
CS 6901 (Applied Algorithms) –

Lecture 8

Antonina Kolokolova

October 7, 2014

0.1 Kruskal’s algorithm correctness and running time

Recall the first of the algorithms for Minimum Spanning Tree problem that we considered last class, Kruskal’s
algorithm. This is a classic example of a greedy algorithm, that is, an algorithm that works by considering its
items one by one, making a decision about each one, and never reversing the decision. As greedy algorithms
are usually very fast, they are often used in practice. In vast majority of cases, though, a greedy heuristic
does not produce an optimal solution. In this class we will show that Kruskal’s algorithm indeed does give
an optimal solution, and describe the general framework for proving correctness of greedy algorithms.

First, let us analyse the running time of Kruskal’s algorithm.

MST-Kruskal(G,c)
Sort the edges: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
T = ∅
for i = 1 to m

if T ∪ {ei} has no cycle then
T = T ∪ {ei}

return T

But how do we test for a cycle? After each execution of the loop, the set T of edges divides the vertices V
into a collection V1 . . . Vk of connected components. Thus V is the disjoint union of V1 . . . Vk, each Vi forms
a connected graph using edges from T , and no edge in T connects Vi and Vj , if i 6= j.

A simple way to keep track of the connected components of T is to use an array D[1..n] where D[i] = D[j]
iff vertex i is in the same component as vertex j. So our initialization becomes:

T ← ∅
for i : 1..n

D[i]← i
end for

To check whether ei = [r, s] forms a cycle with T , check whether D[r] = D[s]. If not, and we therefore want
to add ei to T , we merge the components containing r and s as follows:

k ← D[r]
l← D[s]

1



for j : 1..n
if D[j] = l then
D[j]← k

end if
end for

The complete program for Kruskal’s algorithm then becomes as follows:

Sort the edges so that: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
T ← ∅
for i : 1..n

D[i]← i
end for
for i : 1..m

Assign to r and s the endpoints of ei
if D[r] 6= D[s] then
T ← T ∪ {ei}
k ← D[r]
l← D[s]
for j : 1..n

if D[j] = l then
D[j]← k

end if
end for

end if
end for

We wish to analyze the running of Kruskal’s algorithm, in terms of n (the number of vertices) and m (the
number of edges); keep in mind that n−1 ≤ m (since the graph is connected) and m ≤

(
n
2

)
< n2. Let us assume

that the graph is input as the sequence n, I1, I2, . . . , Im where n represents the vertex set V = {1, 2, . . . , n},
and Ii is the information about edge ei, namely the two endpoints and the cost associated with the edge.
To analyze the running time, let’s assume that any two cost values can be either added or compared in one
step. The algorithm first sorts the m edges, and that takes O(m logm) steps. Then it initializes D, which
takes time O(n). Then it passes through the m edges, checking for cycles each time and possibly merging
components; this takes O(m) steps, plus the time to do the merging. Each merge takes O(n) steps, but
note that the total number of merges is the total number of edges in the final spanning tree T , namely
(by the above lemma) n − 1. Therefore this version of Kruskal’s algorithm runs in time O(m logm + n2).
Alternatively, we can say it runs in time O(m2), and we can also say it runs in time O(n2 log n). Since it is
reasonable to view the size of the input as m, this is a polynomial-time algorithm.

0.2 Union-Find data structure

A better way to implement testing for connectivity is by using the Union-Find data structure. That allows
to bring the running time of Kruskal’s algorithm down to O(m log n) time.

Union-Find data structure supports three operations:

1) MakeUnionFind(S): for a set of elements S, returns a Union-Find data structure with each element
of S in its own disjoint set. This is used in Kruskal’s algorithm when initializing the structure with all
vertices of the graph (no edges at that point).

2



2) Find(u) returns the name of a set containing u (usually a set is named after one of its elements).
In Kruskal’s algorithm, the check whether Find(u) == Find(v) checks if u and v are in the same
connected component.

3) Union(A,B): merge sets A and B (e.g., merge two connected components in Kruskal’s).

