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0.1 Longest Common Subsequence

The input consists of two sequences ~x = x1, . . . , xn and ~y = y1, . . . , ym. The goal is to find a
longest common subsequence of ~x and ~y, that is a sequence z1, . . . , zk that is a subsequence
both of ~x and of ~y. Note that a subsequence is not always substring : if ~z is a subsequence
of ~x, and zi = xj and zi+1 = xj′ , then the only requirement is that j′ > j, whereas for a
substring it would have to be j′ = j + 1.

For example, let ~x and ~y be two DNA strings ~x = TGACTA and ~y = GTGCATG; n = 6
and m = 7. Then one common subsequence would be GTA. However, it is not the longest
possible common subsequence: there are common subsequences TGCA, TGAT and TGCT
of length 4.

To solve the problem, we notice that if x1 . . . xi and y1 . . . yj are prefixes of ~x and ~y re-
spectively, and xi = yj, then the length of the longest common subsequence of x1 . . . xi

and y1 . . . yj is one plus the length of the longest common subsequence of x1 . . . xi−1 and
y1 . . . yj−1.

Step 1. We define an array to hold partial solution to the problem. For 0 ≤ i ≤ n and
0 ≤ j ≤ m, A(i, j) is the length of the longest common subsequence of x1 . . . xi and y1 . . . yj.
After the array is computed, A(n,m) will hold the length of the longest common subsequence
of ~x and ~y.

Step 2. At this step we initialize the array and give the recurrence to compute it.

∗This set of notes is based on the course notes of U. of Toronto CS 364 as taught by Stephen Cook
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For the initialization part, we say that if one of
the two (prefixes of) sequences is empty, then
the length of the longest common subsequence is
0. That is, for 0 ≤ i ≤ n and 0 ≤ j ≤ m,
A(i, 0) = A(0, j) = 0.
The recurrence has two cases. The first is when the
last element in both subsequences is the same; then
we count that element as part of the subsequence.
The second case is when they are different; then
we pick the largest common sequence so far, which
would not have either xi or yj in it. So, for 1 ≤ i ≤
n and 1 ≤ j ≤ m,

A(i, j) for the above example.

∅ G T G C A T G

∅ 0 0 0 0 0 0 0 0
T 0 0 1 1 1 1 1 1
G 0 1 1 2 2 2 2 2
A 0 1 1 2 2 3 3 3
C 0 1 1 2 3 3 3 3
T 0 1 2 2 3 3 4 4
A 0 1 2 2 3 4 4 4

A(i, j) =

{
A(i− 1, j − 1) + 1 if xi = yj

max{A(i− 1, j), A(i, j − 1)} if xi 6= yj

Step 3. Skipped.

Step 4. As before, just retrace the decisions.

0.2 Longest Increasing Subsequence

Now let us consider a simpler version of the LCS problem. This time, our input is only one
sequence of distinct integers ~a = a1, a2, . . . , an., and we want to find the longest increasing
subsequence in it. For example, if ~a = 7, 3, 8, 4, 2, 6, the longest increasing subsequence of ~a
is 3, 4, 6.

The easiest approach is to sort elements of ~a in increasing order, and apply the LCS algorithm
to the original and sorted sequences. However, if you look at the resulting array you would
notice that many values are the same, and the array looks very repetitive. This suggest that
the LIS (longest increasing subsequence) problem can be done with dynamic programming
algorithm using only one-dimensional array.

Step 1: Describe an array of values we want to compute.
For 1 ≤ i ≤ n, let A(i) be the length of a longest increasing sequence of ~a that end with ai.
Note that the length we are ultimately interested in is max{A(i) | 1 ≤ i ≤ n}.
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Step 2: Give a recurrence.
For 1 ≤ i ≤ n,
A(i) = 1 + max{A(j) | 1 ≤ j < i and aj < ai}.
(We assume max ∅ = 0.)
We leave it as an exercise to explain why, or to
prove that, this recurrence is true.
Step 3: Give a high-level program to compute the
values of A.
This is left as an exercise. It is not hard to design
this program so that it runs in time O(n2). (In fact,
using a more fancy data structure, it is possible to
do this in time O(n log n).)

LCS and LIS arrays for the example

A(i,j) ∅ 7 3 8 4 2 6

∅ 0 0 0 0 0 0 0
2 0 0 0 0 0 1 1
3 0 0 1 1 1 1 1
4 0 0 1 1 2 2 2
6 0 0 1 1 2 2 3
7 0 1 1 1 2 2 3
8 0 1 1 2 2 2 3

A(i) 1 1 2 2 1 3

Step 4: Compute an optimal solution.
The following program uses A to compute an optimal solution. The first part computes a
value m such that A(m) is the length of an optimal increasing subsequence of ~a. The second
part computes an optimal increasing subsequence, but for convenience we print it out in
reverse order. This program runs in time O(n), so the entire algorithm runs in time O(n2).

m← 1
for i : 2..n

if A(i) > A(m) then
m← i

end if
end for

put am
while A(m) > 1 do

i← m− 1
while not(ai < am and A(i) = A(m)− 1) do

i← i− 1
end while
m← i
put am

end while
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