Exam study sheet for CS6902, winter 2015
Turing machines and decidability.

A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine
is a 6-tuple M = (Q,%,T, 6, q0, Gaccepts Greject)- Here, @ is a finite set of states as before, with three
special states qo (start state), gaccept and greject. The last two are called the halting states, and they
cannot be equal. ¥ is a finite input alphabet. I is a tape alphabet which includes all symbols from
¥ and a special symbol for blank, Ll. Finally, the transition functionis 6 : Q. x I' = Q@ x I' x {L, R}
where L, R mean move left or right one step on the tape. Also know encoding languages and Turing
machines as binary strings.

Equivalent (not necessarily efficiently) variants of Turing machines:two-way vs. one-way infinite tape,
multi-tape, non-deterministic, oblivious.

PAL is decidable in linear time on a two-tape machine, but in quadratic time on one-tape.

Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

A Turing machine M accepts a string w if there is an accepting computation of M on w, that is,
there is a sequence of configurations (state,non-blank memory,head position) starting from gow and
ending in a configuration containing guccept, With every configuration in the sequence resulting from
a previous one by a transition in § of M. A Turing machine M recognizes a language L if it accepts
all and only strings in L: that is, Vo € ¥*, M accepts z iff z € L. As before, we write L(M) for the
language accepted by M.

A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if 3 a
Turing machine M such that L(M) = L. A language L is called decidable (or recursive) if 3 a Turing
machine M such that £(M) = L, and additionally, M halts on all inputs x € ¥*. That is, on every
string M either enters the state guccept OF Greject in some point in computation. A language is called co-
semi-decidable if its complement is semi-decidable. Semi-decidable languages can be described using
unbounded 3 quantifier over a decidable relation; co-semi-decidable using unbounded V quantifier.
There are languages that are higher in the arithmetic hierarchy than semi- and co-semi-decidable;
they are described using mixture of 3 and V quantifiers and then number of alternation of quantifiers
is the level in the hierarchy. An example of such decidable relation can be Check(M,w,y), which
verifies that y is a transcript of an accepting computation of M on w. Checkr and Checkp can be
defined similarly for rejecting and halting computations.

Decidable languages are closed under intersection, union, complementation, Kleene star, etc. Semi-
decidable languages are not closed under complementation, but closed under intersection and union.
If a language is both semi-decidable and co-semi-decidable, then it is decidable.

Universal language Ary = {(M,w) | w € L(M)}. Undecidability; proof by diagonalization and
getting the paradox. Arjs is undecidable.

A many-one reduction: A <,,, B if exists a computable function f such that Vo € ¥%, x €¢ A =
f(z) € B. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which
is undecidable (not semi, not co-semi.) and reduce A to B. To prove that a language is in the class
(e.g., semi-decidable), give an algorithm.

Know how to do reductions and place languages in the corresponding classes, similar to the assignment
(both easiness and hardness directions, where applicable).

Examples of undecidable languages: Aryr, Haltg, NE, Total, All, Know which are semi-decidable,
which co-semi-decidable and which neither.

Complexity theory, NP-completeness

A Turing machine M runs in time ¢(n) if for any input of length n the number of steps of M is at
most t(n) (worst-case running time).

Time complexity classes Time(f(n)) are sets of languages decidable in worst-case time f(n). Similarly
for Space(f(n)) and non-deterministic time NT4ime(f(n)). For non-deterministic time, the bound
f(n) must hold for all branches of the computation.

A language L is in the complexity class P (stands for Polynomial time) if there exists a Turing machine
M, L(M) = L and M runs in time O(n°) for some fixed constant c. The class P = |, Time(n*)
is believed to capture the notion of efficient algorithms.

A language L is in the class NP if there exists a polynomial-time verifier, that is, a relation R(x,y)
computable in polynomial time such that Yo,z € L <= Jy, |y| < c|lz|* A R(z,y). Here, c and d are
fixed constants, specific for the language.

A different, equivalent, definition of NP is a class of languages accepted by polynomial-time non-
deterministic Turing machines. The name NP stands for “Non-deterministic Polynomial-time”.

Time(f(n)) € NTime(f(n)) C Space(f(n)) € Time(2°0U/()). In particular, P C NP C EXP, where
EXP is the class of languages computable in time exponential in the length of the input. All of them
are decidable. Alternating quantifiers, get polynomial-time hierarchy PH: P C NPNcoNP C NPUcoNP C
PH C PSPACE C EXP C NEXP.By padding, equalities between complexity classes translate upward and
inequalities downward. So if P = NP then EXP = NEXP.

