
CS 6901 (Applied Algorithms) –
Lecture 16

Antonina Kolokolova∗

November 10, 2016

1 Scheduling problem: case study

In this section, we will consider a problem of scheduling a given list of jobs. We will look at
the general problem, talk about its complexity, and also at restrictions that make it easier.

Scheduling Jobs With Deadlines, Profits, and Durations

Let us start by considering a general job scheduling problem (single-processor case). There,
we have n jobs, each of which has a deadline, the length of time it takes, and a profit (gain)
we can get from it. We need to schedule jobs in such a way that no two jobs overlap, and
each job finishes before its deadline. A profit of a schedule is a sum of the profits of scheduled
jobs; we would like to create a schedule that maximizes the profit (as most often we would
not be able to accommodate all jobs).

More specifically, the input will consist of information about n jobs, where for job i we
have a nonnegative real valued profit gi ∈ R≥0, a deadline di ∈ N, and a duration ti ∈ N.
It is convenient to think of a schedule as being a sequence C = C(1), C(2), · · · , C(n); if
C(i) = −1, this means that job i is not scheduled, otherwise C(i) ∈ N is the time at which
job i is scheduled to begin.

We say that schedule C is feasible if the following two properties hold.

(a) Each job finishes by its deadline. That is, for every i, if C(i) ≥ 0, then C(i) + ti ≤ di.

(b) No two jobs overlap in the schedule. That is, If C(i) ≥ 0 and C(j) ≥ 0 and i 6= j, then
either C(i)+ ti ≤ C(j) or C(j)+ tj ≤ C(i). (Note that we permit one job to finish at exactly
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the same time as another begins.)

We define the profit of a feasible schedule C by P (C) =
∑

C(i)≥0 gi.

We now define the problem of Job Scheduling with Deadlines, Profits and Durations:

Input A list of jobs (d1, t1, g1),..., (dn, tn, gn)

Output A feasible schedule C = C(1), ..., C(n) such that the profit P (C) is the maximum
possible among all feasible schedules.

Before beginning the main part of our dynamic programming algorithm, we will sort the
jobs according to deadline, so that d1 ≤ d2 ≤ · · · ≤ dn = d, where d is the largest deadline.
Looking ahead to how our dynamic programming algorithm will work, it turns out that it
is important that we prove the following lemma.

Lemma 1 Let C be a feasible schedule such that at least one job is scheduled; let i > 0
be the largest job number that is scheduled in C. Say that every job that is scheduled in C
finishes by time t. Then there is feasible schedule C ′ that schedules exactly the same jobs as
C, and such that C ′(i) = min{t, di} − ti, and such that all other jobs scheduled by C ′ end at
or before time min{t, di} − ti.

Proof: This proof uses the fact the the jobs are sorted according to deadline. The details
are left as an exercise.

We now perform the four steps of a dynamic programming algorithm.

Step 1: Describe an array of values we want to compute.
Define the array A(i, t) for 0 ≤ i ≤ n, 0 ≤ t ≤ d by

A(i, t) = max{P (C)|C is a feasible schedule in which only jobs from {1, · · · , i}
are scheduled, and all scheduled jobs finish by time t }.

Note that the value of the profit of the optimal schedule that we are ultimately interested
in, is exactly A(n, d).

Step 2: Give a recurrence.
This recurrence will allow us to compute the values of A one row at a time, where by the
ith row of A we mean A(i, 0), · · · , A(i, d).

• A(0, t) = 0 for all t, 0 ≤ t ≤ d.

• Let 1 ≤ i ≤ n, 0 ≤ t ≤ d. Define t′ = min{t, di} − ti. Clearly t′ is the latest possible
time that we can schedule job i, so that it ends both by its deadline and by time t.
Then we have:
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If t′ < 0, then A(i, t) = A(i− 1, t).
If t′ ≥ 0, then A(i, t) = max{A(i− 1, t), gi + A(i− 1, t′)}.

We now must explain (or prove) why this recurrence is true. Clearly A(0, t) = 0.

To see why the second part of the recurrence is true, first consider the case where t′ < 0.
Then we cannot (feasibly) schedule job i so as to end by time t, so clearly A(i, t) = A(i−1, t).
Now assume that t′ ≥ 0. We have a choice of whether or not to schedule job i. If we don’t
schedule job i, then the best profit we can get (from scheduling some jobs from {1, · · · i} so
that all end by time t) is A(i− 1, t). If we do schedule job i, then the previous lemma tells
us that we can assume job i is scheduled at time t′ and all the other scheduled jobs end by
time t′, and so the best profit we can get is gi + A(i− 1, t′).

