
CS 6901 (Applied Algorithms) –

Lecture 4

Antonina Kolokolova

September 22, 2016

1 DFS

A different traversal algorithm DFS (depth first search) explores the recursively. Here, we again use the
colour convention of white/gray/black, and also, following CLRS book, keep track of the time a vertex was
first discovered (u.d) and a time a vertex was coloured black (finishing time, u.f). Assume that time is a
global variable. Here, we will also use a wrapper to explore all vertices.

DFS-wrapper(G)

1 colour all vertices white and put them into a list
2 time← 0
3 while there is a white vertex u

do
4 DFS(u)

The following DFS algorithm explores the graph starting from a given vertex.

DFS(s)

1 time← time + 1
2 u.d← time; u.colour ← gray
3 for each v such that (u, v) ∈ E

do
4 if v is white, DFS(v)
5 u.colour ← black
6 time← time + 1
7 u.f ← time

1

3

1 2

4

In this example graph, if we start traversing from vertex 1, one
of the possible executions of DFS proceeds like this. Set the dis-
covery time for vertex 1 (let us call it v1 here to avoid confusion)
to ”1.” Then, for example, go to vertex v4, and set its discovery
time v4.d = 2. From there, say we explore v2 next, with discovery
time v2.d = 3. As there is nowhere to go from v2, we are finished
with this vertex; set v2.f = 4 and backtrack to v4. From there,
go to v3, resulting in v3.d = 5 and v3.f = 6. Back to v4, which
is now done so it gets v4.f = 7. Finally, set v1.f = 8. Sometimes
we will use the notation ”2/7” to mean the discovery time is 2
and the finish time is 7 for a specific vertex (especially on the
pictures). The edges of the DFS tree for this run of DFS are
(1, 4), (4, 2), (4, 3).

Note one property of these discovery and finish times of vertices: if a vertex v is a descendant of a vertex
u (that is, v is in the tree underneath the u), then u.d < v.d < v.f < u.f . This property is quite useful for
proving correctness of algorithms based on DFS.

Next, we will see two applications of the Depth First Search (DFS) algorithms: computing a topological
order of vertices of a directed acyclic graph (DAG) and finding strongly connected components in a graph.
These applications are examples of how a basic algorithm, DFS, can be modified and, in case of strongly
connected components, used multiple times to do a more complex tasks with graphs. I will follow CLRS
book for this material.

1.1 DAGs and topological sort

Directed Acyclic Graphs, commonly referred to as ”DAGs”, are a very useful type of graph for modelling
a variety of problems where there are dependencies between objects or tasks. Here, the edges indicate the
direction of a dependency: for example, if the graph represents a diagram of instructions of assembling
furniture, an edge from task A to task B might indicate that task A (say, attaching a table leg) has to
be completed before task B (say, securing the table leg with screws). One important advantage of DAGs
is that some problems that are NP-hard on general graphs have polynomial-time algorithms on DAGs, for
example computing the longest path in the graph. Another example of a DAG is a Boolean circuit: there,
the direction of the edges is from the inputs towards the output(s).

i

a b c d

e

f g

j

h

k

In a DAG, vertices with no incoming edges are called sources,
and vertices with no outgoing edges are sinks. Every DAG must
have at least one source and at least one sink (which could be the
same isolated node).
Vertices in a DAG can be listed in the topological ordering, that is,
in an ordering L : V → {1, . . . , n} such that whenever (u, v) ∈ E,
L(u) < L(v). There can be more than one topological ordering of
a given DAG. But if there is a path in the DAG from u to v, then
in any topological ordering u will come before v in the order.

In the example DAG G above, there are four sources a, b, c, d and two sinks f and j. One possible topological
ordering of this graph is a, b, c, d, e, k, f, g, h, i, j, another d, a, e, f, b, g, c, k, h, i, j. As you see, even though
the list has to start with a source and end with a sink, they do not have to all be in front (respectively, in
the back) of the list, provided the property of topological ordering is satisfied.

