for polynomial space non-determinism
does not help: a classic result of Savich [Sav70] shows that non-deterministic
polynomial-space computation can be simulated by a deterministic computation
with only polynomial overhead. Thus, P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP,
where only the first and last class are known to be distinct.

2 The first barrier: Relativization

Hartmanis and Stearns [HS64, HS65] were the first to define a notion of a com-
plexity class (as a class of recursive sequences computable by a multi-tape Turing
machine within a specified time bound given as a function of the input size).
With this definition, they show that such complexity classes form a strict hier-
archy: given more time, Turing machines can compute more complex languages.
The main tools they use are the familiar methods from computability theory:
simulation and diagonalization. Essentially, they show how, given a computable
function T (n), to construct a language computable in time (T (n))2 which differs
from any language computable in time T (n). The quadratic time bound was
later improved to T (n) log T (n) by Hennie and Stearns [HS66]; subsequently,
hierarchy theorems were proven for non-deterministic computation [Coo72] and
space complexity [SHLI65].

The proofs of these hierarchy theorems, as is usually the case with proofs
based on diagonalization, have a property which makes the results stronger:
they are insensitive to the presence of oracles. More precisely, an “oracle”, in-
troduced by Turing [Tur39], is just a language and an oracle Turing machine for
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a given oracle can query whether a given string is in the language in constant
(unit) time. This immediately allows oracle Turing machines to compute incom-
putable languages by taking the language in question as an oracle (e.g., oracle
Turing machines can decide Halting problem by a single query to the language
of all positive instances of the Halting problem). Thus, any language can be
decided by a Turing machine with an oracle to this language, trivially. However,
there is no language powerful enough so that with this language as an oracle
Turing machines can decide everything. And the proof of this is the same as the
standard diagonalization proof of existence of undecidable languages: the list of
Turing machines all with an access to the same oracle is countable. Therefore,
replacing the list of all Turing machines with the list of all Turing machines
with an oracle A does not change the proof. We will call proofs which have this
property, insensitivity to the presence of oracles, relativizable.

Hartmanis-Stearns proof of the hierarchy theorem uses just the diagonaliza-
tion and so is relativizable. Given an oracle, there is a hierarchy of time and
space complexity classes with respect to this oracle. However, when types of
resources are mixed, the situation gets more complicated, leading to the first
barrier that we will consider, the relativization barrier.

2.1 Relativization: The Baker, Gill, and Solovay theorem

If there is a purely diagonalization-based proof of P 6= NP, then this proof should
be insensitive to the presence of oracles. So, P with an oracle A (denoted PA)
should be not equal to NPA for any oracle A. However, Baker, Gill and Solovay
in their 1975 paper presented oracles A and B such that with respect to A,
P = NP, and with respect to B, P 6= NP.3 Thus, in particular, neither proof
of P = NP or of P 6= NP can be done using relativizing techniques such as
diagonalization.

The first oracle, A, for which PA = NPA is chosen to be a language powerful
enough that it can be used to solve problems in both P and NP, and in a class
with good closure properties. In particular, A can be any language that is
complete for PSPACE. It is possible to decide languages in NPA in NPSPACE by
simulating all polynomially-many queries in PSPACE for each non-deterministic
branch of computation. Note that, since PSPACE = NPSPACE by Savitch’s
theorem, NPA is already in PSPACE. Finally, PSPACE ⊆ PA, as every language
in PSPACE can be decided by a reduction to A (in polynomial time) by definition
of its completeness. Therefore, PA = NPA.

The oracle B for which P and NP are separate is constructed in [BGS75]
using diagonalization ideas. Consider, for a given set B, a language L(B) which
contains all strings of a given length if there is a string of that length in B, and
no strings of that length otherwise (that is, L(B) = {x|∃y ∈ B (|x| = |y|)}.
This language is in NPB , because it is possible, given x, to check if any y of

3According to Baker, Gill and Solovay, an oracle for which P = NP was independently
constructed by Meyer and Fischer, and also by H.B Hunt III, however they did not use the
oracle described here. For P 6= NP, they attribute some constructions to Ladner, and some
again to Meyer/Fischer.
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the same length is in B, checking one such y on any computation path. The
interesting part is to construct B such that L(B) /∈ PB .

The set of strings which could potentially be in the oracle is divided into
blocks by size, where each block is designed to fool the ith polynomial-time
Turing machine Mi. Consider the behaviour of Mi on the string 0n, for n
exponentially increasing at each step and such that 2n is larger than the limit
on Mi’s running time. If Mi accepts 0n, then ith block will contain no strings
(so for all x such that |x| = n, x /∈ L(B), yet Mi accepts 0n) . Otherwise,
it will contain one string, which is the smallest string of length n not queried
by Mi on 0n; it exists because 2n is larger than Mi’s running time. Since Mi

does not query this string, its presence or absence in B will not affect Mi not
accepting 0n. But if Mi were deciding L(B), it would have to accept all strings
of length n, including 0n. Finally, because each n is chosen to be exponentially
larger than the n from the previous stage, but all Mj run in polynomial time,
no previous Mj can query strings of length n, so adding strings of length n does
not change their behavior.

In the same paper, Baker, Gill and Solovay construct a number of oracles
corresponding to various scenarios of relationships between these classes. Is NP
closed under complementation, when it is not P? For both there is an oracle
with respect to which this scenario is true. If not, then is P the subset of NP
closed under intersection? Again, for either of them an oracle world making it
true can be constructed. A number of results followed showing that for a vast
majority of complexity questions there are contrary relativizations: existence of
one-way functions, power of probabilistic algorithms (BPP vs. P), interactive
games (IP vs. PSPACE), etc.

This surprising result can be immediately recast to show, for example, that
with respect to some oracle C, PC vs NPC is independent of the axioms of ZFC
(or other axiomatizable consistent formal theories). More specifically, Hartma-
nis and Hopcroft [HH76] construct a recursive set C using the [BGS75] oracles
A and B as follows. Let C be the language L(M) of a Turing machine M which

accepts x if either there exists a proof of PL(M) = NPL(M) among the first x
proofs in the theory and x ∈ B, or a proof of PL(M) 6= NPL(M) among the first
x proofs in the theory and x ∈ A. The existence of such M comes from the
recursion theorem. Let C = L(M). But now C is essentially A, except for the
finite part, if there is a proof of PC 6= NPC , and essentially B if there is a proof
of PC = NPC , contradicting the [BGS75] theorem that the opposite is true for
oracles A and B.

