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Abstract

We consider the problem of compression for “easy” Boolean functions: given the truth table
of an n-variate Boolean function f computable by some unknown small circuit from a known
class of circuits, find in deterministic time poly(2n) a circuit C (no restriction on the type of C)
computing f so that the size of C is less than the trivial circuit size 2n/n.

We get both positive and negative results. On the positive side, we show that several circuit
classes for which lower bounds are proved by a method of random restrictions:

• AC0,

• (de Morgan) formulas, and

• (read-once) branching programs,

allow non-trivial compression for circuits up to the size for which lower bounds are known. On
the negative side, we show that compressing functions from any class C ⊆ P/poly implies super-
polynomial lower bounds against C for a function in NEXP; we also observe that compressing
monotone functions of polynomial circuit complexity or functions computable by large-size AC0

circuits would also imply new superpolynomial circuit lower bounds.
Finally, we apply the ideas used for compression to get zero-error randomized #SAT-

algorithms for de Morgan and complete-basis formulas, as well as branching programs, on n
variables of about quadratic size that run in expected time 2n/2n

ϵ

, for some ϵ > 0 (dependent
on the size of the formula/branching program).
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1 Introduction

Finding a succinct representation of a given object is an important natural problem studied in
various settings under various names. It is known as data compression in information theory and
engineering, where objects to be compressed could be, e.g., a text file, a photographic image, or a
video file. In computational complexity theory, a related problem is circuit minimization: the goal is
to construct an (approximately) minimal-size Boolean circuit computing a given Boolean function,
where the function is given by its truth table. Finally, in the computational learning theory, the
goal is to learn (construct) a concise representation of a given object, after an interaction with a
teacher who can answer certain types of queries about the object to be learned.

In this paper, we consider the problem of compressing Boolean functions from a given class C of
functions with concise representations (e.g., functions computable by polynomial-size AC0 circuits).
Given the truth table of n-variate Boolean f function from C, we want to find some Boolean circuit
(not necessarily of the type C) computing f such that the size of the circuit is less than 2n/n (which
is the trivial size achievable for any n-variate Boolean function). This is different than C-circuit
minimization considered by [AHM+08] where the task is to construct a small circuit of the type C.
Our setting is closer to that of computational learning theory (non-proper exact learning [Ang87]).

There are two natural parameters to minimize: the size of the found circuit and the running
time of the compression algorithm. Since the algorithm is given the full truth table as input, we
consider it efficient if it runs in time 2O(n) (polynomial in its input size). Ideally, we would like
to find a circuit as small as the promised size of the concise representation of a given function f .
However, any non-trivial savings over the generic 2n/n circuit size [Lup58] are interesting.

The compression task as defined above can be viewed as lossless compression: we want the
compressed image (circuit) to compute the given function exactly. One can also consider the
notion of lossy compression where the task is to find a circuit that only approximates the given
function. This is related to the concept of PAC learning [Val84].

1.1 Motivation

We want to understand “easy” functions so that we can prove lower bounds for “hard” functions.
Understanding to what extent an algorithm for an easy function can be extracted from its truth
table is a natural question. We have a generic circuit construction algorithm due to Lupanov [Lup58]
that for every n-variate Boolean function constructs a Boolean circuit of size at most (1+o(1))·2n/n.
Can we improve upon this size for the truth tables of functions known to have small circuits?

There has been a renewed interest recently in the apparent connection between proofs of cir-
cuit lower bound and various algorithms for circuits from the same class: for example, SAT-
algorithms [Wil11, San10, IMP12, ST12], and pseudorandom generators [IMZ12]. These results
do use ideas from the lower bound proofs, rather than the mere existence of hard functions as in,
e.g., the well-known “hardness vs. randomness” line of research initiated by [BM84, Yao82, NW94].
It is natural to ask whether we can use the known circuit lower-bound proofs to get compression
algorithms for the corresponding circuit classes.

1.2 Our results

We show that, indeed, compression algorithms can be obtained from known lower-bound proofs,
in particular, those proofs that use the method of random restrictions. These include the lower
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bounds for AC0 circuits [FSS84, Yao85, H̊as86], for de Morgan formulas [Sub61, And87, H̊as98], for
branching programs [Nec66], and for read-once branching programs (see, e.g., [ABCR99]).

We show how to compress Boolean functions computable by AC0 circuits, (de Morgan) formulas,
and (read-once) branching programs of size s, where s is essentially the maximal size for which
a circuit lower bound for the corresponding circuit class is known. We have the following (see
Theorems 6–10 below for the exact statements and the proofs):

Compression Theorem. (1) Boolean n-variate functions computed by AC0 circuits of size s and

depth d are compressible in time poly(2n) to circuits of size at most 2n−n/O(log s)d−1
. (2) Boolean

n-variate functions computed by de Morgan formulas of size at most n2.49, by formulas over the
complete basis of size at most n1.99, or by branching programs of size at most n1.99 are compressible
in time poly(2n) to circuits of size at most 2n−nϵ

, for some ϵ > 0 (dependent on the size of the
formula/branching program). (3) Boolean n-variate functions computed by read-once branching
programs of size at most 20.48·n are compressible in time poly(2n) to circuits of size at most 20.99·n.

On the other hand, we show that it may be difficult to compress functions from sufficiently
general circuit classes (see Theorems 11 and 15, and Corollary 14):

Compression “Barrier” Theorem. Compressing Boolean functions from a given class C of
polynomial-size circuits to any circuit size less than 2n/n implies superpolynomial lower bounds
against the class C for a language in NEXP.

