
CS 6901 (Applied Algorithms) –

Lecture 17

Antonina Kolokolova

November 15, 2016

0.1 Scheduling problem

Recall Scheduling problem we discussed in last class. Suppose there is a list of jobs (tasks), for example
to be scheduled on a processor. Each task takes a certain amount of time and gives a certain amount of
profit (gain). Moreover, to get the benefit of the task it has to finish by its deadline. We want to design an
algorithm which would take a list of such jobs and create a correct schedule for which the sum of gains of
scheduled jobs is maximal. More precisely, define the problem as follows. Let ti be the time a job i takes
(its duration), di be the deadline by which it has to finish, and gi a reward for completing this job on time.
So a job (3, 5, 10) has to start at time 2 or earlier, and if this job is scheduled and finishes on time, there is
a gain of 10. In a correct schedule no two jobs overlap, and each job finishes by its deadline.

Scheduling with deadlines, profits and durations
Input: (t1, d1, g1) . . . , (tn, dn, gn)
Output: A schedule (array) S maximizing Σi,S[i]≥0gi , where S(i) = si is the starting time of ith job; let
si = −1 if a job cannot be scheduled.

We gave a dynamic programming algorithm which runs in time O(n ·max di). However, as di can be written
in binary, max di can be exponentially larger than the length of the input, so in this case it would not be a
polynomial time algorithm. Moreover, when stated in this way, the Scheduling problem is NP-hard, and we
do not know of any efficient, that is, polynomial-time algorithm for it.

0.2 NP-hardness

What does it mean for a problem to be NP-hard? A problem is NP-hard if every problem in the complexity
class NP can be reduced to (think ”disguised as”) this problem. In particular, solving any problem in NP
would only take as much time as the NP-hard problem times, roughly, the increase in size of the input
description that disguising created (plus the time it takes to do the disguising).

The complexity class NP itself is the class of all decision problems with efficiently verifiable solutions, where
”efficiently” = ”in time polynomial in the length of the input in binary”. A problem is a decision problem if
its output is a yes/no answer. For example, if a scheduling problem is asking ”is there a schedule with profit
at least K?” is a decision problem, whereas ”compute the best possible schedule” is not a decision problem.
In complexity theory, most of the time decision problems are considered – if nothing else, it avoids the case
of problems with very long solutions.

Now, a problem is NP-complete if it is both in NP (that is, it is a decision problem with polynomial-time

1



verifiable solutions) and is NP-hard (that is, any problem in NP can be disguised to look like it in polynomial
time). Sometimes people use terms ”NP-hard” and ”NP-complete” as if they are synonyms (usually to mean
”hard”), but this is not quite correct: a problem can easily be NP-hard without being NP-complete. So,
the scheduling, where the output is the optimal set of schedule, would be NP-hard, but not NP-complete.
For such problems (although definitely not for all NP-hard problems) it holds that if P=NP, then they are
solvable in polynomial time; this applies to all NP-complete problems, but not all NP-hard ones (though
it does apply to ”find an optimal solution” type of problems). Also, all such efficiently verifiable problems
are solvable given exponential time (even when the amount of available space is still polynomial). However,
there are problems solvable in exponential time which are NP-hard, but provably not solvable in polynomial
time.

To illustrate what we mean by ”disguising” one problem as another, consider the Simple Knapsack problem.
Suppose you are trying to fly a prospecting mission to Arctic, and the aircraft can only take certain amount
of equipment, and you are choosing what to bring with you to maximize usefulness, and yet staying within
the aircraft weight limits.

Simple Knapsack
Input: Weights w1, . . . , wn; capacity C
Output: A set S ⊆ {1..n} such that Σi∈Swi ≤ C and, additionally, Σi∈Swi is maximal possible over all
such S

This problem is a simplified example of the Knapsack problem, in which each item has both a weight and a
profit.

Now, we can disguise Simple Knapsack as Scheduling as follows. Make an instance of scheduling in which
job i will take time ti = wi, have deadline di = C and gain gi = wi. That is, if the input to Simple
Knapsack is (w1, . . . , wn, C), then the corresponding input to Scheduling is (w1, C, w1), . . . (wn, C, wn). For
example, if an instance of Simple Knapsack was (50, 50, 51; 100), the corresponding instance of Scheduling is
(50, 100, 50), (50, 100, 50), (51, 100, 51).