It is possible to show that a graph is a DAG if and only if such a topological ordering exists in a graph.
Intuitively, consider a cycle in a graph: no matter how you number vertices in this cycle, there will be an

2

edge from a larger to a smaller vertex (otherwise, the smallest vertex will have no incoming cycle edges
and largest no outgoing cycle edges, but then it is not a cycle). For the other direction, suppose there is a
topological ordering in a graph. Then it must be acyclic because from any vertex, vertices that came before
it are unreachable.

In order to compute a topological ordering of a graph, we will use a topological sorting algorithm based on
DFS.

TopoSort(G)

1 Run DFS on G
2 as each vertex v finishes, insert v to the front of a linked list L
3 return L

Example 1 Suppose we run DFS on the graph above. As the initial order of vertices can be arbitrary, let’s
say that we start with vertex k. The following will be the starting and finishing times in the resulting DFS
tree: k : (1, 8), h : (2, 7), i : (3, 6), j : (4, 5). At this point, our list will contain (k, h, i, j), where j was
inserted first. Then let us start from b: we will have b : (9, 12) and g : (10, 11) in the next DFS tree; the list
now becomes (b, g, k, h, i, j). Continuing in this fashion, and picking a next, then c, then d, we end up with
the topological ordering (d, c, a, e, f, b, g, k, h, i, j). That is, L(d) = 1, L(c) = 2 and so on.

The running time of this algorithm will be comparable with the running time of DFS, as inserting an element
to the front of the list takes constant time. Thus, the whole algorithm runs in time O(n + m).

Now, to convince ourselves that the algorithm indeed does a correct topological sorting of the vertices of its
input graph G, we need to show that for any vertices u, v such that (u, v) is an edge, L(u) < L(v), where
now L(u) and L(v) we interpret as positions in the list produced by our algorithm. We can show it in two
steps.

First, notice that in a DAG, DFS never sees an edge ending in a gray vertex (that is, a vertex for which we
have the discovery time, but not yet finishing time). A vertex would be gray if it is on a path from the root
of the DFS tree being constructed to the current vertex. But then this part of the path together with the
edge to a gray vertex completes a cycle, and we assumed that our graph is a DAG. (Additionally, we can
show that if a graph is not a DAG, then DFS will see such an edge).

Thus, every edge (u, v) encountered in the run of the DFS on a DAG is either to a white vertex v (v has no
discovery time yet), or to a black vertex (v has finishing time). In case when v is white, we know from last
time that u is an ancestor of v, so u.d < v.d < v.f < u.f . Thus, v.f < u.f and so v will be after u on L.
When v is black, then v.f < u.f , as v.f is finished while we are still exploring subtree under u. In this case,
u also precedes v in L, completing the proof.

1.2 Strongly Connected Components

Another algorithm that uses DFS even more creatively is that for computing strongly connected components
in a directed graph (we are not considering just DAGs anymore). A connected component in an undirected
graph is any group of vertices where it is possible to get from one vertex in the component to any other;
either DFS or BFS will produce connected components of an undirected graph as separate trees, and for each
connected component, the corresponding tree will contain all vertices. For a directed graph, the definition is
a bit more complicated. A group of vertices in a graph forms a weakly connected component if its underlying
undirected graph (that is, ignoring the directions of edges) is connected (and maximal). A group of vertices

3

forms a strongly connected component if within this group every vertex is reachable from any other vertex
in the component; again, we want every vertex with this property to be part of the component.

Example 2 This graph has two weakly
connected components ({i, j} and the rest),
but four strongly connected components
({i, j}, {a, c, d}, {b}, {e, f, g, h}).

j

a b

c d e

f

g

h

i

The following algorithm computes strongly connected components of a graph G.

SCC(G)

1 Run DFS on G
2 Compute Gr � where Gr is G with all edge directions reversed
3 Run DFS on Gr, considering vertices in the order of decreasing finishing time computed by DFS(G)
4 return DFS forest from the second run; each tree is a separate strongly connected component.

Example 3 Consider running SCC algorithm on the graph from the previous example. Suppose we obtained
the following start/finish times: a : (3, 4), b : (19, 20), c : (1, 14), d : (2, 13), e : (5, 12), f : (6, 11), g : (7, 10),
h : (8, 9), i : (15, 18), j : (16, 17) from the first DFS run. Now, running DFS on the reverse graph Gr, we
first start with b. As all edges of b are outgoing in G, all edges are incoming in Gr, and so there is nothing
else in its connected component. Then run DFS starting with i, obtaining component {i, j}. Then proceed
to c; here, a, b and d are accessible, since edge (e, d) is incoming to this component. As b has been processed
already, it does not become part of this tree, leaving only {c, a, d} as elements of this component. The final
tree is rooted at e, and consists of {e, h, g, f}.