2.2 Polynomial time as a black box: The recursion-theoretic
definition

Hartmanis and Hopcroft use results from [BGS75] to define a complexity-theoretic
problem independent of Zermelo-Fraenkel set theory. A different logic question
that the relativization barrier inspires is whether it itself can be restated as an
independence result. It does have a similar flavour: no technique with a certain
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property can be used to resolve questions. Thus, intuitively, a theory formal-
izing the reasoning having this property would only prove relativizing results,
and all non-relativizing results would be independent from it. This intuition
has been made precise in the unpublished manuscript4 by Arora, Impagliazzo
and Vazirani [AIV92].

But which property would such a theory formalize? One way to summarize
the techniques that give relativizing results is to say that they treat compu-
tation as a black box. Such techniques rely on the closure properties of the
corresponding classes of functions, and on properties such as the existence of a
universal function for a class (useful for simulation). However, they do not con-
sider the inner workings of a model of computation such as a Turing machine:
in most such results, a Turing machine can be readily replaced with a Random
Access Machine or a recursion-theoretic characterization of the corresponding
function class. Consider, for example, the difference between lambda calculus
and the Turing machine models. In the former framework, the only information
about the functions is their recursive definition. So they are, computationally,
black boxes. There is no extra information. But in the Turing machine compu-
tation, there is a lot of additional information: for example, subsequent steps
of computation only affect a small number of adjacent cells, etc.

So, a theory formalizing only relativizing techniques can be based on rea-
soning that only works with some generic recursion-theoretic definition of a
class of functions in a complexity class. And in [AIV92] Arora, Impagliazzo
and Vazirani explored that idea building upon Cobham’s [Cob64] definition of
polynomial time computable functions.

Definition 2.1. Let FP ′ be a class of functions satisfying the following prop-
erties:

1. FP ′ contains basic functions:5 constants, addition, subtraction, length
|x|, BIT (x, j), projections, multiplication and the “smash” function 2|x|

2

.

2. FP ′ is closed under function composition f ◦ g and pairing 〈f(x), g(x)〉 of
functions.

3. FP ′ is closed under the limited recursion on notation: for functions g, h0, h1 ∈
FP ′ and constants c, d

f(x, 0) = g(x) (1)

f(x, 2k) = h0(x, k, f(x, k)) f(x, 2k + 1) = h1(x, k, f(x, k)) (2)

|f(x, k)| ≤ c|x|d (3)

4This paper has never been published, although it is mentioned in a number of published
works. The standard graduate complexity theory textbook by Arora and Barak [AB09] de-
votes a page to it, Fortnow discusses it in his 1994 [For94] paper. Most publications on the
algebrization barrier, including [AW09], reference [AIV92] and the follow-up paper [IKK09]
relies heavily on the results of [AIV92] to formalize algebrization; it is mentioned in a number
of other publications by Aaronson. Sometimes, this manuscript is dated 1993, and/or cited
with a title “On the role of the Cook-Levin theorem in complexity theory”.

5In fact, successors s0, s1 and smash are sufficient.
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Here, c|x|d provides a polynomial bound on the length of the output of
f(x, k), to avoid e.g. using repeated squaring to define exponentiation. In this
case, we use a true polynomial bound rather than a function from FP ′.

Cobham’s celebrated result states that the class FP of polynomial-time com-
putable functions is the minimal class FP ′ satisfying the definition 2.1. But
what can be said about classes FP ′ satisfying these axioms which are not min-
imal? Such classes might contain, in additional to polynomial time functions,
spurious functions of arbitrary complexity and their closure under polynomial-
time operations. This already becomes reminiscent of the idea of an oracle:
indeed, adding a characteristic function of an oracle to FP and closing under
the operations (composition, pairing, limited recursion on notation) gives an
FP ′ satisfying the definition.

Suppose now that FP ′ is a class satisfying the definition. Can it be viewed as
FPO for some oracle O? First of all, if the spurious functions produce huge (non-
polynomial length) output, then they would not fit into the oracle framework:
an oracle polynomial time Turing machine gets one bit of information from each
query to the oracle, and has only a polynomial in input length amount of time
to write its answer on the tape. But what if every function in FP ′ produces an
output of polynomial length, in the same manner as the output of the function
in the limited recursion on notation is polynomially bounded? Then, an oracle
can be constructed with the use of one more device: a universal function for
FP ′. This universal function U(i, t, x) is defined to compute fi(x) within the
time bound t, for every fi ∈ FP ′. Note that without the time bound there is
no universal function for FP that would be in FP , even for the actual class of
polynomial time computable functions: there is no specific polynomial that can
bound the running time of every polynomial-time function by the time hierarchy
theorem. However, for every polynomial-time function there is a bound 2|x|

c

for
some constant c depending on the function which would allow the universal
function to be computed within the time polynomial in its parameters. Now,
provided U(i, t, x) is in FP ′ and is a universal function for FP ′, an oracle O
that on a query (i, t, x, j) outputs the jth bit of U(i, t, x) is sufficient to compute
all functions in FP ′ in FPO.

2.3 Relativization as independence: The Arora, Impagli-
azzo and Vazirani [AIV92] framework

Let T be a theory (for example, the Peano Arithmetic). Rather than reasoning
about the actual polynomial-time functions in T , we would like to reason about
functions in FP ′ given by the recursive definition above: this will be essentially
the only information about these functions given to the theory. The question
now becomes: what kind of results can be proven in T given only this limited
information about FP ′? It does not matter too much what is the reasoning
power of T itself: we can take T to be as powerful as needed to formalize
combinatorial arguments a proof might require. The main restriction is the
black-box view of FP ′ functions.

More precisely, define RCT (for “relativized complexity theory”) to be T
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(Peano Arithmetic) augmented with function symbols f1, f2, . . . satisfying the
axioms from definition 2.1, together with two more axioms discussed above, one
bounding the length of FP ′ functions and another giving the existence of a
universal function for FP ′.

∀f ∈ FP ′∃c, d∀x |f(x)| ≤ c|x|d (Axiom Length)

∃U ∈ FP ′∀f ∈ FP ′∃i, c∀x f(x) = U(i, 2|x|
c

, x) (Axiom U)

The resulting theory can be viewed as a two-sorted theory, with a number
sort and a function sort. Functions here are defined over integers; multiple
arguments can be represented using pairing. The notation f(x) is a shortcut for
Apply(f, x); the latter notation allows for the theory to remain first-order with
the introduction of the function symbols.