This theorem complements a result of Williams [Wil10] which essentially says that deciding
the satisfiability of circuits from a class C in time slightly less than that of the trivial brute-force
SAT-algorithm implies superpolynomial circuit lower bounds against C for a language in NEXP.
Thus, both non-trivial SAT algorithms and non-trivial compression algorithms for a circuit class C
imply superpolynomial lower bounds against that class. While our theorem indicates the difficulty
of obtaining compression algorithms, it may in fact be a way to obtain new circuit lower bounds,
as was demonstrated in the case of SAT algorithms for ACC0 by Williams [Wil11]. Hence, we use
the word “barrier” in quotes.

Finally, while we do not have a formal connection between compression and SAT algorithms,
we do use the same ideas as in our Compression Theorem to get non-trivial #SAT algorithms for
formulas of about quadratic size (see Theorem 16):

#SAT algorithms: Counting the number of satisfying assignments for n-variate de Morgan for-
mulas of size n2.49, formulas over the complete basis of size n1.99, or branching programs of size
n1.99 can be done by a zero-error randomized algorithm in expected time 2n−nϵ

, for some ϵ > 0
(dependent on the size of the formula/branching program).

Note that the running time of our #SAT-algorithm is similar to the compressed circuit size for
formulas given in item (2) of the Compression Theorem. Our algorithm complements an algorithm
for AC0-#SAT of [IMP12] who get the running time similar to the compressed circuit size for
AC0 given in item (1) of the Compression Theorem. Also, our #SAT algorithms are based on
the random-restriction analysis of formulas (also known as shrinkage of formulas), and so they
complement the recent shrinkage-based constructions of pseudorandom generators for formulas
and branching programs due to [IMZ12].
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While there are known non-trivial deterministic Formula-SAT algorithms for de Morgan and
complete-basis formulas [San10, ST12], those algorithms are only for linear -size formulas. Our
#SAT algorithm for small branching programs appears to be new.

1.3 Our techniques

Suppose we are given the truth table of a function f : {0, 1}n → {0, 1} that is computable by a
DNF with t terms. It is well-known that finding a minimum-size DNF computing f is a special
case of the Set Cover problem. A greedy heuristic for Set Cover [Joh74, Lov75, Chv79] applied to
the DNF problem will find a DNF for f on at most O(t · n) terms, in deterministic time poly(2n)
(see Section 3 below for details).

The idea is to try to use a similar Set-Cover approach for compressing other classes of circuits.
The main property used by the greedy Set-Cover heuristic for compressing functions computable
by “small” DNFs is that such a DNF is a disjunction of “not too many” circuits of “small size”
(conjunctions of at most n literals). Each such circuit corresponds to a set in the Set-Cover instance.
The “small size” of the circuits implies that the number of sets (and hence, the total instance size
of the Set-Cover problem) is also “small”. In particular, if each circuit can be described by binary
string of size O(n), we get that the total size of the Set-Cover instance size is at most 2O(n), which
in turn implies that the Set-Cover heuristic will run in time poly(2n).

This suggests that we can use the same greedy algorithm for compressing any n-variate Boolean
function computable as a disjunction of “not too many” circuits of description size O(n) each. In
fact, it is possible to generalize a bit further, and to allow “few” circuits that do not have O(n)
description size (as long as these circuits do not accept too many inputs) (see Theorem 5).

The method of random restrictions (used for proving circuit lower bounds against AC0 and
formulas of almost quadratic size) provides a nice structural characterization of the class of n-
variate Boolean functions f computable by small circuits. Roughly, it implies that the universe
{0, 1}n can be partitioned into “not too many” disjoint regions, such that the restriction of the
original function f to “almost every” region is a “very simple” function [San10, IMP12, KR12].
Thus, f is computable by the disjunction of “not too many” circuits so that “almost all” of them
have small description size. So our generalized greedy heuristic can be applied!

For compression algorithms, we use the “simplicity” of circuits in the disjunction to argue that
they have linear-size descriptions (as required in order to achieve poly(2n) running time). For
#SAT algorithms, we use the “simplicity” of the circuits to argue that there will be few distinct
subfunctions associated with the regions of the partition of {0, 1}n. Once we solve #SAT (using
a brute-force algorithm) for all distinct subfunctions and store the results, we can solve #SAT for
almost all regions by the table look-up, achieving a noticeable speed-up overall.

1.4 Related work

The complexity of circuit minimization was studied in [KC00, AHM+08, Fel09]. In particular,
[AHM+08, Fel09] show that finding an approximately minimal -size DNF for a given truth table
of an n-variate Boolean function is NP-hard, for the approximation factor nγ for some constant
0 < γ < 1.

Compressing Boolean functions is related to the setting exact learning with membership and
equivalence queries [Ang87]. In the learning setting, the size of the hypothesis produced by the
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learning algorithm is upper-bounded by the running time of the algorithm. In our setting, we de-
couple the hypothesis (compressed image) size from the running time of the learning (compression)
algorithm: we allow more running time, but ask for a small-size compression. This enables us to
get a good compression algorithm for small DNFs, whereas learning small DNFs is a challenging
open problem (cf. [KS04]). On the other hand, all positive results in the exact learning framework
yield compression algorithms for the corresponding class of Boolean functions. We can compress,
for example, Boolean functions computable by polynomial-size depth-2 circuits with a Modp output
gate (for a fixed prime p) whose inputs are arbitrary modular gates, or whose inputs are arbitrary
threshold gates [BBTV97].

The remainder of the paper We give basic definitions and state structural results for AC0 and
small formulas in Section 2. In Section 3, we state and analyze the greedy algorithm that we use
for compression. Our compression results are given in Section 4, compression “barrier” results in
Section 5, and #SAT algorithms in Section 6. We state a number of open questions in Section 7.

