
CS 6901 (Applied Algorithms) –

Lecture 6

Antonina Kolokolova

Sep 29, 2016

1 Greedy algorithms

It is not immediately clear that Kruskal’s algorithm yields a spanning tree at all, let alone a minimum cost
spanning tree. We will now prove that it does in fact produce an optimal spanning tree.

To show this, we will use the technique that applies to correctness proofs of all algorithms of this type:
greedy algorithms. An algorithm is greedy if it ranks its input objects in some way (either before or during
the execution), then looks at each object in that order and decides whether to include it in the solution or
now. At that stage, once it considered an object and made a decision (whether to take it or leave it), it
never looks back and changes its decision. This is what makes these algorithms ”greedy” – just keep taking
the best of what is left. Greedy algorithms tend to be fairly fast (e.g., O(m logm) time), but in many cases
only work for restricted inputs. However, for minimal spanning tree problem, Kruskal’s algorithm, in spite
of being greedy, still achieves the optimal. We will show this today.

To prove correctness of a greedy algorithm we need to show that every decision it makes does not ruin its
chances of getting an optimal solution. There could be many different optimal solutions; we have to show
that after each step it can still reach at least one of them.

1.1 Correctness of Kruskal’s Algorithm

In case of Kruskal’s algorithm, we reason that after each execution of the loop, the set T of edges can be
expanded to an optimal spanning tree using edges that have not yet been considered; this will be our loop
invariant. Hence after termination, since all edges have been considered, T must itself be a minimum cost
spanning tree.

We can formalize this reasoning as follows:

Definition 1 A set T of edges of G is promising after stage i if T can be expanded to a optimal spanning
tree for G using edges from {ei+1, ei+2, . . . , em}. That is, T is promising after stage i if there is an optimal
spanning tree Topt such that T ⊆ Topt ⊆ T ∪ {ei+1, ei+2, . . . , em}.

Lemma 1 For 0 ≤ i ≤ m, let Ti be the value of T after i stages, that is, after examining edges e1, . . . , ei.
Then the following predicate P (i) holds for every i, 0 ≤ i ≤ m:

P (i) : Ti is promising after stage i.

1



Proof:
We will prove this by induction. P (0) holds because T is initially empty. Since the graph is connected, there
exists some optimal spanning tree Topt, and
T0 ⊆ Topt ⊆ T0 ∪ {e1, e2, . . . , em}.

For the induction step, let 0 ≤ i < m, and assume P (i). We want to show P (i + 1). Since Ti is promising
for stage i, let Topt be an optimal spanning tree such that
Ti ⊆ Topt ⊆ Ti ∪ {ei+1, ei+2, . . . , em}. If ei+1 is rejected, then Ti ∪ {ei+1} contains a cycle and Ti+1 = Ti.
Since Ti ⊆ Topt and Topt is acyclic, ei+1 /∈ Topt. So
Ti+1 ⊆ Topt ⊆ Ti+1 ∪ {ei+2, . . . , em}.

Now consider the case that Ti∪{ei+1} does not contain a cycle, so we have Ti+1 = Ti∪{ei+1}. If ei+1 ∈ Topt,
then we have Ti+1 ⊆ Topt ⊆ Ti+1 ∪ {ei+2, . . . , em}.
So assume that ei+1 /∈ Topt. Then according to the Exchange Lemma below (letting T1 be Topt and T2

be Ti+1), there is an edge ej ∈ Topt − Ti+1 such that T ′
opt = Topt ∪ {ei+1} − {ej} is a spanning tree.

Clearly Ti+1 ⊆ T ′
opt ⊆ Ti+1 ∪ {ei+2, . . . , em}. It remains to show that T ′

opt is optimal. Since Topt ⊆
Ti ∪ {ei+1, ei+2, . . . , em} and ej ∈ Topt − Ti+1, we have j > i + 1. So (because we sorted the edges)
c(ei+1) ≤ c(ej), so c(T ′

opt) = c(Topt) + c(ei+1)− c(ej) ≤ c(Topt). Since Topt is optimal, we must in fact have
c(T ′

opt) = c(Topt), and T ′
opt is optimal.

This completes the proof of the above lemma, except for the Exchange Lemma.

Lemma 2 (Exchange Lemma) Let G be a connected graph, let T1 be any spanning tree of G, and let T2 be
be a set of edges not containing a cycle. Then for every edge e ∈ T2 − T1 there is an edge e′ ∈ T1 − T2 such
that T1 ∪ {e} − {e′} is a spanning tree of G.

Proof:
Let T1 and T2 be as in the lemma, and let e ∈ T2 − T1. Say that e = [u, v]. Since there is a path from
u to v in T1, T1 ∪ {e} contains a cycle C, and it is easy to see that C is the only cycle in T1 ∪ {e}. Since
T2 is acyclic, there must be an edge e′ on C that is not in T2, and hence e′ ∈ T1 − T2. Removing a single
edge of C from T1 ∪{e} leaves the resulting graph acyclic but still connected, and hence a spanning tree. So
T1 ∪ {e} − {e′} is a spanning tree of G.

We have now proven Lemma 4. We therefore know that Tm is promising after stage m; that is, there is an
optimal spanning tree Topt such that Tm ⊆ Topt ⊆ Tm ∪ ∅ = Tm, and so Tm = Topt. We can therefore state:

Theorem 1 Given any connected edge weighted graph G, Kruskals algorithm outputs a minimum spanning
tree for G.

2