Recall that a standard model of a theory of arithmetic interprets number
variables as natural numbers, and function and relation symbols as functions and
relations over natural numbers, with symbols such as +, ×, 0 getting their usual
meaning. A standard model of RCT can be fully described by interpretations of
all symbols in T together with interpretations of all fi ∈ FP ′. Thus, interpreting
Peano Arithmetic symbols in the usual manner, a standard model of RCT can
be viewed as a set of interpretations of functions in FP ′. This, together with
the discussion above, gives the following correspondence: any standard model
with FP ′ a set of additional functions satisfies RCT if an only if there is a set
O ⊂ N such that FP ′ = FPO.

For the proof, it is enough to consider the same arguments as above for en-
coding “spurious functions” as an oracle by O(i, t, x, j) = jth bit of U(i, t, x) for
one direction, and adding a characteristic function of O as a “spurious function”
to FP to obtain FP ′ as the closure for the other.

In this framework, the results from [BGS75] become statements about in-
dependence: there exist two models of RCT , corresponding to FPA and FPB ,
which give contrary relativizations of the P vs NP question. On the other hand,
by assumption about the power of the underlying theory, proofs of theorems
such as Hartmanis/Stearns hierarchy theorem [HS65] are formalizable in RCT .

3 Non-relativizing results and the next barrier

The result of Baker, Gill, and Solovay [BGS75] shows that we cannot rely on
the simulation and diagonalization techniques alone to resolve major complexity
questions. But what other options are there? What other techniques can be
used that avoid this barrier? Intuitively, these have to be techniques that look
at the computation more closely than in the black-box way. Techniques that
analyse intrinsic properties of computation of specific computational models.
Thus, the choice of the computational model will matter for approaching these
problems.

Already Stockmeyer [Sto74] talked about the significance of a representation
of a machine model for complexity theoretic results. The question of convenience
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of various representations for complexity results, even as a difference between
different ways to write a configuration of a Turing machine, has been studied
on its own, in particular in [vEB12].

After [BGS75] appeared, a targeted search for non-relativizing results en-
sued. But even before, there were results in complexity theory that avoided
the relativization barrier, the prime example being the Cook-Levin theorem. A
number of important non-relativizing results came in the early 1990s, mainly
in the setting of computation recast as “proof checking”, including the IP =
PSPACE proof of [LFKN92, Sha92] (especially surprising since even with re-
spect to a random oracle, IP 6= PSPACE with probability 1 [CCG+94]) and the
PCP theorem [AS98, ALM+98].

3.1 Interactive proof systems

Both the IP = PSPACE and the PCP theorem view, though in a somewhat
different manner, solving a decision problem as a dialogue between a resource-
bounded verifier and a powerful prover. In that setting, NP can be viewed as a
class of problems where it is possible to verify in polynomial time that a given
proof (i.e., a solution) is correct; for an input not in the language, no alleged
proof will pass the scrutiny of the verifier. Interactive proofs generalize this
in two ways. First, they allow for multiple rounds of interaction, with verifier
asking the prover for more and more answers to its questions. Alone, this
generalization does not give extra power: the resulting class of problems is still
NP, as the whole protocol of the interaction, being of polynomial length, can
serve as a proof. More importantly, the verifier is allowed to use randomness,
but then it may make mistakes. However, as long as the probability of the
verifier making a mistake is less than 1/3, we consider the interaction to be
successful.

Definition 3.1. A language L is in the class IP if there exists a verifier such
that, on every input x,

• if x ∈ L, then there is a prover (interaction strategy) that can convince
the verifier with probability > 2/3 (over verifier’s randomness)

• if x /∈ L, no prover can convince the verifier that it is in the language with
probability > 1/3.

Here, the constant 1/3 is not essential: any 1/2− ε would do, for ε within an
inverse polynomial of the length of the input; the reason being that repeating the
protocol with a different choice of randomness decreases the error probability.

A classic example of a problem with a natural interactive proof protocol
is graph (non)isomorphism: checking whether two graphs are the same up to
permutation of vertices. In graph non-isomorphism problem, the input consists
of encodings of two graphs G1, G2, and the algorithm should accept if G1 and
G2 are not isomorphic. This problem is not known to be in P, but neither it is
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believed to be NP-complete6. To see that its complement, graph isomorphism,
is in NP, note that giving a permutation of vertices of G1 that makes it G2 is
sufficient for the certificate, with the verifier checking that all the edges now
match. Now, suppose the verifier randomly picks one of G1, G2, permutes its
vertices to obtain a new graph G3, and then sends G3 to the prover, asking to
identify whether G3 is a permuted version of G1 or of G2. The protocol, due to
[GMW91], is described below; there, r denotes verifier’s random bits.

V erifier(r,G1, G2) Prover(G1, G2)

Pick i1 ∈ {1, 2} randomly

Permute Gi1 to get G3

G3−−−−−−−−−→
find j1 such that Gj1

∼= G3

j1←−−−−−−−−
if j1 6= i1 reject

else pick i2 ∈ {1, 2}
compute G4

∼= Gi2
G4−−−−−−−−−→

find j2 such that Gj2
∼= G4

j2←−−−−−−−−
if j2 6= i2 reject

else accept

If the two graphs are isomorphic, then G3 could have come from either of
them, so there is 1/2 chance that the prover answers correctly. However if G1

and G2 were different, then, being computationally powerful, the prover can
say with certainty which of G1, G2 the verifier picked. Thus, if the graphs are
non-isomorphic, the prover answers correctly with probability 1, and if they
are isomorphic, with probability 1/2. Now, as 1/2 is not good enough for our
definition of IP, suppose the verifier repeats this procedure by picking a graph
and permuting the vertices twice with independent randomness. This creates
two graphs G3 and G4, and the verifier then asks the prover for the origin of
each. If G1, G2 are isomorphic, then the probability that the prover is correct
in both cases is only 1/4. Note that here it is not necessary to use multiple
rounds of interaction: even though the verifier can ask about G3, receive the
answer, and then ask about G4, it is just as easy to send G3 and G4 to the
prover simultaneously.

6The recent breakthrough result by Babai[Bab16] puts Graph Isomorphism in quasi-
polynomial time (i.e., time npoly log(n)), which is tantalizingly close to polynomial time.
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Interactive proofs can be simulated in PSPACE: since each interaction pro-
tocol is of polynomial length, it is possible to go over all such protocols for a
given input x and a given verifier, and find the answers given by the best prover.
With those, it is possible to count in PSPACE the fraction of random strings
for which the verifier accepts or rejects.