2 Preliminaries

2.1 Basics

Here we recall some basic definitions of circuit classes considered in our paper; for more background
on circuit complexity, consult any of the following [Weg87, BS90, Juk12].

A literal is either a variable, or the negation of a variable; the sign of the variable is said to
be positive in the first case, and negative otherwise. A DNF is a disjunction of terms, where each
term is a conjunction of literals. The following is a basic fact: For any subset S ⊆ {0, 1}n of size t,
there is a DNF D(x1, . . . , xn) on t terms that evaluates to 1 on each a ∈ S, and is 0 outside of S.

A Boolean circuit on n inputs is a directed acyclic graph with a single node of out-degree 0
(the output gate), and n in-degree 0 nodes (input gates), where each input gate is labeled by one
of the variables x1, . . . , xn, and each non-input gate by a logical function on at most 2 inputs (e.g.,
AND, OR, and NOT). The size of the circuit is the total number of gates; the depth is the length
of a longest path in the circuit from an input gate to the output gate. The class AC0 is a class of
constant-depth circuits with NOT, AND and OR gates, where AND and OR gates have unbounded
fan-in.

For a circuit class C and a size function s(n), we denote by C[s(n)] the class of s(n)-size n-input
circuits of the type C. When no s(n) is explicitly mentioned, it is assumed to be some poly(n).

A Boolean formula F on n input variables x1, . . . , xn is a tree whose root node is the output
gate, and whose leaves are labeled by literals over the variables x1, . . . , xn; all non-input gates are
labeled by logical functions over 2 inputs. The size of the formula F , denoted by L(F ), is the total
number of leaves. A de Morgan formula is a formula where the only logical functions used are AND
and OR.

A branching program F on n input variables x1, . . . , xn is a directed acyclic graph with one
source and two sinks (labeled 0 and 1), where each non-sink node is of out-degree 2 and is labeled
by an input variable xi, 1 6 i 6 n. The two outgoing edges of each non-terminal node are labeled
by 0 and 1. The branching program computes by starting at the source node, and following the
path in the graph using the edges corresponding to the values of the variables queried in the nodes.
The program accepts if it reaches the sink labeled 1, and rejects otherwise. The size of a branching
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program F , denoted by L(F ), is the number of nodes in the underlying graph. A branching program
is (syntactic) read-once if on every path no variable occurs more than once.

A decision tree is a branching program whose underlying graph is a tree; the size of a decision
tree is the number of leaves.

A restriction ρ of the variables x1, . . . , xn is a an assignment of Boolean values to some subset
of the variables; the assigned variables are called set, while the remaining variables are called free.
For a circuit (formula or branching program) F on input variables x1, . . . , xn and a restriction ρ,
we define the restriction F |ρ as the circuit on the free variables of ρ, obtained from F after the set
variables are “hard-wired” and the circuit is simplified.

Given a (bounded fan-in) circuit of size s, we can describe it using O(s log s) bits (by specifying
the gate type and at most two incoming gates for each of the s gates). The same bound is true
also for formulas and branching programs of size s.

2.2 Structure of easy Boolean functions

The following uses the (generalized) Switching Lemma [H̊as86, Raz93, Bea94, IMP12].

Lemma 1 ([IMP12]). Every depth d Boolean circuit C with s gates on n inputs has an equivalent
DNF with at most poly(n) · s · 2n(1−µ) terms, where µ > 1/O(log(s/n) + d log d)d−1.

Inspired by the shrinkage result of [Sub61], Santhanam [San10] obtains the following structural
result for de Morgan formulas of linear size.

Lemma 2 ([San10]). For every constant c > 0, any n-variate Boolean function computed by a
formula of size at most cn has an equivalent DNF with at most 2n(1−µ) terms, where µ > 1/ck for
some absolute constant k > 0 (independent of c).

Komargodski and Raz [KR12] define a randomized algorithm for generating a restriction for
the inputs of a given de Morgan formula F on n variables such that exactly k variables are left
free. The algorithm chooses one variable at a time (either deterministically, or using randomness,
depending on the current restricted formula), sets the chosen variable either 0 or 1 uniformly
at random (independently of the choice of the variable), and continues with the new restricted
formula. For a given formula F on n variables and an integer parameter 1 6 k 6 n, let us denote
by Rk(F ) the resulting distribution over such random restrictions. One of the main technical
results of [KR12] is that a de Morgan formula F shrinks by a factor (k/n)3/2 with high probability
when hit with a random restriction from Rk(F ). A similar statement is true also for formulas over
the general basis and for branching programs1, but with the constant 3/2 replaced by 1. More
precisely, we have the following “high-probability” version of the classical “expected shrinkage”
result of Subbotovskaya [Sub61].

Lemma 3 ([KR12]). There is a constant c > 0 such that for every formula (branching program)
F on n variables, any ϵ > 0, and any integer 1 6 k 6 n,

Pρ

[
L(F |ρ) > c

(
k

n

)Γ

L(F )

]
6 2−k/nϵ

,

1The result for branching programs is implicit in [KR12]; it follows by the same arguments as for formulas over
the complete basis. The only thing required is that the size of an n-variable branching program decreases by the
factor (1 − 1/n) in expectation when a single random variable is set randomly to 0 or 1; this can be shown easily
(using the same argument as for general formulas).
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where a restriction ρ is sampled according to the distribution Rk(F ), and where Γ = 3/2 for the
case of de Morgan formulas, and Γ = 1 for the case of formulas over the complete basis and for the
case of branching programs.

We use this to obtain the following structural characterization of small formulas and branching
programs.

