
CS 6901 (Applied Algorithms) –

Lecture 9

Antonina Kolokolova

October 9, 2014

1 Single-source shortest path: Dijkstra’s algorithm

Recall the minimum spanning tree algorithm due to Prim-Jarnik:

MST-Prim-Jarnik(G,c,s)
Initialize s.key = 0, s.pred = null and T = ∅
∀v 6= s, v.key = ∞; v.pred = null
Insert all vertices into Q
while Q 6= ∅

u = ExtractMin(Q)
T = T ∪ {(u.pred, u)}
for each v adjacent to u

if v ∈ Q and c(u, v) < v.key then
v.key = c(u, v); v.pred = u

return T

The running time of this algorithm is O(m log n), as extracting/updating vertices on the priority queue takes
time O(log n) with the standard implementation using heaps (there are ways to get this algorithm to run in
O(m + n log n) using Fibonacci heaps, though).

To prove the correctness of this algorithm, we can use a similar notion of ”promising” as before for the loop
invariant: the partial spanning tree Si can be extended to some optimal spanning tree Sopt by using edges
that do not go between the vertices already in Si. Then, proceed by induction.

Now, consider a quite different problem: single-source shortest path. There, given a starting vertex s, we
would like to find the shortest paths from s to all other vertices in the graph, that is, paths with the smallest
sum of the weights of their edges. We will call such path the shortest path. Equivalently, we will be looking
for the distances from s to all other vertices: just the values of sum of weights on a shortest path to a given
vertex from s. Also, in this case, we will consider directed graphs.

You already saw one algorithm that computes shortest paths: if there are no weights, BFS started from s
gives the shortest paths (in terms of the number of edges) from s to any other vertex in the graph. However,
here weights complicate the matter, as the shortest path can be one with more edges, as long as they have
smaller total weight. In the case when the weights are positive numbers (of arbitrary size, given in binary as
a part of the input graph description), the classic algorithm to achieve this goal is Dijkstra’s algorithm. And
it looks very, very similar to Prim-Jarnik’s algorithm. Below, the highlighted parts are the changes between
Dijkstra’s and Prim-Jarnik (in addition to removing the T : all shortest distances are stored as the keys).

1



ShortestPath-Dijkstra(G,c,s)
Initialize s.key = 0, s.pred = null
∀v 6= s, v.key = ∞; v.pred = null
Insert all vertices into Q
while Q 6= ∅

u = ExtractMin(Q)
for each v adjacent to u

if v ∈ Q and u.key+c(u, v) < v.key then
v.key = u.key+c(u, v); v.pred = u

return G

As you see, the only change is that the key now stores the shortest distance rather than the smallest edge
going to that vertex from the explored part. This change comes up in two places: first in the comparison in
the if statement, then in the subsequent update of v.key.

As Dijkstra’s algorithm is a greedy algorithm, its correctness can be proved using the same ”promising set”
idea for the loop invariant. In this case, though, we will call a partial solution Si (list of distances) promising
if there is an optimal solution Sopt which has the same distances as Si for all vertices already removed from
the queue, and distances no greater than those in Si for vertices still in the queue.

2