3.2 Power of IP in oracle worlds

The main non-relativizing result that we will discuss is IP = PSPACE. However,
there are oracles (and in fact, nearly all oracles are such) for which the inclusion
of IP in PSPACE is strict. The construction of the first such oracle goes back
to Fortnow and Sipser [FS88]; they present an oracle C with respect to which
there is a language in coNP (the class of languages with complements in NP).
but not in IP. Guided by this result, they conjecture that IP does not contain
coNP, and that proving such a result would require non-relativizing techniques
as with respect to the oracle A for which PA = NPA, IP contains coNP since it
contains P. The IP = PSPACE result shows that this intuition was misleading,
as PSPACE is believed to be so much more powerful than coNP, containing all
of polynomial-time hierarchy and more.

The idea behind Fortnow/Sipser’s oracle construction is similar to the con-
struction of the oracle B from [BGS75], for which PB 6= NPB . As for B,
the oracle C is constructed using diagonalization ideas. A language L(C)
will contain all strings 1n for which all strings of length n are in C, that is,
L(C) = {1n | ∀x, |x| = n, x ∈ C}. It is easy to see that this language is in
coNPC , as it is enough to ask the oracle for all strings of length n, and accept
if all answers are “yes”. Now, as for the construction of B from [BGS75], the
oracle C is constructed in blocks, where the ith block is constructed to fool the
ith potential verifier Vi. Assume that the running time of Vi is within ni for all
i; then Vi cannot ask queries longer than ni. Let Ni be the length on which Vi
will be forced to accept or reject incorrectly with probability higher than 2/3
(there, Ni should be large enough so that N i−1

i−1 < Ni, and 2Ni > 3N i
i ).

First, put into C all strings that Vi asks the oracle about. If there are no
provers that make Vi accept 1Ni with probability at least 2/3, then put all the
remaining strings of length Ni into C, in which case 1Ni ∈ L(C) and Vi cannot
be convinced of that. As well, put into C all strings Vi would ever ask about
for any other provers, other than ones considered in previous blocks.

Now, suppose that there is a prover P that will make Vi accept 1Ni with
probability at least 2/3. One cannot guarantee that there is a string of length
Ni that has not been queried by Vi for any choice of Vi’s random bits; however,
one can argue that a string x that is queried the least appears in less than
1/3 possible computation paths, as Ni was chosen to be such that 2Ni > 3N i

i .
Remove x from C; this will be the only string queried by Vi over all possible
interactions with P that is not in C. Now, even if querying this string makes Vi
reject, it will affect less than 1/3 of possible computation paths of Vi on 1Ni . So
Vi will still accept 1Ni with probability greater than 1/3, completing the proof.

Even though there is an oracle with respect to which IP is quite weak, one
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could say that this is an outlier, and maybe in general the power of IP with
respect to an arbitrarily picked oracle will be more in sync with its power in the
real world. This intuition, that behaviour with respect to a random oracle was
indicative of the situation in the real world, became known as the random oracle
hypothesis, following the result from Bennett and Gill [BG81] that PA 6= NPA

with probability 1 over oracles A. There, a random oracle is constructed by
putting each string x in the oracle with probability 1/2. However, a 1994 paper
by Chang, Chor, Goldreich, Hartmanis, H̊astad, Ranjan and Rohatgi, titled
“Random oracle hypothesis is false” [CCG+94], shows that with respect to a
randomly chosen oracle A, coNPA ( IPA, and so the behavior of IPC for the
oracle C of [FS88] is typical rather than exceptional.

3.3 Arithmetization

Many of these new non-relativizing results rely on a technique called arithme-
tization. In arithmetization, a Boolean formula is interpreted as a polynomial,
which for 0/1 values of variables (corresponding to false/true in the Boolean
case) evaluates to 0 or 1. However, one can evaluate this polynomial on any
integers or elements of a given finite field, and obtain a host of values giving
more information about the structure of the formula. More precisely, to convert
a Boolean formula such as (x̄∨y)∧z to a polynomial, the conjunction ∧ is inter-
preted as multiplication, and negation x̄ as (1− x). Then, (x ∨ y) is converted,
as (x̄ ∧ ȳ), to 1 − (1 − x)(1 − y) = x + y − x · y . So the formula (x̄ ∨ y) ∧ z
becomes a three-variate polynomial (1−x · (1− y)) · z. It can be checked that a
formula resulting from this transformation indeed evaluates to 0/1 values when
inputs are 0s and 1s, and it evaluates to 1 exactly when the original formula is
true.

Arithmetization is a powerful algorithmic technique: for example, if the
resulting polynomial is multilinear (that is, no variable occurs with a degree
more than 1), then counting the fraction of assignments of this formula that
are satisfying can be done by evaluating this polynomial with every variable
set to 1/2 [JKRS09]. In converting a formula to a polynomial, though, both ∧
and ∨ translations involve multiplication; thus, resulting polynomials, though of
polynomial degree and described by polynomial-size circuits, are quite unlikely
to be multilinear. One can always create a multilinear polynomial of a formula
by taking a sum over terms corresponding to each satisfying assignment or
taking a Fourier representation, but such a sum is likely to have more than a
polynomial number of coefficients.

3.4 IP protocol for counting satisfying assignments

In general, counting the number of satisfying assignments is believed to be a
harder problem than determining whether a formula is satisfiable. In fact, this
problem (and, equivalently, computing the Permanent of a Boolean matrix) is at
least as hard as any other problem in the polynomial time hierarchy. The latter
is the celebrated theorem by Toda [Tod91]; see[For09] for a short proof. The
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problem of counting the number of satisfying assignments, sometimes referred
to as #SAT , is in PSPACE and the technique for proving that it can be done
using interactive proofs is very similar, except for a few details, to proving IP =
PSPACE. Historically, this was one of the results leading the proof that IP =
PSPACE; a quite entertaining account of the history of this result is presented
in Babai’s “E-mail and the unexpected power of interaction” [Bab90].

Theorem 3.2 ([LFKN92]). #SAT ∈ IP.

Proof. To simplify the notation, let us use a decision version #SATD of #SAT ,
where, given a formula φ and a number K, the goal is to check whether K
is the number of satisfying assignments of φ. To show that #SATD is in the
class IP of problems that have interactive proofs we will explicitly exhibit an
interactive proof protocol for it. That is, we will describe which protocol the
verifier should follow to check if an alleged proof presented by the prover is
correct; if presented with a correct proof in the format it expects, the verifier
will accept with probability 1, and for any incorrect proof, it will reject with
probability significantly higher than 2/3.