Corollary 4. Let F (x1, . . . , xn) be any formula (branching program) of size O(nd), where the
constant d is such that d < 2.5 for de Morgan formulas, and d < 2 for formulas over the complete
basis and for branching programs. There exist constants 0 < δ, γ < 1 (dependent on d) such that
for k = ⌈nδ⌉ the following holds. The Boolean function computed by F is computable by a decision
tree of depth n− k whose leaves are labeled by the restrictions of F (determined by the path leading

to the leaf) such that all but 2−nδ/2
fraction of the leaf labels are formulas (branching programs) on

k variables of size less than nγ .

Proof. We consider the case of de Morgan formulas only; the case of formulas over the complete
basis or branching programs can be argued analogously. Let d = 2.5 − ν, for some constant
ν > 0. Set δ := ν/4. By Lemma 3 applied to F with ϵ := δ/2, we get that for all but 2−nδ/2

fraction of restrictions ρ from Rk(F ) the restricted formula F |ρ has size less than O(nd/n1.5(1−δ)) =
O(n1−(5/8)ν), which is at most n1−ν/2 for large enough n. Set γ := 1− ν/2.

A random restriction ρ ∈ Rk(F ) depends on the random bits used to choose n−k variables to be
set, as well as on n− k uniformly random bits to assign to the chosen variables. These two strings
of random bits are independent. Therefore, by averaging, there is a fixed choice of randomness
for selecting the variables so that the probability of picking a good restriction (which shrinks the
formula) is at least preserved, where the probability is over the uniformly random bits assigned to

the chosen variables. Thus we get a decision tree of depth n − k such that all but 2−nδ/2
fraction

of its leaves correspond to the restrictions of F (obtained by following the path in the decision tree
to that leaf) of size less than nγ .

3 Greedy Set-Cover heuristic

We first recall a well-known greedy algorithm for the problem of Set Cover [Joh74, Lov75, Chv79].
Let U be a universe, and let S1, . . . , St ⊆ U be subsets. Suppose U can be covered by ℓ of the
subsets. Then the following algorithm will find an approximately minimal set cover.

Repeat the following, until all of U is covered: find a subset Si that covers at least 1/ℓ
fraction of points in U which were not covered before, and add Si to the set cover.

For the analysis, observe that since ℓ subsets cover U , they also cover every subset of U . Hence,
in each iteration of the algorithm, there exists a subset that covers at least 1/ℓ fraction of the not-
yet-covered points. After each iteration, the size of the set of points that are not covered reduces
by the factor (1 − 1/ℓ). Thus, after t iterations, the number of points not yet covered is at most
|U | · (1− 1/ℓ)t 6 |U | · e−t/ℓ, which is less than 1 for t = O(ℓ · ln |U |). Hence, this algorithm finds a
set cover that is at most the factor O(ln |U |) larger than the minimal set cover.

It is easy to adapt the described algorithm to find approximately minimal DNFs. Let f :
{0, 1}n → {0, 1} be given by its truth table. Suppose that there exists a DNF computing f such
that the DNF consists of ℓ terms (conjunctions). With each term a on n variables, we associate the
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set Sa = a−1(1) of points of {0, 1}n where it evaluates to 1. We enumerate over all possible terms
a on n variables, and keep only those sets Sa where Sa ⊆ f−1(1) (i.e., Sa doesn’t cover any zero of
f); note that all ℓ terms of the minimal DNF for f will be kept. Next we run the greedy set cover
algorithm on the universe U = f−1(1) and the collection of sets Sa chosen above. By the analysis
above, we get O(ℓ · log |U |) terms such that their disjunction computes f . That is, we find a DNF
for f of size at most O(n) factor larger than that of the minimal DNF for f .

The running time of the described algorithm is polynomial in 2n and the number of sets Sa.
The latter is the number of all possible terms on n variables, which is at most 22n (we can use an
n-bit string to describe the characteristic functions of a subset of n variables, and another n-bit
string to describe the signs of the chosen variables). Thus, the overall running time is poly(2n).

A similar algorithm works also for a function f : {0, 1}n → {0, 1} computed by a circuit of the
form ∨ℓ

i=1Ci, for ℓ 6 2n, where each circuit Ci(x1, . . . , xn) has a “short” description. In particular,
if each Ci is described by O(n) bits, then we can find in time poly(2n) a collection of at most O(ℓ ·n)
such circuits whose disjunction computes f .

We can generalize the algorithm further to the case where a given n-variate Boolean function f
is computed by a circuit ∨ℓ+1

i=1Ci, for ℓ 6 2n, where all but one circuit are small, while the remaining
circuit accepts few inputs. More precisely, we have the following.

Theorem 5. There is a deterministic poly(2n)-time algorithm A satisfying the following. Let
f : {0, 1}n → {0, 1} be any function computable by a circuit ∨ℓ+1

i=1Ci, for 1 6 ℓ 6 2n, where the
circuits C1, . . . , Cℓ have both circuit size and description size at most cn for a constant c > 0, while
the last circuit Cℓ+1 evaluates to 1 on at most fraction α of points in {0, 1}n, for some 0 6 α < 1.

Given the truth table of f and the parameters ℓ, c, and α, algorithm A finds a circuit for f of the
form ∨m

i=1Di, where m = O(n · ℓ), the circuits D1, . . . , Dm−1 are of size O(n) each, and the circuit
Dm is a DNF with O(α2n) terms. Hence the overall size of the found circuit is O(ℓn2 + αn2n).

Proof. Let U = f−1(1), and let β = |U |/2n. If β 6 2α, then our algorithm A outputs the circuit
which is a DNF with β2n terms, where each term evaluates to 1 on a single point in U , and is 0
everywhere else. Note that the size of this circuit is O(αn2n), as required.