Time hierarchy theorem: Time(f(n)) C Time(f(n)/logn). Space hierarchy theorem: Space(f(n)) C
Space(o(f(n))). In particular, P C EXP and LogSpace C PSPACE.

Examples of languages in P: connected graphs, relatively prime pairs of numbers (and, quite recently,
prime numbers), palindromes,etc. In NP: all languages in P, Clique, Hamiltonian Path, SAT, etc.
Technically, functions computing an output other than yes/no are not in NP since they are not
languages. Maximizers such as LargestClique are not known to be in NP.

Major Open Problem: is P = NP? Widely believed that not, weird consequences if they were, including
breaking all modern cryptography and automating creativity.

Polynomial-time reducibility: A <, B if there exists a polynomial-time computable function f such
that Ve € ¥,2 € A < f(z) € B.

A language L is N-hard if every language in NP reduces to L. A language is NP-complete if it is both
in NP and NP-hard.

Steps of proving NP-completeness of a given language L:

1. Show that L € NP by giving respective R, c¢,d and explaining how y encodes a solution.
2. Show that L is NP-hard via a reduction as follows:

(a) Find a suitable known NP-complete language L' such as 3S AT, Partition, IndSet.

(b) Describe a polynomial-time reduction f from this NP-complete language to your L, L' <, L,
for example 3SAT <,, L.

(c) Show that x € 3SAT — f(x) € L (or x € L' — f(x) € Lif L' # 3SAT)
(d) Show that f(z) € L — 2 € 3SAT (or f(z) e L—»xz € L)
(e) Briefly explain why f is polynomial-time computable.

Cook-Levin Theorem states that SAT is NP-complete. The rest of NP-completeness proofs we saw
are by reducing SAT (3SAT) to the other problems (also mentioned a direct proof for CircuitSAT in
the notes).

Fagin theorem is a variant of Cook-Levin theorem that existential second-order logic captures NP.
If P = NP, then can compute witness y in polynomial time. Same idea as search-to-decision reductions.

Search-to-decision reductions: given an “oracle” with yes/no answers to the language membership
(decision) problem in NP, can compute the solution in polynomial time with polynomially many
yes/no queries. Similar idea to computing a witness if P = NP.

Ladner’s theorem: if P £ N P then there are problems that are neither in P nor NP-complete.

Schaefer’s theorem: all satisfiability (constraint satisfaction) problems defined as conjunctions of
clauses of a certain type (Horn, 2CNF, etc) are either trivial, or complete for L, NL, &L, P or NP.

Complexity theory, other topics

Boolean circuits: binary inputs, AND/OR/NOT gates. Parameters: size (# of gates) and depth
(longest path from input to output) as a function of input size.

Non-uniform model (every imput size can have a very different circuit). Thus, can do unary Halting
problem (undecidable).

P/poly: polynomial-size circuits, corresponds to Turing machines with advice.

A Boolean function is hard if it is not computable by polynomial-size (P/poly) family of circuits.
Most functions are hard by counting; big open problem if there is a hard function computable in P
or even in FXP.

Parallel computation hierarchy: AC? for log® depth unbounded fan-in polynomial size, NC" for log’-
depth bounded fan-in circuits. AC* C NCT! C AC**!; whole hierarchy is called NC. NC C P/poly.

AC? cannot do Parity; for the rest no lower bounds known. Open whether NP C P/poly.

Uniform version: require all circuits in a family to be generated by a Turing machine (e.g., logspace
or polytime). Then, AC® C NC!' C LogSpace C NL C AC' C NC?> C..-C NC C P C P/poly.

Randomized computation: algorithms can use (polynomially many) random bits: M (z,r), where z
is input, r is randomness.

Class RP (randomized polytime): L € RP if x € L,Pr.[M(z,r) accepts] > 1/2, and if = ¢
L, Pr,[M(z,r) accepts]| = 0. RP C NP.

Class BPP (bounded-error probabilistic polytime): L € BPP if x € L, Pr.[M(x,r) accepts| > 2/3,
and if x ¢ L, Pr,[M(x,r) accepts] < 1/3. RP C BPP, but BPP vs NP is unknown, though BPP
is in X5 N TI5.

If there is an (exponentially) hard Boolean function in EXP, then BPP = P.