The number of satisfying assignments of a formula φ(x1, . . . , xn) is equal
to the sum, over all possible assignments, of the polynomial p(x1, . . . , xn) ob-
tained by arithmetizing φ. Thus computing the number of satisfying assign-
ments amounts to computing∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn).

For example, if the original formula is φ = (x1∨¬x2), then the resulting polyno-
mial is 1− (1−x1)x2 = 1−x2 +x1x2, and the number of satisfying assignments
of φ is ∑

x1∈{0,1}

∑
x2∈{0,1}

1− x2 + x1x2 = 3.

The first key idea of the protocol is checking the value of the sum one variable
at a time: setting

p1(x1) =
∑

x2∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn),

if p1 is correct then it is sufficient to compute p1(0)+p1(1) to obtain the answer.
The second idea is recursing on evaluating the sum with a random number
inserted in place of x1. More specifically, the protocol proceeds as follows.

1. Verifier asks for the coefficients of the univariate polynomial

p1(x1) =
∑

x2∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn).

2. Prover sends the (alleged) coefficients of c1,0, . . . c1,m of p1 to the Verifier.
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3. Verifier checks that K = p1(0) + p1(1). If not, it rejects as it knows that
the prover must have been lying.

4. Verifier picks a random number 0 ≤ a1 ≤ 2n and sends it to the Prover.

5. Now, repeat the following from i = 2 to i = n, or until the Verifier rejects.

(a) Prover sends the alleged coefficients of

pi(xi) =
∑

xi+1∈{0,1}

· · ·
∑

xn∈{0,1}

p(a1, . . . , ai−1, xi, . . . , xn).

Note that pi is a univariate polynomial in xi.

(b) Verifier checks that pi−1(ai−1) = pi(0) + pi(1). If not, reject.

(c) Verifier picks a random 0 ≤ ai ≤ 2n and sends it to the prover.

6. Prover sends the alleged number c = p(a1, . . . , an)

7. Verifier checks that p(a1, . . . , an) = c. If not, reject. If so, then the verifier
concludes that K is indeed the correct number of assignments of φ.

As an example, suppose that φ = (x1 ∨ ¬x2), with K = 3 assignments, and
p(x1, x2) = 1−x2 +x1x2. Here, p1(x1) = 1+x1, and so the correct prover sends
back c0 = 1, c1 = 1. Now, the verifier checks that p1(0) + p1(1) = 1 + 2 = 3;
this check passes. Then the verifier picks a number a1; for example, a1 = 6,
and sends that to the prover. The prover now has to compute the coefficients
of p2(x2) = 1 + 5x2 and send them to the verifier. The verifier checks that
p1(6) = p2(0) + p2(1) = 7. It then picks another number, say a2 = 4, and sends
it to the prover. The prover then computes p(a1, a2) = 21, and sends 21 to the
verifier. Now, the verifier checks that p(a1, a2) = 21, and concludes that 3 is
indeed the number of the satisfying assignments to φ.

If the prover always produces the correct coefficients and K is the correct
number of assignments, then it is clear that the verifier will accept. To show that
the probability of accepting an incorrect value is small, note that two distinct
univariate polynomials of degree d + 1 may agree on at most d values of the
variable, and the probability of randomly picking one of these d values is at
most d/2n. This is the probability that any check pi−1(ai−1) = pi(0) + pi(1)
passes incorrectly. Thus, if K is wrong, then the probability that the verifier
rejects is at least (1− d/2n)n, which is much larger than 2/3.

3.5 IP = PSPACE

A very similar protocol can be used to check whether a quantified Boolean for-
mula Φ = ∀x1∃x2∀x3 . . . Qxnφ(x̄) is true: here, Q is either ∀ or ∃ depending on
n. There, existential quantifiers correspond to a sum, and universal quantifiers
to a product of the values of the arithmetized formula under them. For example,
suppose that Φ = ∀x1∃x2∀x3(x1 ∨¬x2)∧ (¬x1 ∨¬x3). Then the polynomial pφ
for the formula (x1∨¬x2)∧(¬x1∨¬x3) is (1−x2+−x1x2)(1−x1x3). Now, given
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Boolean values for x1 and x2, the formula ∀x3(x1∨¬x2)∧(¬x1∨¬x3) is true when
polynomial pφ(x1, x2, 0) · pφ(x1, x2, 1) = (1−x2 +x1x2)(1−x2 +x1x2) · (1−x1)
is 1; false corresponds to 0. Proceeding in this manner, we obtain an arithmetic
expression which is equal to 1 iff Φ is true, and to 0 iff Φ is false.

Note that the universal quantifier created a product of polynomials, thus
doubling the degree. If there are n universal quantifiers, then the resulting
degree can be exponential in the number of variables, thus the protocol above
would need exponentially many coefficients to describe such a polynomial. To
get around this problem, intermediate polynomials can be converted into a
multilinear form by noticing that

p(x1, . . . , xi−1, xi, xi+1, . . . , xn) =xi · p(x1, . . . , xi−1, 1, xi+1, . . . , xn)+

+(1− xi) · p(x1, . . . , xi−1, 0, xi+1, . . . , xn)

over Boolean values of xi.
With this modification, essentially the same protocol can be used to check if

Φ is true, except the verifier would check if the sum pi−1(ai−1) = pi(0) + pi(1)
is right when xi is existentially quantified, and if the product pi−1(ai−1) =
pi(0)pi(1) is correct for a universally quantified xi.

3.6 Algebrization barrier

Although there were results on the complexity of oracles with respect to which
IP = PSPACE holds soon after the results themselves have been proven (for ex-
ample, [For94]), the barrier itself was defined in 2008 by Aaronson and Wigder-
son [AW09]. There, the main idea was to allow access not just to an oracle
A as a language, but also its algebraic extension Ã: here, Ã is a low-degree
polynomial which agrees with A on Boolean inputs. We view an oracle access
for a formula or a polynomial as having operations of the form A(b1, . . . , bk),
where b1 . . . bk form a query.