If β > 2α, then algorithm A does the following.

Enumerate2 all linear-size circuits C of description size at most cn, keeping only those
C where C−1(1) ⊆ f−1(1). Call the kept circuits legal. Let S = ∅.

Repeat the following until the number of not-yet-covered points of U becomes at most
2α2n: find a legal circuit C such that the set C−1(1) covers at least 1/(2ℓ) fraction of
not-yet-covered points in U , and add C to the set S.
Once the number of non-covered points in U becomes at most 2α2n, construct a DNF
D that evaluates to 1 on each non-covered point, and is 0 everywhere else. Output the
disjunction of D and the circuits in S.

For the analysis, let W = C−1
ℓ+1(1), and let let V = U \ W . We claim that at each iteration

of the algorithm before the last iteration, the set of not-yet-covered points in V is at least as big
as the set of not-yet-covered points in W . Indeed, otherwise the total number of not-yet-covered
points at that iteration is at most 2 · |W | 6 2α2n, making this the last iteration of the algorithm.

2Here we assume the correspondence between circuits and their descriptions is efficiently computable and is known.
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Next observe that at each iteration before the last one, the set of not-yet-covered points in V
is non-empty, and is covered by ℓ legal circuits. Hence, there is a legal circuit that covers at least
1/ℓ fraction of non-covered points in V , which, by the earlier remark, constitutes at least 1/(2ℓ)
fraction of all non-covered points of U . Thus our algorithm will always find a required legal circuit
C. It follows that after each iteration, the size of not-yet-covered points in U decreases by the
factor (1− 1/(2ℓ)), and hence the total number of iterations is t = O(ℓ · log |U |) = O(ℓ · n).

Thus, after at most t iterations, at most 2α2n points of U are still not covered. We denote the
t found circuits D1, . . . , Dt, and let Dt+1 be the DNF with at most 2α2n terms which evaluates to
1 on the non-covered points of U , and is 0 everywhere else. Note that the circuit size of Dt+1 is
O(αn2n), while all Di’s, for 1 6 i 6 t, are of circuit size O(n) by construction. Also note that the
overall running time of the described algorithm is poly(2n, t) = poly(2n). The theorem follows.

4 Compression

4.1 AC0 functions

As we mentioned in Section 3, a Boolean function f : {0, 1}n → {0, 1} computable by a DNF with
s(n) terms can be efficiently compressed to a DNF with O(n · s(n)) terms. Since Boolean functions
computable by small AC0 circuits can be computed by somewhat small DNFs (of less than the
trivial size) by Lemma 1, we also get non-trivial compression for such AC0 functions. The following
theorem follows easily from Lemma 1 and the greedy algorithm in Theorem 5.

Theorem 6. There is a deterministic poly(2n)-time algorithm A satisfying the following. Let
f : {0, 1}n → {0, 1} be any Boolean function computable by an AC0 circuit of depth d and size
s = s(n). Given the truth table of f as well as the parameters d and s, algorithm A produces a
DNF for f with at most poly(n) · s · 2n(1−µ) terms, where µ > 1/O(log s)d−1.

Note the described algorithm achieves nontrivial compression for depth-d AC0 circuits of size
up to 2n

1/(d−1)
, the size for which we know lower bounds against AC0 for explicit functions.

4.2 Formulas and branching programs

Similarly, using the existence of somewhat small DNFs for linear-size de Morgan formulas stated
in Lemma 2, we get compression of the functions computable by such formulas.

Theorem 7. There is a deterministic poly(2n)-time algorithm A satisfying the following. Let
f : {0, 1}n → {0, 1} be any Boolean function computable by a de Morgan formula of size cn for
some constant c > 0. Given the truth table of f as well as the parameter c, algorithm A produces
a DNF for f with at most O(n) · 2n(1−µ) terms, where µ > 1/ck for some absolute constant k > 0
(independent of c).

Seto and Tamaki [ST12] extended the results of [San10] from linear-size de Morgan formulas
to linear-size formulas over the complete basis. In particular, they show that such formulas can
be computed by a somewhat small decision tree whose nodes are labeled by parities of subsets of
input variables. While we do not know how to use this structural characterization from [ST12] to
get compression for linear-size formulas over the complete basis, we do get compression of both
de Morgan and complete-basis formulas (even of quadratic size) by using the structural charac-
terization of small formulas implicit in the work of Komargodski and Raz [KR12] (cf. Corollary 4
above).
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Theorem 8. There is an efficient compression algorithm that, given the truth table of a formula
(branching program) F on n variables of size L(F ) 6 nd, the algorithm produces an equivalent
Boolean circuit of size at most 2n−nϵ

, for some constant 0 < ϵ < 1 (dependent on d), where the
constant d is such that

• d < 2.5 for de Morgan formulas, and

• d < 2 for formulas over the complete basis and for branching programs.

Proof. Let F be a de Morgan formula, a complete-basis formula, or a branching program of the
size stated in the theorem. By Corollary 4, this F can be computed by a decision tree of depth
m := n − nδ such that all but at most α := 2−nδ/2

fraction of the leaves correspond to restricted
subformulas of F of size nγ on k := nδ variables, for some constants 0 < δ, γ < 1 dependent on d.

Each leaf of the decision tree corresponds to a restriction of some subset of m input variables.
Let us associate with each leaf i, 1 6 i 6 2m, of the decision tree, the conjunction ci of m literals
that defines the corresponding restriction. Also let Fi, for 1 6 i 6 2m, denote the restriction of the
original F corresponding to the restriction given by ci. We get that

F ≡ ∨2m

i=1(ci ∧ Fi).