The array implementation we discussed before is not the most efficient one for this data structure. A better
implementation is pointer-based: for every element, a node is created. When two sets are merged in a union
operation, the pointer of a node at the root of the tree representing the smaller set is pointed to the root
representing the larger set. That is, merging two disjoint nodes results in a tree with a root and one child;
merging another disjoint node to it gives a tree with the same root as before, but two children and so on.
To know which set is larger, we need an additional field keeping the size of a tree rooted in a given node.
In this representation, Union() operation takes constant time (update the pointer of a smaller set’s root
and the size of the larger set’s root). The Find() takes O(log n) time because in the worst case one has
to follow the path from a leaf to the root of the tree; however because of every time the smaller tree gets
attached to the root of the larger one, if a path increased by 1 the size of the whole tree at least doubled.
And MakeUnionFind() takes O(n) time, which is OK since it is only done once.

By making this data structure a little fancier with the path compression heuristic (that is, after looking up
each vertex, connect all vertices on the path from that vertex to the root directly to the root of the tree),
and using amortized analysis, it is possible to bring the time to do m operations down to O(mα(n)), where
α(n) is an inverse of the Ackerman function which grows so slowly that it is ≤ 4 for all practical purposes,
that is, for n small enough to fit in our universe.

0.3 Correctness of Kruskal’s Algorithm

It is not immediately clear that Kruskal’s algorithm yields a spanning tree at all, let alone a minimum cost
spanning tree. We will now prove that it does in fact produce an optimal spanning tree. To show this, we
reason that after each execution of the loop, the set T of edges can be expanded to an optimal spanning
tree using edges that have not yet been considered; this will be our loop invariant. Hence after termination,
since all edges have been considered, T must itself be a minimum cost spanning tree.

We can formalize this reasoning as follows:

Definition 1 A set T of edges of G is promising after stage i if T can be expanded to a optimal spanning
tree for G using edges from {ei+1, ei+2, . . . , em}. That is, T is promising after stage i if there is an optimal
spanning tree Topt such that T ⊆ Topt ⊆ T ∪ {ei+1, ei+2, . . . , em}.

Lemma 1 For 0 ≤ i ≤ m, let Ti be the value of T after i stages, that is, after examining edges e1, . . . , ei.
Then the following predicate P (i) holds for every i, 0 ≤ i ≤ m:

P (i) : Ti is promising after stage i.

Proof:
We will prove this by induction. P (0) holds because T is initially empty. Since the graph is connected, there
exists some optimal spanning tree Topt, and
T0 ⊆ Topt ⊆ T0 ∪ {e1, e2, . . . , em}.

For the induction step, let 0 ≤ i < m, and assume P (i). We want to show P (i + 1). Since Ti is promising
for stage i, let Topt be an optimal spanning tree such that
Ti ⊆ Topt ⊆ Ti ∪ {ei+1, ei+2, . . . , em}. If ei+1 is rejected, then Ti ∪ {ei+1} contains a cycle and Ti+1 = Ti.

3



Since Ti ⊆ Topt and Topt is acyclic, ei+1 /∈ Topt. So
Ti+1 ⊆ Topt ⊆ Ti+1 ∪ {ei+2, . . . , em}.

Now consider the case that Ti∪{ei+1} does not contain a cycle, so we have Ti+1 = Ti∪{ei+1}. If ei+1 ∈ Topt,
then we have Ti+1 ⊆ Topt ⊆ Ti+1 ∪ {ei+2, . . . , em}.
So assume that ei+1 /∈ Topt. Then according to the Exchange Lemma below (letting T1 be Topt and T2
be Ti+1), there is an edge ej ∈ Topt − Ti+1 such that T ′

opt = Topt ∪ {ei+1} − {ej} is a spanning tree.
Clearly Ti+1 ⊆ T ′

opt ⊆ Ti+1 ∪ {ei+2, . . . , em}. It remains to show that T ′
opt is optimal. Since Topt ⊆

Ti ∪ {ei+1, ei+2, . . . , em} and ej ∈ Topt − Ti+1, we have j > i + 1. So (because we sorted the edges)
c(ei+1) ≤ c(ej), so c(T ′

opt) = c(Topt) + c(ei+1)− c(ej) ≤ c(Topt). Since Topt is optimal, we must in fact have
c(T ′

opt) = c(Topt), and T ′
opt is optimal.

This completes the proof of the above lemma, except for the Exchange Lemma.

