
CS 6901 (Applied Algorithms) –

Lecture 5

Antonina Kolokolova

September 27, 2016

1 Minimum Spanning Trees

1.1 Electrification of South Moravia

In 1926, Czech mathematician Otakar Bor̊uvka considered a very practical problem: how to get electricity to
all the towns in South Moravia, a region of Czech republic. He got the problem from a friend working at the
West-Moravian Powerplants, and set out to solve it, producing what is now known as Bor̊uvka’s algorithm.
He published both a mathematical paper explaining the algorithm and proving its correctness, and a paper
at the ”Electrotechnical news” explaining how to apply this algorithm to solve the electrification problem.
See the paper by Nesetril, Milkova,Nesetrilova ”Otakar Bor̊uvka on minimum spanning tree problem” for
more historical details, as well as a translation of the original papers.

The electrification of South Moravia problem is stated
as follows. There is a number of towns in the region,
and the distances between pairs of the town are known.
The goal is to create a system of electric power lines
that would minimize the total distance (and thus the
construction cost), yet reach every town. In this sce-
nario, it is not necessary to connect each town to the
”source of electricity” directly – it is enough to connect
it to another town that already got the power.
Also, here we are not considering the cost of connecting
the first town to the electric grid, just interconnecting
towns in South Moravia.
The picture to the right is the map of South Moravia
(from south-moravia.webnode.cz).

The mathematical representation of this problem, which became known as the Minimum Spanning Tree
(MST) problem, is as follows. Recall that a spanning tree T of a connected undirected graph G is a acyclic
connected subgraph of G which includes all edges. In Czech language, a spanning tree is called ”kostra
grafu”, which literally translates as a ”skeleton” (or a ”frame”) of a graph. In any connected undirected
graph with a cycle there are multiple possible spanning trees. If there are costs/weights on the edges of the
graph, then the cost or weight of a tree is the sum of costs of its edges. Returning to the electrification
example, the vertices of the graphs are town, the edges are potential power lines connecting towns, and
costs/weights on the edges are distances between town, which translate into costs of connecting these towns
by a power line.

1



More formally, the minimum spanning tree problem asks, given a (connected undirected) graph G with costs
(weights) on its edges that are positive numbers, to produce a spanning tree that has a cost minimal among
all spanning trees. That is, given an undirected connected graph G = (V,E) with n vertices and m edges
e1, e2, . . . , em, where c(ei) = “cost of edge ei”, we want to find a minimum cost spanning tree T : a spanning
tree T such that Σei∈T c(ei) is minimal among all spanning trees. Note that there can be multiple minimum
spanning trees (for example, if G has a cycle on which all edges have the same cost), but the cost of a
minimum spanning tree will always be the same.

1.2 Three algorithms for the MST problem

There are several algorithms that are used to solve this problem. The following three are greedy algorithms
with the same underlying idea: starting from a situation where every vertex is isolated, add cheapest edges
one at a time, until the spanning tree is built. However, they choose the next edge in different ways.

The first is Kruskal’s algorithm, which operates by sorting
edges from smallest to largest cost, and then considering
edges in this order, at each step adding the edge if it does
not form a cycle with edges already added. This is the
simplest algorithm; however, checking whether adding an
edge creates a cycle is a somewhat non-trivial operation.

MST-Kruskal(G,c)
Sort the edges: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
T = ∅
for i = 1 to m

if T ∪ {ei} has no cycle then
T = T ∪ {ei}

return T

Prim-Jarnik algorithm works on a slightly different
premise, growing the tree starting from a specified vertex.
It can produce the same tree as Kruskal’s algorithm at
the end, though (all of these algorithms can produce all
minimum spanning trees depending on the sorting order
of the edges that have the same value). For the practical
application, think of connecting one town in South Moravia
to the electric grid, and then extending the grid to more
towns, as opposed to building power lines where it is cheap,
but with no electricity expected possibly until the very last
town is connected. This algorithm uses a priority queue Q
to implicitly sort the edges.

MST-Prim-Jarnik(G,c,s)
Initialize s.key = 0, s.pred = null and T = ∅
∀v 6= s, v.key =∞; v.pred = null
Insert all vertices into Q
while Q 6= ∅

u = ExtractMin(Q)
T = T ∪ {(u.pred, u)}
for each v adjacent to u

if v ∈ Q and c(u, v) < v.key then
v.key = c(u, v); v.pred = u

return T

Finally, the algorithm that Bor̊uvka gave works as follows.
For each town, connect it with its nearest neighbour. Now,
for each of the resulting groups of towns, connect them to
their nearest neighbour... Proceed until there is just one
group left. This algorithm has been a basis for several sub-
sequent parallel algorithms.