We know that all but b := α·2m of formulas Fi are sublinear-size n
γ . Let us assume, without loss

of generality, that all the first ℓ := 2m − b formulas Fi are small. Define the circuits Ci := (ci ∧Fi),
for 1 6 i 6 ℓ, and Cℓ+1 := ∨2m

i=ℓ+1(ci ∧ Fi).

Observe that the circuit Cℓ+1 can evaluate to 1 on at most b · 2k = α · 2n inputs from {0, 1}n
(since the decision tree of depth m partitions the set {0, 1}n into 2m disjoint subsets of size 2k

each, and Cℓ+1 corresponds to b such subsets). Each circuit Ci, for 1 6 i 6 ℓ, is of size at most
O(m+nγ) 6 O(n). We also claim that each such circuit can be described by a string of O(n) bits.
Indeed, we can specify the conjunction ci using 2n bits (n bits to describe the subset of variables
in the conjunction, and another n bits to specify the signs of the variables), and we can specify the
formula (branching program) Fi of size n

γ by at most O(nγ log n) 6 O(n) bits in the standard way.
Thus we get that F ≡ ∨ℓ+1

i=1Ci satisfies the assumption of Theorem 5. Running the greedy
algorithm of Theorem 5, we get a circuit for F of total size at most O(ℓn2 + αn2n) 6 poly(n) ·
(2n−nδ

+ 2n−nδ/2
), which is at most 2n−nϵ

for ϵ ≈ δ/2.

4.3 Read-once branching programs

It is convenient for us to use the following canonical form of a read-once branching program. We
call a program full if, for every node v of the program, all paths leading from the start node to v
query the same set of variables (not necessarily in the same order).

Lemma 9. Every read-once branching program F of size s on n inputs has an equivalent full
read-once branching program F ′ of size s′ 6 3n · s.

Proof. Given F , construct F ′ inductively as follows. Consider nodes of F in the topological order
from the start node. The start node obviously satisfies the fullness property. For every node v of
F with distinct predecessor nodes u1, . . . , ut, for t > 2, let Xi denote the set of variables queried
by the paths from start to ui; note that, by the inductive hypothesis, all paths leading to ui query
the same set Xi of variables. Let X = ∪t

i=1Xi. For every i ∈ {1, . . . , t}, let ∆i = X \Xi be the set

9



of “missing” variables. If ∆i ̸= ∅, replace the edge (ui, v) by a multi-path ui, w1, w2, . . . , wr, v, for
r = |∆i|, where wj ’s are new nodes labeled by the “missing” variables from ∆i (in any fixed order),
with the edge (ui, w1) labeled as the edge (ui, v), and each wj has two edges to its successor node
on the path, labeled by 0 and by 1, respectively.

Since our original program is read-once, no variable from the set X for a node v can occur
after v. Thus, adding the queries to the “missing” variables for every predecessor of v preserves
the property of being read-once, and preserves the functionality of the branching program. It also
makes the node v and all of its predecessors satisfy the fullness property. Hence, after considering
all nodes v, we obtain a required full read-once branching program F ′ equivalent to F . The size of
F ′ is at most s+ 2sn since we add at most n dummy nodes for each of at most 2s edges of F .

Theorem 10. There is a deterministic poly(2n)-time algorithm A satisfying the following. Let
f : {0, 1}n → {0, 1} be any Boolean function computable by a read-once branching program of size
s. Given the truth table of f , algorithm A produces a formula for f of size at most O(sn3 · 2n/2).

Proof. By Lemma 9, f is computable by a full read-once branching program F of size s′ = 3sn.
For 0 6 k 6 n to be chosen later, consider the set B of all nodes at distance n − k from the
start node. Clearly, there are at most s′ such nodes. For every such node v, let Xv be the set of
n − k variables queried on every path from the start to v. Let Yv be the remaining k variables.
Associate with v the function hv in the variables Xv computed by the branching subprogram with v
as the new accepting terminal node (and the same start node), and the function gv in the variables
Yv computed by the branching subprogram with v as the new start node (and the same terminal
nodes). We may assume that the functions gv are distinct for distinct nodes in B; otherwise, we
merge all nodes with the same gv (on the same subset of k variables) into a single node. We have

f ≡ ∨v∈B(hv ∧ gv). (1)

Consider any v ∈ B. Let ρ be a restriction of the variables Xv corresponding to some path from
the start to v. We have gv = f |ρ, and hv is the disjunction of all restrictions ρ′ of the variables
Xv such that f |ρ′ = gv = f |ρ. Thus, to describe any disjunct in the representation of f given
by Eq. (1), it suffices to specify a restriction of some subset of n − k variables of f ; this can be
described using O(n) bits.

We now run the greedy Set-Cover heuristic to find at most O(s′n) functions, each describable
by a restriction of some n − k variables as explained above, whose disjunction equals f . For each
restriction ρ specifying one of these functions, the corresponding function can be computed as
an AND of a DNF of size 2k (for the function f |ρ on k variables) and a DNF of size 2n−k (for
all restrictions ρ′ on n − k variables that yield f |ρ′ = f |ρ). The overall circuit size of each of
these O(s′n) functions is then O(n(2k + 2n−k)), and the overall size of the circuit computing f is
O(s′n2(2k + 2n−k)), which is at most O(sn3 · 2n/2), if we set k = n/2. The running time of the
compression algorithm is poly(2n) since we only need to enumerate all O(n)-size descriptions.