Aaronson and Wigderson define an inclusion of complexity classes C1 ⊆ C2

(for example, PSPACEA ⊆ IPÃ) to be algebrizing when CA1 ⊆ CÃ2 no matter
how Ã is chosen, as long as it is a low-degree polynomial extension of A. As
for separations, C1 6⊂ C2 is algebrizing whenever, again for any polynomial

extension Ã, CÃ1 6⊂ CA2 . That is, an inclusion in their setting algebrizes if
C2 can simulate CA1 with a little more powerful access to the oracle A; and a
separation algebrizes if a more powerful access to A for C1 makes it impossible
to simulate C1 in C2 with the conventional access.

With these definitions, they show that algebrization indeed provides a pretty
precise boundary of the current techniques: most known non-relativizing re-
sults algebrize, and most open questions do not. In particular, the proof of

PSPACEA ⊆ IPÃ uses the same protocol as the original proof, with the verifier
relying on the oracle access to Ã to evaluate pφ(a1, . . . , an). However, questions

such as P vs NP do not algebrize: an oracle A and its algebraic extension Ã can

be constructed for which NPÃ ⊆ PA, whereas for a different B with its extension
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B̃, NPB 6⊂ PB̃ . A number of other open questions are similarly non-algebrizing.
The main tool used for proving such independence results is communication
complexity.

But these results need a different kind of oracle on two sides of an inclusion
or a separation. For what kinds of oracles would it be possible to use the same
language as an oracle on both sides? In 1994, Fortnow [For94] showed how to
construct a language that encodes its algebraic extension, and proved that with
respect to these kinds of languages, IP = PSPACE. He constructs such “self-
algebrizing” language inductively. (A multilinear extension of TQBFL gives
another example of a language that encodes its own algebraic structure). Let
L be a language, and let L̃ be the unique multilinear extension of L. Start
by setting A(0, x1, . . . , xn) = L(x1, . . . , xn). Now, if L̃(x1, . . . , xn) > 0, put
(1, x1, . . . , xn) in A. Finally, ∀i ≥ 0, set A(i+ 2, x1, . . . , xn) to be the ith bit of
L̃(x1, . . . , xn). Thus, a value of L̃(x1, . . . , xn) could be obtained by using A as
an oracle.

Though IP = PSPACE with respect to any oracle of this form, it is not
clear whether there are such oracles giving differing outcomes for major open
questions such as P vs NP.

3.7 Axiomatizing algebrization

To create a theory capturing algebrizing techniques, we start with the theory
RCT for relativizing techniques, and use additional axioms to keep only the
standard models with enough algebraic structure [IKK09]. To achieve this goal,
we add an axiom stating that NP is a class of languages that have solutions ver-
ifiable by polynomial-time computable low-degree polynomials in polynomially
many variables. There, the “polynomial-time computable” is in the setting of
RCT , that is, functions definable by Cobham axioms without minimality. We
call the resulting theory ACT , for “algebraic complexity theory”.

Now, the models of ACT can still contain spurious functions interpreted
as polynomial-time, as long as they are closed under polynomial-time opera-
tions. However, now such functions used as polynomial-time verifiers have to be
representable by low-degree polynomials. Alternatively, we can add an axiom
redefining polynomial time, by stating that every polynomial time function has
a unique polynomial-time computable witness.

For example, consider the classic NP-complete problem Independent Set:
given a graph and a number k, check if there are k vertices in the graph such
that there are no edges between any of these k vertices; this set of vertices is an
independent set in the graph. Let input variables xi,j be 1 if there is an edge
between vertices i and j, and be 0 otherwise. Let witness variables yi be 1 iff
vertex i is in the independent set, and 0 otherwise. Now, the polynomial

f(x, y) = Πi,j(xi,j + yi + yj − 3) ·Πt<k(Σni=1yi − t)

will be non-zero if and only if there is an independent set of size at least k in
the graph. There, the first product will be 0 if there is an edge between two
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vertices i, j for which yi = yj = 1, and the second product is 0 if there are only
t < k variables yi that are 1.

This view of computation is less black-box than the original Cobham axioms:
we do require polynomial-time functions to have some structure. However,
there are still abitrarily powerful functions that could show up in models of
ACT . In particular, a characteristic function for any oracle built using Fortnow’s
construction described above, the “self-algebrizing oracles”, would be a function
with respect to which this axiom is satisfied, that is, NP has witnesses definable
by low-degree polynomial-time computable polynomial families.

Now, this theory is clearly more powerful than RCT . It is possible to show
that nearly all results that algebrize in the sense of [AW09] are provable in ACT ,
and open questions that require non-algebrizing techniques are independent
of ACT . In particular, IP = PSPACE is provable in ACT , and P vs NP is
independent of it.

One notable exception is MIP = NEXP by Babai, Fortnow and Lund [BFL91]:
when a randomized polynomial-time verifier is allowed to interact with several
provers that do not talk to each other, it becomes possible to solve not just
PSPACE problems, but ones as hard as non-deterministic exponential time. This
equaity is also independent of ACT , even though Aaronson and Wigderson show
in [AW09] that a version of this statement algebrizes. However, they only allow
a NEXP Turing machine to ask oracle queries of polynomial length, to make
it “more fair” for MIP, where the verifier cannot possibly ask longer queries.
But such a restriction makes NEXPA much too weak [IKK]. Consider an oracle
A = {〈M,x, 1t〉 | M is a non-deterministic Turing machine and MA accepts
x on some path with all oracle queries shorter than t}. With respect to this
oracle, NEXPA = PA when NEXPA is restricted to ask only polynomially long
queries. This goes against the time hierarchy theorem, which relativizes...

This axiomatic approach is one example where considering a complexity
barrier from the logic viewpoint, as an independence of a logic theory, allows for
a more convenient setting. Moreover, with the closure under logic operations it
becomes possible to argue about composite statements such as “BPP = P and
P 6= NP”: this statement is independent of ACT , as well.

4 Efficient reasoning, circuits and natural proofs

4.1 Bounded arithmetic

Before, we talked about creating specific theories of arithmetic to formalize
polynomial-time computation and its relativizations. However, there is an area
of mathematical logic that is specifically developed to study the reasoning cor-
responding to efficient computation, such as reasoning with polynomial-time de-
finable concepts. Starting with Parikh’s [Par71] fragment of Peano Arithmetic
where induction is limited to bounded formulas, followed by Cook’s equational
theory PV [Coo75] and then Buss’ theories [Bus86], bounded arithmetic (term
coined by Buss) became one of the standard ways to work with complexity the-
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ory concepts in the logic framework. By contrast with RCT and ACT described
above, the polynomial time computable objects are now indeed polynomial time,
and, moreover, the reasoning power of bounded arithmetic theories is severely
restricted by allowing only reasoning with such “efficient” concepts.