MST-Boruvkal(G,c)
Make each vertex a separate subtree, T = ∅
while T is not connected

Connect each subtree to nearest one
Add these edges to T

return T

Example 1 Consider the graph on the right, and suppose that all ties are
resolved by considering edges and vertices in lexicographic order. The algo-
rithms will add edges in the following order:
Kruskal: (a, b), (b, d), (d, f), (c, d), (b, e)
Prim-Jarnik, starting from e: (e, b), (b, a), (b, d), (d, f), (c, d)
Bor̊uvka: All in one round: (a, b), (c, d), (d, b), (e, b), (f, d).

2

a

b

cd

e

f

5

1

3

4
5

3

1

41

It turns out (miraculously) that in this case, an obvious greedy algorithm (Kruskal’s algorithm) always works.

2



Kruskal’s algorithm is the following: first, sort the edges in increasing (or rather nondecreasing) order of
costs, so that c(e1) ≤ c(e2) ≤ . . . ≤ c(em); then, starting with an initially empty tree T , go through the
edges one at a time, putting an edge in T if it will not cause a cycle, but throwing the edge out if it would
cause a cycle.

1.3 Kruskal’s Algorithm:

Sort the edges so that: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
T ← ∅
for i : 1..m
(*) if T ∪ {ei} has no cycle then

T ← T ∪ {ei}
end if

end for

But how do we test for a cycle (i.e. execute (*))? After each execution of the loop, the set T of edges divides
the vertices V into a collection V1 . . . Vk of connected components. Thus V is the disjoint union of V1 . . . Vk,
each Vi forms a connected graph using edges from T , and no edge in T connects Vi and Vj , if i 6= j.

A simple way to keep track of the connected components of T is to use an array D[1..n] where D[i] = D[j] iff
vertex i is in the same component as vertex j. First, initialize D[i]← i for all i. To check whether ei = [r, s]
forms a cycle with T , check whether D[r] = D[s]. If not, and we therefore want to add ei to T , we merge
the components containing r and s as follows:

k ← D[r]; l← D[s]
for j : 1..n

if D[j] = l then
D[j]← k

The complete program for Kruskal’s algorithm then becomes as follows:

Sort the edges so that: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
T ← ∅
for i : 1..n

D[i]← i
for i : 1..m

Assign to r and s the endpoints of ei
if D[r] 6= D[s] then
T ← T ∪ {ei}
k ← D[r]
l← D[s]
for j : 1..n

if D[j] = l then
D[j]← k

We wish to analyze the running of Kruskal’s algorithm, in terms of n (the number of vertices) and m (the
number of edges); keep in mind that n−1 ≤ m (since the graph is connected) and m ≤

(
n
2

)
< n2. Let us assume

that the graph is input as the sequence n, I1, I2, . . . , Im where n represents the vertex set V = {1, 2, . . . , n},

3



and Ii is the information about edge ei, namely the two endpoints and the cost associated with the edge.
To analyze the running time, let’s assume that any two cost values can be either added or compared in one
step. The algorithm first sorts the m edges, and that takes O(m logm) steps. Then it initializes D, which
takes time O(n). Then it passes through the m edges, checking for cycles each time and possibly merging
components; this takes O(m) steps, plus the time to do the merging. Each merge takes O(n) steps, but
note that the total number of merges is the total number of edges in the final spanning tree T , namely
(by the above lemma) n − 1. Therefore this version of Kruskal’s algorithm runs in time O(m logm + n2).
Alternatively, we can say it runs in time O(m2), and we can also say it runs in time O(n2 log n). Since it is
reasonable to view the size of the input as n, this is a polynomial-time algorithm.

1.4 Union-Find data structure

A better way to implement testing for connectivity is by using the Union-Find data structure. That allows
to bring the running time of Kruskal’s algorithm down to O(m log n) time.

Union-Find data structure supports three operations:

1) MakeUnionFind(S): for a set of elements S, returns a Union-Find data structure with each element
of S in its own disjoint set. This is used in Kruskal’s algorithm when initializing the structure with all
vertices of the graph (no edges at that point).

2) Find(u) returns the name of a set containing u (usually a set is named after one of its elements).
In Kruskal’s algorithm, the check whether Find(u) == Find(v) checks if u and v are in the same
connected component.

3) Union(A,B): merge sets A and B (e.g., merge two connected components in Kruskal’s).

The array implementation we discussed before is not the most efficient one for this data structure. A better
implementation is pointer-based: for every element, a node is created. When two sets are merged in a union
operation, the pointer of a node at the root of the tree representing the smaller set is pointed to the root
representing the larger set. That is, merging two disjoint nodes results in a tree with a root and one child;
merging another disjoint node to it gives a tree with the same root as before, but two children and so on.
To know which set is larger, we need an additional field keeping the size of a tree rooted in a given node.
In this representation, Union() operation takes constant time (update the pointer of a smaller set’s root
and the size of the larger set’s root). The Find() takes O(logn) time because in the worst case one has
to follow the path from a leaf to the root of the tree; however because of every time the smaller tree gets
attached to the root of the larger one, if a path increased by 1 the size of the whole tree at least doubled.
And MakeUnionFind() takes O(n) time, which is OK since it is only done once.

4