Step 3: Give a high-level program.
We now give a high-level program that computes values into an array B, so that we will have
B[i, t] = A(i, t). (The reason we call our array B instead of A, is to make it convenient to
prove that the values computed into B actually are the values of the array A defined above.
This proof is usually a simple induction proof that uses the above recurrence, and so usually
this proof is omitted.)

for every t ∈ {0, · · · , d}
B[0, t]← 0

end for
for i : 1..n

for every t ∈ {0, · · · , d}
t′ ← min{t, di} − ti
if t′ < 0 then
B[i, t]← B[i− 1, t]

else
B[i, t]← max{B[i− 1, t], gi + B[i− 1, t′]}

end if
end for

end for

Step 4: Compute an optimal solution.
Let us assume we have correctly computed the values of the array A into the array B.
It is now convenient to define a “helping” procedure PrintOpt(i, t) that will call itself
recursively. Whenever we use a helping procedure, it is important that we specify the
appropriate precondition/postcondition for it. In this case, we have:
Precondition: i and t are integers, 0 ≤ i ≤ n and 0 ≤ t ≤ d.
Postcondition: A schedule is printed out that is an optimal way of scheduling only jobs from
{1, · · · , i} so that all jobs end by time t.
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We can now print out an optimal schedule by calling
PrintOpt(n, d)
Note that we have written a recursive program since a simple iterative version would print
out the schedule in reverse order. It is easy to prove that PrintOpt(i, t) works, by induction
on i. The full program (assuming we have already computed the correct values into B) is as
follows:

procedure PrintOpt(i, t)
if i = 0 then return end if
if B[i, t] = B[i− 1, t] then
PrintOpt(i− 1, t)

else
t′ ← min{t, di} − ti
PrintOpt(i− 1, t′)
put “Schedule job”, i, “at time”, t′

end if
end PrintOpt

PrintOpt(n, d)

Analysis of the Running Time
The initial sorting can be done in time O(n log n). The program in Step 3 clearly takes time
O(nd). Therefore we can compute the entire array A in total time O(nd + n log n). When
d is large, this expression is dominated by the term nd. It would be nice if we could state
a running time of simply O(nd). Here is one way to do this. When d ≤ n, instead of using
an n log n sorting algorithm, we can so something faster by noting that we are sorting n
numbers from the range 0 to n; this can easily be done (using only O(n) extra storage) in
time O(n). Therefore, we can compute the entire array A within total time O(nd). Step 4
runs in time O(n). So our total time to compute an optimal schedule is in O(nd). Keep in
mind that we are assuming that each arithmetic operation can be done in constant time.

Should this be considered a polynomial-time algorithm? If we are guaranteed that on all
inputs d will be less than, say, n2, then the algorithm can be considered a polynomial-time
algorithm.

More generally, however, the best way to address this question is to view the input as a
sequence of bits rather than integers or real numbers. In this model, let us assume that all
numbers are integers represented in binary notation. So if the 3n integers are represented
with about k bits each, then the actual bit-size of the input is about nk bits. It is not hard
to see that each arithmetic operation can be done in time polynomial in the bit-size of the
input, but how many operations will the algorithm perform? Since d is a k bit number, d can
be as large as 2k. Since 2k is not polynomial in nk, the algorithm is not a polynomial-time
algorithm in this setting.
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Now consider a slightly different setting. As before, the profits are expressed as binary
integers. The durations and deadlines, however, are expressed in unary notation. This
means that the integer m is expressed as a string of m ones. Hence, d is now less than the
bit-size of the input, and so the algorithm is polynomial-time in this setting.

Actually, in order to decide if this algorithm should be used in a specific application, all
you really have to know is that it performs about nd arithmetic operations. You can then
compare it with other algorithms you know. In this case, perhaps the only other algorithm
you know is the “brute force” algorithm that tries all possible subsets of the jobs, seeing
which ones can be (feasibly) scheduled. Using the previous lemma, we can test if a set of jobs
can be feasibly scheduled in time O(n), so the brute-force algorithm can be implemented to
run in time about n2n. Therefore, if d is much less than 2n then the dynamic programming
algorithm is better; if d is much bigger than 2n then the brute-force algorithm is better; if
d is comparable with 2n, then probably one has to do some program testing to see which
algorithm is better for a particular application.
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