First, let us look at the running time of this algorithm. We know that DFS ∈ O(n+m), and Gr has the same
number of vertices and edges as G, so two subsequent runs of DFS will still take time O(n + m) (remember
that for a constant number of blocks executed one after another we take the maximum, or, alternatively,
that doubling the running time does not change the corresponding O-class). Now, to compute Gr we need to
go through G and create a new adjacency list for each vertex, now containing what was formerly incoming
edges to this vertex. But this can be done in time O(n+m) as well, by going through all lists of G in order
and inserting the corresponding entries into the lists of Gr. Therefore, the total time is O(n + m).

The key fact we need to for the correctness proof is that if u and v are in different connected components C
and D, and there is an edge (u, v), then there will be a vertex w ∈ C with a large finishing time than any
vertex v′ ∈ D, where the finishing time is with respect to running DFS on G. To see this, take a vertex in
w with the largest finishing time of all vertices in C. Then, all vertices in C are in a DFS tree starting from
w. Since there is an edge (u, v), DFS will try to follow this edge.

Now, if v is white at that time, then DFS algorithm will explore all of D before backtracking (as D is strongly
connected, and there is no path in G from D to C). Then all vertices in D will be descendants of w, so for
any v′ ∈ D, w.d < v′.d < v′.f < w.f . Note that v cannot be gray at that time, as it would imply that it
is already on a path from w to v, but such a path would have to leave C, go to D, and come back to C,
contradicting the fact that C and D are separate strongly connected components. Thus, if v is not white it
would have to be black; in that case, its finishing time for every v′ in D was already computed (as they are
parts of the same DFS tree), whereas w.f is not assigned yet, so w.f > v′.f .

Finally, we need to show that SCC(G) correctly computes strongly connected components. That is, all
vertices in the same connected component become parts of the same DFS(Gr) tree (where vertices are

4

considered in DFS(Gr) in order of decreasing finished time from DFS(G)), and any two vertices from
different components will be in different DFS(Gr) trees. To see the first fact, note that there is a path from
any vertex to any other vertex within a connected component, so once DFS picks a vertex in a component
it explores all of it before stopping. This was true even for a single run of DFS(G), so a more interesting
part is to show that in the trees of DFS(Gr) each component forms a separate tree.

For the intuition, imagine running DFS on a DAG considering vertices in reverse topological order. The last
vertex in this order is a sink: so DFS does not have anywhere to go, and this vertex forms a separate tree.
The second to last vertex is either a sink itself (so the same reasoning applies), or has an edge to the last
vertex, but since that one is already marked black, the second to last vertex becomes its own tree as well.
Now, it can be shown to be true for all vertices of the DAG by induction. Assume that the last i vertices in
the topological order (that is, the first i vertices DFS visits) each form a separate tree. Now consider vertex
i+ 1 from the end. all of its outgoing edges go to vertices in the tree already processed, so all of them go to
black vertices. Therefore, there is nothing to explore and the vertex i + 1 forms the next DFS tree.

Now, all that is left is to generalize the argument before slightly, to talk about strongly connected components
rather than vertices in a DAG. Let us argue by induction again. The vertex with the largest finishing time
is in a component C1 with no edges to other components in Gr, by the fact we discussed at the start of the
proof. Thus, the first tree will contain all vertices in that strongly connected component, but no other; and
all its vertices will be marked black.

Now, suppose the first i trees outputted by the algorithm form separate strongly connected components
C1 . . . Ci. Consider the time when DFS(Gr) starts exploring component Ci+1. At that time, all edges from
vertices v ∈ Ci+1 in Gr are going to vertices u ∈ C1, . . . Ci, which are already marked black (which follows
from the same key fact). Therefore, only vertices in Ci+1 will become part of the i + 1st DFS(Gr) tree,
completing the proof.

5