This is accomplished by restricting, for example, the induction axiom of
Peano Arithmetic to formulas where all quantifiers are bounded by terms in the
language. The resulting theory I∆0 captures the linear-time hierarchy, but a
number of theories with richer language (including x#y = 2|x|·|y|) capture ex-
actly polynomial-time computable functions. Another way is to construct two-
sorted theories operating on strings as well as numbers, and length of strings,
as well as value of numbers, bounded by the term. In this case, there is no need
to introduce # in the language. There is a direct correspondence between these
theories and Buss’ hierarchies via “RSUV isomorphism” [Raz93, Tak93]. One
advantage of such characterization is that “reasoning with concepts from a class
C” is easy to state using finite model theory characterizations of the correspond-
ing class [Kol12, CN08]: for example, induction over Grädel’s second-order Horn
formulas [Grä91] gives a theory of polynomial-time reasoning [CK03].

We will skip the formal definitions; please see Krajicek [Kra95], Buss [Bus86],
Pudlák and Hajek [HP98], and Cook and Nguyen [CN08] for more information.

These theories are too weak to prove the totality of exponentiation, that is,
that for every x there exists y = 2x. And overall, independence results for them
mean “not provable with computationally easy reasoning”. For example, in
Buss’ theory S1

2 which operates with NP-definable predicates and has induction
on the length of a number, any bounded existential statement φ for which S1

2

proves that φ ∈ NP ∩ coNP can be witnessed in polynomial time. This result,
which is known as Buss’ witnessing theorem, immediately implies that S1

2 cannot
prove that P 6= NP ∩ coNP.

So what kinds of results, in particular complexity results, can be proven using
that kind of limited reasoning? It is possible that these theories, or just slight
extension of these, are sufficient to formalize the known complexity results: see,
for example, [Raz95a], Krajicek [Kra95], Cook and Nguyen [CN08] or Pudlák
[Pud13]. Some of the more recent results about provability and unprovability
of complexity-theoretic statements in bounded arithmetic are due to Jerabek
(formalizing probabilistic reasoning and pseudorandomness in an extension of
S1
2 with a dual weak pigeonhole principle) [Jeř04, Jeř07a, Jeř07b, Jeř09]; many

other related results are in the work of Krajicek, Cook, Buss, Razborov, and
others.

One may ask whether independence of P vs. NP from a very strong classical
theory, such as ZFC or Peano arithmetic, is a possibility that should be consid-
ered instead of focusing on these very restrictive theories. A possible reason why
this is quite unlikely is given by Ben-David and Halevi [BDH92]. They show
that if P vs. NP is independent of Peano arithmetic augmented with all Π1

sentences true in the standard model, then NP is “essentially polynomial-time”,
as there exists a deterministic algorithm for SAT that makes few mistakes, with
complexity nf(n) where f(n) is a very slow growing function. An expository
paper by Aaronson [Aar03] contains an excellent discussion of this subject.
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4.2 Circuit lower bounds

The 1990s have seen a flurry of beautiful results in another area of computa-
tional complexity theory: circuit complexity. There, the requirement that there
is a single Turing machine solving a problem for all input lengths in bounded
time is relaxed to consider a family of computational devices solving the prob-
lem, one for each input size, with the sizes of the devices growing only slowly
(polynomially) with the number of input bits. The latter setting is often referred
to as non-uniform. Non-uniformity does make for a much more powerful model:
for example, the unary Halting Problem, asking if the nth Turing machine halts
on blank input, with n encoded in unary or as |x|, is trivially solvable in this
model using only constant size devices.

\/

x1 x2 x3

/\ /\ /\

In particular, devices that we will consider here
are Boolean circuits: acyclic graphs with inputs
as sources, a single output as a sink, and every
node (gate) computing a Boolean function over
values of gates with edges coming into it. In the
most basic case, the Boolean functions at gates
are AND, OR and NOT . For example, this
circuit computes the majority of three bits.

As time and space in the uniform setting, in the circuit setting the main
resources are size (the number of gates) and depth (the length of the longest
path from inputs to the output). A class of languages computed by a family of
polynomial-size circuits is denoted by P/poly; this is a non-uniform analogue of
P. Trivially, P ⊂ P/poly, but whether NP ⊂ P/poly is a major open question: a
negative answer would be a stronger result than P 6= NP.

However, restricting the depth of the circuits to be constant (here, we are
assuming that gates can have arbitrary fan-in) gives a complexity class AC0 for
which the lower bounds are known. In particular, the function PARITY (x),
outputting 1 iff the number of 1s in binary string x is odd, is not AC0-computable
[FSS84, Ajt83, H̊as89]. Even allowing parity or modulo a prime gates to appear
in these circuits results in a class with strong lower bounds. But how complex
is the reasoning needed to prove those statements? And could these techniques
be extended to argue about NP vs. P/poly?

4.3 Natural proofs

These questions fascinated researchers in proof complexity for many years, with
a number of interesting results proven. But focusing on complexity barriers, let
us turn to a series of papers by Razborov [Raz95b, RR97, Raz95a] that have
tried to address these questions, using extensively the framework of bounded
arithmetic. By far the most well-known of them is a pure complexity paper,
though: “Natural proofs” by Razborov and Rudich [RR97]. Introducing the
notion of “natural” proofs, they come to a somewhat discouraging conclusion
that the circuit lower bound proofs known at the time are “natural”, and such
proofs cannot resolve NP vs. P/poly, albeit under a believable cryptographic
conjecture.
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Intuitively, if a proof of a lower bound for a given complexity class is “natu-
ral enough” it would contain an algorithm to distinguish easy problems that are
in this class from hard problems that are not, according to whether a problem
possesses a given “natural” property. Note that, in particular, algorithms from
the class for which there is a natural proof would not be able to generate dis-
tributions of strings computationally indistinguishable from random (uniform).

Definition 4.1. A property (set) F of Boolean functions is natural if it (or its
subset) satisfies three conditions:

1. Usefulness: functions in F are infinitely often not in a complexity class C
(that is, F can be used to prove lower bounds on C).

2. Largeness: A large fraction of all functions are in F .

3. Constructivity : Given a truth table of a function f , it is computationally
easy to check whether f ∈ F . If it can be checked in a class C ′, we say
that a proof is C ′-natural.