Lemma 2 (Exchange Lemma) Let G be a connected graph, let T1 be any spanning tree of G, and let T2 be
be a set of edges not containing a cycle. Then for every edge e ∈ T2 − T1 there is an edge e′ ∈ T1 − T2 such
that T1 ∪ {e} − {e′} is a spanning tree of G.

Proof:
Let T1 and T2 be as in the lemma, and let e ∈ T2 − T1. Say that e = [u, v]. Since there is a path from
u to v in T1, T1 ∪ {e} contains a cycle C, and it is easy to see that C is the only cycle in T1 ∪ {e}. Since
T2 is acyclic, there must be an edge e′ on C that is not in T2, and hence e′ ∈ T1 − T2. Removing a single
edge of C from T1 ∪{e} leaves the resulting graph acyclic but still connected, and hence a spanning tree. So
T1 ∪ {e} − {e′} is a spanning tree of G.

We have now proven Lemma 4. We therefore know that Tm is promising after stage m; that is, there is an
optimal spanning tree Topt such that Tm ⊆ Topt ⊆ Tm ∪ ∅ = Tm, and so Tm = Topt. We can therefore state:

Theorem 1 Given any connected edge weighted graph G, Kruskals algorithm outputs a minimum spanning
tree for G.

0.4 A Greedy Algorithm for Scheduling Jobs with Deadlines and Profits

To see another, a little more involved proof of a correctness of a greedy algorithm, recall the Scheduling with
Deadlines and Profits that we discussed earlier.

The setting is that we have n jobs, each of which takes unit time, and a processor on which we would like
to schedule them in as profitable a manner as possible. Each job has a profit associated with it, as well as
a deadline; if the job is not scheduled by the deadline, then we don’t get the profit. Because each job takes
the same amount of time, we will think of a Schedule S as consisting of a sequence of job “slots” 1, 2, 3, . . .
where S(t) is the job scheduled in slot t.
(If one wishes, one can think of a job scheduled in slot t as beginning at time t− 1 and ending at time t, but
this is not really necessary.)

More formally, the input is a sequence (d1, g1), (d2, g2), · · · , (dn, gn) where gi is a nonnegative real number
representing the profit obtainable from job i, and di ∈ N is the deadline for job i; it doesn’t hurt to assume
that 1 ≤ di ≤ n. (The reason why we can assume that every deadline is less than or equal to n is because
even if some deadlines were bigger, every feasible schedule could be “contracted” so that no job was placed
in a slot bigger than n.)

Definition 2 A schedule S is an array: S(1), S(2), ..., S(n) where
S(t) ∈ {0, 1, 2, · · ·n} for each t ∈ {1, 2, · · · , n}.

4



The intuition is that S(t) is the job scheduled by S in slot t; if S(t) = 0, this means that no job is scheduled
in slot t.

Definition 3 S is feasible if
(a) If S(t) = i > 0, then t ≤ di. (Every scheduled job meets its deadline)
(b) If t1 6= t2 and S(t1) 6= 0, then S(t1) 6= S(t2). (Each job is scheduled at most once.)

We define the profit of a feasible schedule S by
P (S) = gS(1) + gS(2) + ...+ gS(n), where g0 = 0 by definition.

Goal: Find a feasible schedule S whose profit P (S) is as large as possible; we call such a schedule optimal.

We shall consider the following greedy algorithm. This algorithm begins by sorting the jobs in order of
decreasing (actually nonincreasing) profits. Then, starting with the empty schedule, it considers the jobs
one at a time; if a job can be (feasibly) added, then it is added to the schedule in the latest possible (feasible)
slot.

Greedy:
Sort the jobs so that: g1 ≥ g2 ≥ . . . ≥ gn
for t : 1..n

S(t)← 0 {Initialize array S(1), S(2), ..., S(n)}
end for
for i : 1..n

Schedule job i in the latest possible free slot meeting its deadline;
if there is no such slot, do not schedule i.

end for

Example. Input of Greedy:

Job i: 1 2 3 4 Comments
Deadline di: 3 2 3 1 (when job must finish by)
Profit gi: 9 7 7 2 (already sorted in order of profits)

Initialize S(t):
t 1 2 3 4

S(t) 0 0 0 0

Apply Greedy: Job 1 is the most profitable, and we consider it first. After 4 iterations:

t 1 2 3 4
S(t) 3 2 1 0

Job 3 is scheduled in slot 1 because its deadline t = 3, as well as slot t = 2, has already been filled.