5 Circuit lower bounds from compression

It is quite easy to see that compressibility of Boolean functions is a special case of a natural property
in the sense of [RR97]; so the existence of compression algorithms for a circuit class C implies that
there is no strong PRG in C. Here we argue that such compression algorithms would also yield
circuit lower bounds against C for a language in NEXP.
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5.1 Arbitrary subclass of polynomial-size circuits

The following is a refinement of a result in [IKW02].

Theorem 11. Let C ⊆ P/poly be any circuit class. Suppose that for every c ∈ N there is a
deterministic polynomial-time algorithm that compresses a given truth table of an n-variate Boolean
function f ∈ C[nc] to a circuit of size less than 2n/n. Then NEXP ̸⊆ C.

Proof. Suppose, for the sake of contradiction, that NEXP ⊆ C ⊆ P/poly.

Claim 12. If NEXP ⊆ C, then for every L ∈ NEXP there is a c ∈ N such that, for all sufficiently
large n, every n-bit string x ∈ L has a witness computable by an C-circuit of size nc.

Proof. By [IKW02], the assumption NEXP ⊆ P/poly implies that, for every language L ∈ NEXP,
there exists a constant cL ∈ N such that every sufficiently large input x ∈ L has a NEXP-witness that
is the truth table of some Boolean function of circuit complexity ncL . For every L ∈ NTIME(2n

e
),

define a new language L′ ∈ EXP as follows: on inputs x, y, where |x| = n and |y| = ne, search
through the circuits of size ncL until find an NEXP-witness for x ∈ L. If no such witness is found,
then output 0. Otherwise, output the yth bit of the found witness (which is the truth table of a
ncL-size circuit). We get that for every x ∈ L, a string y is such that (x, y) ∈ L′ iff the yth bit of
the lex first witness for x (as found by the algorithm enumerating all ncL size circuits) is 1. Since
EXP ⊆ C, we get that L′ ∈ C. So, every x ∈ L has a witness that is the truth table of Boolean
function computable by a polynomial-size C-circuit.

Consider now a universal language L for NE, with L ∈ NTIME(2n
2
). For NTIME(2cn) for every

c ∈ N, the witness size for inputs of size n is bounded by 2cn 6 2n
2
for large enough n. We think of

witnesses for NE languages (on inputs of size n) as the truth tables of m-variate Boolean functions
for m = n2: such a string of length 2m is a witness iff its prefix of appropriate length is a witness.
By Claim 12 above, we get that there is a constant c0 ∈ N such that yes-instances x, |x| = n, of
every language in NE have witnesses that are truth tables of m = n2-variate Boolean functions
computable in C[mc0 ].

Suppose we have a deterministic poly(2n)-time compression algorithm for n-variate Boolean
functions in C[n2c0 ]. Consider the following NE algorithm:

On input x of size n, nondeterministically guess a binary string of length 2n. Run
the compression algorithm on the guessed string. Accept iff the compression algorithm
didn’t produce a circuit of size less than 2n/n for this string.

Observe that the described algorithm accepts every input x since there are incompressible strings
of every length 2n. Its running time is poly(2n) dependent on the running time of the assumed
compression algorithm. Note that every witness for an input x is a string that our compression
algorithm fails to compress, which means that the witness is the truth table of an n-variate Boolean
function that requires C-circuits of size greater than n2c0 . If we think of this 2n-bit witness as the
prefix of a 2n

2
-bit truth table of an m = n2-variate Boolean function, we conclude that the latter

m-variate Boolean function requires C circuits of size greater than mc0 . But this contradicts the
fact we established earlier that every NE language must have C[mc0 ] computable witnesses.

Remark 13. It is easy to get an analogue of Theorem 11 also for deterministic lossy compression
algorithms, with the same proof.
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5.2 Large-size AC0 functions

Compressing functions computable by “large” AC0 circuits (of size 2n
ϵ
with ϵ ≫ 1/d, where d is the

depth of the circuit) is difficult since every function computable by a polynomial-size NC1 circuit
has an equivalent AC0 circuit of size 2n

ϵ
(and some depth d dependent on ϵ). The existence of a

compression algorithm for such large AC0 circuits would imply a natural property in the sense of
[RR97] useful against NC1. The latter implies that no strong enough PRG can be computed by
NC1 circuits [RR97, AHM+08].

Using Theorem 11, we get that such compression would also imply that NEXP ̸⊂ NC1.

Corollary 14. For every ϵ > 0 there is a d ∈ N such that the following holds. If there is a
deterministic polynomial-time algorithm that compresses a given truth table of an n-variate Boolean
function f ∈ AC0

d[2
nϵ
] to a circuit of size less than 2n/n, then NEXP ̸⊂ NC1.

5.3 Monotone functions

Every monotone Boolean function on n variables can be computed by a (monotone) circuit of size
O(2n/n1.5) [Pip77, Red79]. We argue that compressing polynomial-size monotone functions is as
hard as compressing arbitrary functions in P/poly.

Theorem 15. If there is an efficient algorithm that compresses a given truth table of an m-variate
monotone Boolean function of monotone circuit size poly(m) to a (not necessarily monotone) circuit
of size at most 2m/m1.51, then there is an efficient algorithm for compressing arbitrary n-variate
P/poly-computable Boolean functions to circuits of size less than 2n/n, and hence, NEXP ̸⊆ P/poly.

Proof sketch. The idea is to use the well-known connection between non-monotone functions and
monotone slice functions [Ber82]. We use an optimal embedding of an arbitrary n-variate Boolean
function f into the middle slice of a monotone slice function g on m variables for m = n+(log n)/2+
Θ(1) due to [KKM12]. Given a truth table of f , we can efficiently construct the truth table of this
monotone function g. The mapping between n-bit inputs of f and the corresponding m-bit inputs
of g (of Hamming weight m/2) is computable and invertible in time poly(m) = poly(n). Hence, a
circuit for g of size at most 2m/m1.51 yields a circuit for f of size at most O((2n/n1.01) + poly(n)),
which is less than 2n/n for large enough n. Appealing to Theorem 11 concludes the proof.