For example, the proof that PARITY (x) is not in AC0 ([FSS84]) works
by showing that any function in AC0 becomes constant if enough of its input
variables are set (with high probability over the choice of the subset of variables).
The PARITY (x) function, however, does not become constant even if one bit
is left unset, and thus PARITY (x) /∈ AC0. So the natural property F is that a
function does not become constant under any restriction of large enough fraction
of its input variables. This property is useful against AC0, as functions in AC0 do
not have it. It has largeness by the counting argument (most functions on n−k
variables are not constant). And it has constructivity, even AC0-constructivity:
given a truth table of a function on n variables, which is of length 2n, a depth-3
circuit of size 2O(n) can check whether this truth table satisfies the property:
just consider all possible restrictions of n− k variables (roughly 2O(n) of them),
and check that not all input bits corresponding to this restriction are the same.

Razborov and Rudich proceed to show that a number of circuit lower bounds
proofs are indeed natural. The main result of [RR97] states, though, that there
is no P/poly-natural proof useful against P/poly, provided that there is an expo-
nentially hard pseudo-random generator computable in P/poly. Pseudo-random
generators are functions PRG : {0, 1}k → {0, 1}2k; such a PRG is s-hard if s is
the minimal size of a circuit that can distinguish a random 2k bit string from
the output of a k-bit generator with probability ≥ 1/s. The main idea of the
proof is to use the P/poly-computable check from the constructivity property
to distinguish between the PRG output and the random string for any given
P/poly-computable PRG.

It is believed that PRGs based on factoring or the discrete logarithm problem
(solving bk = g over a finite group) are exponentially hard. With that, Razborov
and Rudich also show unconditionally that there is no P/poly-natural proof that
discrete logarithm problem requires exponential size circuits.
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4.4 Natural proof as independence in bounded arithmetic

The formalization of the notion of natural proofs as independence in bounded
arithmetic was presented by Razborov in [Raz95a]. The theories he considers are
extensions of Buss’ S1

2 ; there are technical details in allowing these theories to
talk about functions. The connection between natural proofs and these theories
is not as tight as for the RCT/ACT, though.

Recall that the language of Buss’ S1
2 is the language of arithmetic plus

x#y = 2|x|·|y|, and it is axiomatized by the basic axioms describing the op-
erators together with induction on the length of the number. The formulas
allowed in the induction are of the form ∃x̄ ≤ t(n)φ(x̄, n), where all quantifiers
in φ are bounded by a term in length of input variables n (“strictly bounded”
quantifiers). Generally, theories Si2 allow up to i alternations of bounded (rather
than strictly bounded) quantifiers in the induction.

In Razborov’s setting, there is a free relational variable γ added to the the-
ories. This variable is interpreted as encoding a Boolean circuit. There are
bounded existential formulas defining various properties of the circuit encoded
by γ: its type, size, function it computes, etc. With an extension of these
definitions, he proves that S2

2(γ) cannot disprove that γ encodes a circuit of
superpolynomial size, under the same assumption as for natural proofs of exis-
tence of strong PRGs. For weaker systems, he proves similar statements under
weaker assumptions, for some even unconditionally. The proofs rely on a com-
munication complexity characterization of the circuit size. However, this is not
quite the same setting as proving lower bounds in S1

2 itself, rather than arguing
about a given circuit γ.

5 Conclusion: avoiding barriers

One can look at complexity barriers from either the pessimistic or the optimistic
viewpoint. A pessimist would say that the results beyond the barriers, non-
relativizing and non-algebrizing results, are intrinsically hard to prove. Surely
it shows just how formidable a problem is when one can prove that “nearly all
current techniques” are inadequate for resolving it. And even though there is
some truth to this viewpoint, and barrier results historically came from trying
to understand the failed attempts to resolve these open problems, there is a
bright side to the barriers.

The optimistic view of the barrier results is finding precise properties of tech-
niques that would make it possible to resolve the open problems. For example,
relativization tells us that it is fruitless to treat computation as a black box,
and representation matters. Algebrization tells us that representing polynomial-
time functions by low-degree polynomials, powerful as it is, is not enough to lead
us all the way to resolving P vs NP. However, they do tell us where to look:
the less “black-box” is our view of computation, the more we can show about
it. Besides, the barriers do not tell us to throw out relativizing and algebrizing
techniques altogether, they just point that any meaningful approach to resolv-
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ing open problems should use at least some non-relativizing and non-algebrizing
component.

And indeed, there are already such components known to us. The MIP =
NEXP result mentioned above does rely on verifying computations by 3CNF
formulas in a different way than just treating these formulas as polynomials. The
PCP theorem, stating that any language in NP has proofs that can be verified
using O(log n) randomness and examining just a constant number of bits of the
proof, uses an especially fine-grained view of a computational process, and is
not algebrizing in the sense of [AW09] nor is provable in ACT .

Besides, proving a relativizing result can be more useful, in a sense that it
automatically generalizes for any oracle. In particular, sometimes it is conve-
nient to consider circuits with SAT or TQBF oracle gates, and any relativizing
result about the respective family of circuits generalizes to the circuits with such
gates.

In the case of natural proofs, we do know the techniques providing proofs
that are not natural, most notably diagonalization and counting arguments.
Moreover, there are results proved using techniques that are avoiding both bar-
riers such as Santhanam’s proof that PromiseMA does not have circuits of size
nk for a fixed k [San07]. And a recent result by Williams [Wil14] that there
are problems in NEXP not solvable by bounded-depth circuits with arbitrary
mod d gates uses both a non-relativizing element and a non-naturalizing element
(diagonalization) to avoid both barriers simultaneously.

Viewing complexity barriers as independence of logic theories allows us to
make precise what exactly the barriers capture. It is a very natural setting, and
a convenient way to specify what exactly is meant by classes of techniques such
as relativizing techniques. Besides, we can always hope that the formidable
machinery of logic will come to our service if only we could phrase the right
questions in the right framework.
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Kraj́ıček, editors, Arithmetic, proof theory and computational com-
plexity, pages 364–386. Clarendon Press, Oxford, 1993.

[Tod91] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy.
SIAM Journal on Computing, 20(5):865–877, 1991.

[Tur39] Alan M. Turing. Systems of logic based on ordinals. Proceedings of
the London Mathematical Society. Second Series, 45:161–228, 1939.

[vEB12] Peter van Emde Boas. Turing machines for dummies - why repre-
sentations do matter. In SOFSEM, pages 14–30, 2012.

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of
the ACM (JACM), 61(1):2, 2014.

28