P (S) = g3 + g2 + g1 = 7 + 7 + 9 = 23.

Theorem 2 The schedule output by the greedy algorithm is optimal, that is, it is feasible and the profit is
as large as possible among all feasible solutions.

We will prove this using our standard method for proving correctness of greedy algorithms.
We say feasible schedule S′ extends feasible schedule S iff for all t (1 ≤ t ≤ n),
if S(t) 6= 0 then S′(t) = S(t).

5



Definition 4 A feasible schedule is promising after stage i if it can be extended to an optimal feasible schedule
by adding only jobs from {i+ 1, · · · , n}.

Lemma 3 For 0 ≤ i ≤ n, let Si be the value of S after i stages of the greedy algorithm, that is, after
examining jobs 1, · · · , i. Then the following predicate P (i) holds for every i, 0 ≤ i ≤ n:

P (i) : Si is promising after stage i.

This Lemma implies that the result of Greedy is optimal. This is because P (n) tells us that the result of
Greedy can be extended to an optimal schedule using only jobs from ∅. Therefore the result of Greedy
must be an optimal schedule.

Proof of Lemma: To see that P (0) holds, consider any optimal schedule Sopt. Clearly Sopt extends the
empty schedule, using only jobs from {1, · · · , n}.

So let 0 ≤ i < n and assume P (i). We want to show P (i+ 1). By assumption, Si can be extended to some
optimal schedule Sopt using only jobs from {i+ 1, · · · , n}.

Case 1: Job i+ 1 cannot be scheduled, so Si+1 = Si.
Since Sopt extends Si, we know that Sopt does not schedule job i+ 1. So Sopt extends Si+1 using only jobs
from {i+ 2, · · · , n}.

Case 2: Job i+ 1 is scheduled by the algorithm, say at time t0 (so Si+1(t0) = i+ 1 and t0 is the latest free
slot in Si that is ≤ di+1).

Subcase 2A: Job i+ 1 occurs in Sopt at some time t1 (where t1 may or may not be equal to t0).

Then t1 ≤ t0 (because Sopt extends Si and t0 is as large as possible) and Sopt(t1) = i+ 1 = Si+1(t0).

If t0 = t1 we are finished with this case, since then Sopt extends Si+1 using only jobs from {i + 2, · · · , n}.
Otherwise, we have t1 < t0. Say that Sopt(t0) = j 6= i + 1. Form S′

opt by interchanging the values in slots
t1 and t0 in Sopt. Thus S′

opt(t1) = Sopt(t0) = j and S′
opt(t0) = Sopt(t1) = i + 1. The new schedule S′

opt is
feasible (since if j 6= 0, we have moved job j to an earlier slot), and S′

opt extends Si+1 using only jobs from
{i+ 2, · · · , n}. We also have P (Sopt) = P (S′

opt), and therefore S′
opt is also optimal.

Subcase 2B: Job i+ 1 does not occur in Sopt.

Define a new schedule S′
opt to be the same as Sopt except for time t0, where we define S′

opt(t0) = i+ 1. Then
S′
opt is feasible and extends Si+1 using only jobs from {i+ 2, · · · , n}.

To finish the proof for this case, we must show that S′
opt is optimal. If Sopt(t0) = 0, then we have P (S′

opt) =
P (Sopt) + gi+1 ≥ P (Sopt). Since Sopt is optimal, we must have P (S′

opt) = P (Sopt) and S′
opt is optimal. So

say that Sopt(t0) = j, j > 0, j 6= i + 1. Recall that Sopt extends Si using only jobs from {i + 1, · · · , n}. So
j > i+ 1, so gj ≤ gi+1. We have P (S′

opt) = P (Sopt) + gi+1 − gj ≥ P (Sopt). As above, this implies that S′
opt

is optimal. �

We still have to discuss the running time of the algorithm. The initial sorting can be done in time O(n log n),
and the first loop takes time O(n). It is not hard to implement each body of the second loop in time O(n), so
the total loop takes time O(n2). So the total algorithm runs in time O(n2). Using a more sophisticated data
structure one can reduce this running time to O(n log n), but in any case it is a polynomial-time algorithm.

6


