
CS 6901 (Applied Algorithms) –

Lecture 9

Antonina Kolokolova

October 18, 2016

1 Solving systems of difference constraints as detecting negative
cycles

We talked a lot about graph problems as the main modeling tool. Another very common and general way
to model a problem is as a system of linear equations.

For example, suppose that you have 4 jobs (or exams, etc) that need to be scheduled, possibly in parallel.
Suppose that the length of the first job is 3, and of the second job is 5. Suppose that there are additional
constraints like this: the second job has to start after the first finishes, the third has to start at least five
minutes after the second ends, job number 4 has to start at least 4 minutes before job number 3, and job
number 3 has to start no later than 7 minutes after the first one starts. This gives us the following system
(here, s1, s2, s3, s4 are variables denoting starting times of jobs that we are trying to determine):


s1 + 3 ≤ s2

s2 + 10 ≤ s3

s4 ≤ s3 − 4

s3 ≤ s1 + 7

(1)

Is it possible to schedule these jobs satisfying the constraints? In this case, no: to finish job 1, then do job
2, then wait 5 minutes would take time 3 + 5 + 5, making it impossible to schedule job 3 at most 7 minutes
after job 1 starts. So given a system of inequalities like this, how do we find out if a solution exists?

In general, if the solution is not required to be integers, it is possible to find it in polynomial time using
linear programming techniques. However, the running time is not that great (e.g, O(n3.5 ∗ L), where n is
the number of variables and L is the length of the encoding of the system). But in a special case, as we have
above, where every inequality only contains two variables and a constant, it is possible to check if there is a
solution in time O(mn), where m is the number of inequalities and n is the number of variables. This class
of inequalities is called difference constraints.

In order to solve this system, we represent it as a weighted directed graph (its ”constraint graph”), with
a property that there is a negative cycle in this graph if and only if the original system had no solutions.
This graph is defined as follows. For every variable xi in the system, we introduce a vertex vi, and for every
equation, an edge. If an equation is xj ≤ xi + bk, then the corresponding edge will be (vi, vj), with weight
bk. Note that the edges are directed, with the direction going from the variable on the ”larger than” side to
the variable on the ”smaller than” side. Now, there is a negative cycle in this graph if and only if the system

1



of equations was unsatisfiable: think about it as ”xi is smaller than xj1 (plus something) which is smaller
than xj2 ,... which is smaller than xi again”. That would be a contradiction.

To simplify solving the system, we will add one more vertex s to the constraint graph, with an edge of
weight 0 from s to each vertex in the graph. Thus, for the example above we get the following graph with
the negative cycle v1, v2, v3:

s

v1

v4

v2

v3

0

0

0

0

−3

7

−10

−4

2