6 #SAT algorithms from shrinkage

Impagliazzo, Mathews, and Paturi [IMP12] showed that (a generalization of) H̊astad’s Switching
Lemma for AC0 yields a randomized (zero-error) algorithm for counting the number of satisfying

assignments of a given depth-d AC0 circuit on n inputs of size s = s(n) 6 2n
1/(d−1)

, whose running

time is essentially 2n−n/(log s)d−1
. Inspired by Subbotovskaya’s result on the shrinkage of de Morgan

formulas under random restrictions [Sub61], Santhanam [San10] gave a deterministic algorithm for
counting the number of satisfying assignments of cn-size de Morgan formulas on n variables whose
running time is 2n−ϵn, for ϵ = poly(1/c). This algorithm has been extended to cn-size formulas over
the complete basis by Seto and Tamaki [ST12] with the running time 2n−ϵn, for ϵ = 2−O(c3). Note
that none of these algorithms appears able to handle formulas of size bigger than, say, n1.5.

We show that the “high-probability” shrinkage result of [KR12] can be used to get randomized
#SAT algorithms for formulas and branching programs of about quadratic size.
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Theorem 16. There is a randomized (zero-error) algorithm for counting the number of satisfying
assignments in a given formula on n variables of size at most nd which runs in (expected) time
t(n) 6 2n−nα

, for some constant 0 < α < 1 (dependent on d), where the constant d is such that

• d < 2.5 for de Morgan formulas, and

• d < 2 for formulas over the complete basis and for branching programs.

Proof. Let F be a given formula (branching program) of the size stipulated in the theorem. By
Lemma 3, there is an efficient randomized algorithm for constructing a decision tree specified in
Corollary 4, where the randomness is used only for choosing the variables to be set. Recall that
the depth of this tree is n− k for k = nµ, where 0 < µ < 1.

By averaging, we get that, with probability at least 1/2, the constructed decision tree has all
but at most 2−nϵ

fraction of its leaves correspond to restricted subformulas of F on k variables of
size at most nγ , for some 0 < ϵ, γ < 1 (dependent on d). Given a particular decision tree, we can
check if sufficiently many of its leaves correspond to such small subformulas. If it is not the case,
we re-compute the decision tree, using fresh randomness. Within n trials, we get a good decision
tree with probability at least 1−2−n. Thus, a good decision tree of depth n−k can be constructed
in expected time at most 2n−k · poly(n).

Suppose we have found a good decision tree of depth n− k. This tree defines a partition of the
domain {0, 1}n into 2n−k disjoint regions of size 2k each. Thus, to count the number of satisfying
assignments of F , it suffices to count the number of satisfying assignments for the restriction of F
to each region, and add up these counts over all regions. To save over the naive brute-force #SAT-
algorithm, we make the following crucial observation: Almost all of 2n−k branches are labeled by
sublinear-size formulas, and the number of such formulas is much less than the total number of
branches. Hence, many leaves are labeled by equivalent formulas! If we pre-compute and store the
number of satisfying assignments for all small formulas, we will gain a noticeable speed-up.

In more detail, once we find a good decision tree, we continue as follows.

Stage 1. Enumerate over all k-input formulas of size at most nγ , and compute the
number of satisfying assignments for each. Enter the results into an array indexed by
such k-input formulas.

Stage 2. Go over all 2n−k branches of the decision tree, and for each leaf-formula
do the following: if it is of formula size at most nγ , look up its number of satisfying
assignments in the array constructed earlier; otherwise, compute the number of its
satisfying assignment by a brute-force algorithm in time 2k · poly(n). Add up all the
numbers over all branches, and output the result.

Obviously, the described algorithm is always correct. For its time analysis, observe that the size

of the array built in Stage 1 is T 6 2O(nγ logn), and we can fill it in time at most T ·2k ·poly(n) 6 2n
ϵ′

for some ϵ′ < 1. For Stage 2, we spend time at most 2n−k · poly(n) (for small subformulas) plus
2n−k · 2k · poly(n)/2nϵ

(for large subformulas). It follows that the overall running time for finding
a good decision tree and for Stages 1 and 2 is at most 2n−nα

, for some α > 0, as required.

7 Open questions

We have shown efficient compressibility of functions computable by small circuits from several
classes C where known lower bounds are shown using the method of random restrictions. Can we
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extend this to other circuit classes with known lower bounds, e.g., constant-depth circuits with
prime-modular gates for which the polynomial-approximation method was used [Raz87, Smo87]?
Can we compress functions computable by ACC0 circuits? By Theorem 11, this would yield an
alternative proof of Williams’s result [Wil11]. Incompressibility is a special case of a natural
property in the sense of [RR97]. Can we argue that all known circuit lower bound proofs yield
compression algorithms for the corresponding circuit classes?

The compressed circuit sizes for our compression algorithms are barely less than exponential.
Is it possible to achieve better compression for the circuit classes considered?

We have used the ideas of our compression algorithm for small formulas to get also a #SAT-
algorithm for small formulas. Is there a general connection between compression and SAT algo-
rithms?

Finally, the focus of the present paper has been on lossless compression. For small AC0 circuits
and small AC0 circuits with few threshold gates, one can get nontrivial lossy compression using the
Fourier transform [LMN93, GS10]. What about lossy compression for other circuit classes?
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