
CS 6901 (Applied Algorithms) –
Lecture 1

Antonina Kolokolova

September 13, 2016

In this course we will review, and study more deeply the main algorithm design paradigms
and techniques. In particular, we will look at greedy algorithms, dynamic programming,
backtracking; we will also consider such famous techniques as Fast Fourier Transform (FFT)
and Linear Programming. The goal of this is to get practice converting general descriptions of
problems into clean representations such as graphs, and using these representations to design
efficient algorithms for the original problem, using a variety of techniques in algorithms and
data structures.

Sometimes, the problems do not need to be solved in their full generality, as the input
data might have some structure that might help or hinder specific algorithms. For example,
MergeSort runs in O(n log n) time on any input, including an already sorted or nearly sorted
one, whereas bubble sort, with its O(n2) running time in worst case, works in linear (that
is, O(n)) time when there are only constantly many elements out of order. Throughout the
course, we will consider variants of the problems under restrictions on the type of inputs,
and analyze how that affects algorithm design.

The assignments will focus mainly on design rather than programming. However, for maybe
one problem per assignment I will ask you to implement an algorithm and run experiments
to see how it performs.

We will start with a clean, yet quite applied problem of Stable Marriage. Just recently,
in 2012, the Nobel Prize in Economics was given to Alvin Roth and Lloyd Shapley, with
Shapley’s contribution being primarily the algorithm for the very problem we are going to
talk about now.

1



1 Stable matching problem

Imagine a situation where there are two types of entities (say organizations and applicants,
for example interns applying to companies for their internships or students applying to
professors to be their supervisors for graduate studies). Each of them has a ranking on
entities of the opposite type: for example, a student would have a ranking of professors with
whom he would prefer more to work, and each professor, in turn, would have a ranking of
students that applied to her.) Now, the question is to find the ”best” way of matching the
two: matching professors with students, companies with interns and so on.

First, let’s simplify the problem. Suppose there is exactly the same number of both types,
and each of them has to be matched with exactly one of the other type. The classical toy
problem description talks about n men and n women, each intending to marry one person of
the opposite gender (hence the ”stable marriage problem” name). In graph representation,
we have a bipartite graph with n vertices on both sides, and looking for a perfect matching
in it.

But finding a perfect matching is not quite enough for this problem, because we also want
to take into account the rankings. Also, we have not yet defined what it means for the
matching to be ”good”. Would it mean that every student (man) gets his best choice? Or
would best be the best for the other side? When economists Gale and Shapley considered
this problem, their main concern was not making everybody happy, but, rather, stability:
it would have to be a matching such that nobody would like to change their assignment to
another person, and have that other person accept the switch. That is, the instability is
when there is a student si and a professor pj which both prefer each other to their current
assignments. In the language of ”stable marriage”, this is described as a a married man and
a married woman who both prefer each other to their spouses – not a stable situation.

Example 1 Suppose there are two professors p1 and p2, and two students s1 and s2. Con-
sider the following possibilities. One is when both s1 and s2 would prefer p1, and both p1
and p2 would prefer s1. In that case, the student everybody likes gets matched with the
professor everybody likes; neither of them has an incentive to switch to the other choice, so
it is stable. If, on the other hand, s2 were matched to p1 and s1 to p2, it would not be stable
since s1 and p1 prefer each other to their pairs.

Example 2 Alternatively, suppose that s1, p1, p2 have the same preferences as before, but
s2 prefers p2 to p1. In this case, the matching {(s1, p2), (s2, p1)} is still unstable, since as
before s1 and p1 prefer each other to their assignments.

Example 3 Now suppose s1 prefers p1, s2 prefers p2, but p2 would rather be matched with
s1, and p1 prefers s2. In this case, there are two possible matchings that are both stable:
either students get their choice (and then they have no desire to switch), or the professors
are, similarly, happier with their current match.

2



Note that for this definition of instability they have to prefer each other, rather than just
be unhappy with their current partner. To illustrate that, if there are three people on each
side, and the matching is {(s1, p1), (s2, p2), (s3, p3)} with preferences of s1 being [p2, p1, p3]
and preferences of p2 being [s3, s2, s1], then s1 and p2 would not form an instability, as p2,
though unhappy with the choice of an assignment, would not be tempted to switch to s1 as
s1 is even lower in her list.

In the last example there were two possible matchings, both of which were stable. This leads
to a question:is it always the case that there would be a stable matching? We will show
there is always one by producing an algorithm that is guaranteed to find such matching for
any rankings. But the existence of such a matching is far from a trivial problem: a slight
modification of this problem called ”stable roommates” problem, in which the graph is not
bipartite (there is a group of 2n people, and each of them can be paired with any of the
other 2n− 1) has instances for which no stable matching exists. Consider, for example, the
following list of people with their preferences: A : [B,C,D], B : [C,A,D], C : [A,B,D],
D : [A,B,C]. Then, the person who gets paired with D would always find somebody from
another pair to switch to (e.g., if A were with D, then A would entice C to switch. )

3