Now suppose there is a solution S′ to the scheduling instance; in our example, let S[1] = 50, S[2] = 0,
S[3] = −1. We can recover the solution to the original Knapsack problem by taking all i such that S[i] ≥ 0;
in our example, it will be (1, 2), corresponding to the first two items in (50, 50, 51).

Interestingly enough, Knapsack itself is NP-hard (and a version of the Simple Knapsack asking if there is
a set with sum at least B for some bound B is NP-complete). If you have done a course on complexity
theory, you might have seen the SubsetSum problem (asking if, given a set of numbers, there is a subset
summing up to a specified number t). You can see that this problem can be reduced to Simple Knapsack
decision problem by treating these numbers as weights, and asking if there is a subset of size both at most
t (so set C = t) and at least t (so B = t as well). But we just showed, by disguising Simple Knapsack as
Scheduling, that Scheduling is even harder, because if we could solve Scheduling, we can automatically solve
Simple Knapsack in its disguised form. (Note that in complexity theory we would use a more precise version
of a reduction as opposed to the disguising we just described; however the idea would be quite similar).

Problems of these types do arise in practice, though: what can we do then? One possibility is to use
heuristics (we will look at them later in the course) and hope that they work. Another is to analyze the
problem carefully to see if maybe only a special case needs to be solved, and if that special case is easier
than the general problem. Yet another approach is to design an algorithm which, although not guaranteed
to produce an optimal solution, can produce a solution which is ”not too far” from the optimal, and can do
it in a reasonably fast way.

2



0.3 Approximation algorithms

So since Simple Knapsack is NP-hard, we cannot hope to have a polynomial-time algorithm solving it exactly
without resolving the P vs. NP problem (which currently seems out of reach, and it’s million dollar prize
from the Clay Mathematical Institute is still unclaimed). However, there is a greedy algorithm that can get
us ”close enough” – it is guaranteed to produce a solution which is at least 1/2 of the optimal solution (there
is also a dynamic programming algorithm that can get us nearly as close as we like, with the ”closeness” as
a parameter, but we will not discuss it here).

SimpleKnapsack-1/2approx[w1, . . . , wn, C]

1 Sort the weights so that: w1 ≥ w2 ≥ . . . ≥ wn

2 S ← ∅; M ← 0 � Initialize the set and the sum
3 for t = 1 to n
4 if wi + M ≤ C then
5 S ← S ∪ {i}; M ←M + wi � Add ith element to knapsack
6 return S

We first sort the weights in decreasing (or rather nonincreasing order): w1 ≥ w2 ≥ ... ≥ wd We then try the
weights one at a time, adding each if there is room. Call this resulting estimate M .

It is easy to find examples for which this greedy algorithm does not give the optimal solution; for example
weights {501, 500, 500} with C = 1000. Then M = 501 but M = 1000. However, this is just about the worst
case:

Lemma 1 M ≥ 1
2M

Proof: We will show that if M 6= M , then M > 1
2C. Since C ≥M , the Lemma follows.

Suppose, for the sake of contradiction, that M ≤ C. Since M 6= M , there is at least one element i in the
optimal solution which is not in S produced by our algorithm. Since i is in the optimal solution, wi ≤ C.
Now, consider two cases. Either wi > 1/2C; but in this case, the algorithm would have considered it
early in the run (before putting in everything it did add). If at that point i did not fit, there must have
been something already in the knapsack; and that something must have been even larger, i.e., with weight
wj ≥ wi > 1/2C. But then M ≥ 1/2C. So the wi < 1/2C. But then, if there is more than 1/2C space
left in the knapsack, wi could easily fit, and so the algorithm would have put it there while considering it.
Therefore, in both cases assuming that M 6= M and M ≤ 1/2C lead to a contradiction. Indeed, the only
way M ≤ 1/2C is possible is when sum of all weights is ≤ 1/2C. But in that case, there is no solution better
than the sum of all weights, and the algorithm gets it.

The running time of this algorithm is dominated by the sorting’s O(n log n) time ; if the elements are given
to us already sorted, then the running time of the algorithm is O(n).

3


