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In this lecture, we will first finish our discussion of the Strongly Connected Components algorithm by talking
about its running time and giving an outline of the correctness proof.

0.1 Strongly Connected Components

Recall from the last class the algorithm for computing strongly connected components and our example:

The following algorithm computes strongly connected components of a graph G.

SCC(G)

1 Run DFS on G
2 Compute Gr � where Gr is G with all edge directions reversed
3 Run DFS on Gr, considering vertices in the order of decreasing finishing time computed by DFS(G)
4 return DFS forest from the second run; each tree is a separate strongly connected component.

Example 1 Suppose we obtained the following start/finish times
by running the above algorithm: a : (3, 4), b : (19, 20), c : (1, 14),
d : (2, 13), e : (5, 12), f : (6, 11), g : (7, 10), h : (8, 9), i : (15, 18),
j : (16, 17) from the first DFS run. Now, running DFS on the
reverse graph Gr, we first start with b. As all edges of b are out-
going in G, all edges are incoming in Gr, and so there is nothing
else in its connected component. Then run DFS starting with i,
obtaining component {i, j}. Then proceed to c; here, a, b and d
are accessible, since edge (e, d) is incoming to this component. As
b has been processed already, it does not become part of this tree,
leaving only {c, a, d} as elements of this component. The final
tree is rooted at e, and consists of {e, h, g, f}.
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First, let us look at the running time of this algorithm. We know that DFS ∈ O(n+m), and Gr has the same
number of vertices and edges as G, so two subsequent runs of DFS will still take time O(n + m) (remember
that for a constant number of blocks executed one after another we take the maximum, or, alternatively,
that doubling the running time does not change the corresponding O-class). Now, to compute Gr we need to
go through G and create a new adjacency list for each vertex, now containing what was formerly incoming
edges to this vertex. But this can be done in time O(n+m) as well, by going through all lists of G in order
and inserting the corresponding entries into the lists of Gr. Therefore, the total time is O(n + m).

The key fact we need to for the correctness proof is that if u and v are in different connected components C
and D, and there is an edge (u, v), then there will be a vertex w ∈ C with a large finishing time than any
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vertex v′ ∈ D, where the finishing time is with respect to running DFS on G. To see this, take a vertex in
w with the largest finishing time of all vertices in C. Then, all vertices in C are in a DFS tree starting from
w. Since there is an edge (u, v), DFS will try to follow this edge.

Now, if v is white at that time, then DFS algorithm will explore all of D before backtracking (as D is strongly
connected, and there is no path in G from D to C). Then all vertices in D will be descendants of w, so for
any v′ ∈ D, w.d < v′.d < v′.f < w.f . Note that v cannot be gray at that time, as it would imply that it
is already on a path from w to v, but such a path would have to leave C, go to D, and come back to C,
contradicting the fact that C and D are separate strongly connected components. Thus, if v is not white it
would have to be black; in that case, its finishing time for every v′ in D was already computed (as they are
parts of the same DFS tree), whereas w.f is not assigned yet, so w.f > v′.f .

Finally, we need to show that SCC(G) correctly computes strongly connected components. That is, all
vertices in the same connected component become parts of the same DFS(Gr) tree (where vertices are
considered in DFS(Gr) in order of decreasing finished time from DFS(G)), and any two vertices from
different components will be in different DFS(Gr) trees. To see the first fact, note that there is a path from
any vertex to any other vertex within a connected component, so once DFS picks a vertex in a component
it explores all of it before stopping. This was true even for a single run of DFS(G), so a more interesting
part is to show that in the trees of DFS(Gr) each component forms a separate tree.

For the intuition, imagine running DFS on a DAG considering vertices in reverse topological order. The last
vertex in this order is a sink: so DFS does not have anywhere to go, and this vertex forms a separate tree.
The second to last vertex is either a sink itself (so the same reasoning applies), or has an edge to the last
vertex, but since that one is already marked black, the second to last vertex becomes its own tree as well.
Now, it can be shown to be true for all vertices of the DAG by induction. Assume that the last i vertices in
the topological order (that is, the first i vertices DFS visits) each form a separate tree. Now consider vertex
i+ 1 from the end. all of its outgoing edges go to vertices in the tree already processed, so all of them go to
black vertices. Therefore, there is nothing to explore and the vertex i + 1 forms the next DFS tree.

Now, all that is left is to generalize the argument before slightly, to talk about strongly connected components
rather than vertices in a DAG. Let us argue by induction again. The vertex with the largest finishing time
is in a component C1 with no edges to other components in Gr, by the fact we discussed at the start of the
proof. Thus, the first tree will contain all vertices in that strongly connected component, but no other; and
all its vertices will be marked black.

Now, suppose the first i trees outputted by the algorithm form separate strongly connected components
C1 . . . Ci. Consider the time when DFS(Gr) starts exploring component Ci+1. At that time, all edges from
vertices v ∈ Ci+1 in Gr are going to vertices u ∈ C1, . . . Ci, which are already marked black (which follows
from the same key fact). Therefore, only vertices in Ci+1 will become part of the i + 1st DFS(Gr) tree,
completing the proof.
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