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In this lecture, we will see two applications of the Depth First Search (DFS) algorithms: computing a
topological order of vertices of a directed acyclic graph (DAG) and finding strongly connected components
in a graph. These applications are examples of how a basic algorithm, DFS, can be modified and, in case of
strongly connected components, used multiple times to do a more complex tasks with graphs. I will follow
CLRS book for this material.

0.1 DAGs and topological sort

Directed Acyclic Graphs, commonly referred to as ”DAGs”, are a very useful type of graph for modelling
a variety of problems where there are dependencies between objects or tasks. Here, the edges indicate the
direction of a dependency: for example, if the graph represents a diagram of instructions of assembling
furniture, an edge from task A to task B might indicate that task A (say, attaching a table leg) has to
be completed before task B (say, securing the table leg with screws). One important advantage of DAGs
is that some problems that are NP-hard on general graphs have polynomial-time algorithms on DAGs, for
example computing the longest path in the graph. Another example of a DAG is a Boolean circuit: there,
the direction of the edges is from the inputs towards the output(s).
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In a DAG, vertices with no incoming edges are called sources,
and vertices with no outgoing edges are sinks. Every DAG must
have at least one source and at least one sink (which could be the
same isolated node).
Vertices in a DAG can be listed in the topological ordering, that is,
in an ordering L : V → {1, . . . , n} such that whenever (u, v) ∈ E,
L(u) < L(v). There can be more than one topological ordering of
a given DAG. But if there is a path in the DAG from u to v, then
in any topological ordering u will come before v in the order.

In the example DAG G above, there are four sources a, b, c, d and two sinks f and j. One possible topological
ordering of this graph is a, b, c, d, e, k, f, g, h, i, j, another d, a, e, f, b, g, c, k, h, i, j. As you see, even though
the list has to start with a source and end with a sink, they do not have to all be in front (respectively, in
the back) of the list, provided the property of topological ordering is satisfied.

It is possible to show that a graph is a DAG if and only if such a topological ordering exists in a graph.
Intuitively, consider a cycle in a graph: no matter how you number vertices in this cycle, there will be an
edge from the smaller to a large vertex (otherwise, the smallest vertex will have no incoming cycle edges
and largest no outgoing cycle edges, but then it is not a cycle). For the other direction, suppose there is a
topological ordering in a graph. Then it must be acyclic because from any vertex, vertices that came before
it are unreachable.
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In order to compute a topological ordering of a graph, we will use a topological sorting algorithm based on
DFS.

TopoSort(G)

1 Run DFS on G
2 as each vertex v finishes, insert v to the front of a linked list L
3 return L

Example 1 Suppose we run DFS on the graph above. As the initial order of vertices can be arbitrary, let’s
say that we start with vertex k. The following will be the starting and finishing times in the resulting DFS
tree: k : (1, 8), h : (2, 7), i : (3, 6), j : (4, 5). At this point, our list will contain (k, h, i, j), where j was
inserted first. Then let us start from b: we will have b : (9, 12) and g : (10, 11) in the next DFS tree; the list
now becomes (b, g, k, h, i, j). Continuing in this fashion, and picking a next, then c, then d, we end up with
the topological ordering (d, c, a, e, f, b, g, k, h, i, j). That is, L(d) = 1, L(c) = 2 and so on.

The running time of this algorithm will be comparable with the running time of DFS, as inserting an element
to the front of the list takes constant time. Thus, the whole algorithm runs in time O(n + m).

Now, to convince ourselves that the algorithm indeed does a correct topological sorting of the vertices of its
input graph G, we need to show that for any vertices u, v such that (u, v) is an edge, L(u) < L(v), where
now L(u) and L(v) we interpret as positions in the list produced by our algorithm. We can show it in two
steps.

First, notice that in a DAG, DFS never sees an edge ending in a gray vertex (that is, a vertex for which we
have the discovery time, but not yet finishing time). A vertex would be gray if it is on a path from the root
of the DFS tree being constructed to the current vertex. But then this part of the path together with the
edge to a gray vertex completes a cycle, and we assumed that our graph is a DAG. (Additionally, we can
show that if a graph is not a DAG, then DFS will see such an edge).

Thus, every edge (u, v) encountered in the run of the DFS on a DAG is either to a white vertex v (v has no
discovery time yet), or to a black vertex ( v has finishing time). In case when v is white, we know from last
time that u is an ancestor of v, so u.d < v.d < v.f < u.f . Thus, v.f < u.f and so v will be after u on L.
When v is black, then v.f < u.f , as v.f is finished while we are still exploring subtree under u. In this case,
u also precedes v in L, completing the proof.

0.2 Strongly Connected Components

Another algorithm that uses DFS even more creatively is that for computing strongly connected components
in a directed graph (we are not considering just DAGs anymore). A connected component in an undirected
graph is any group of vertices where it is possible to get from one vertex in the component to any other;
either DFS or BFS will produce connected components of an undirected graph as separate trees, and for each
connected component, the corresponding tree will contain all vertices. For a directed graph, the definition is
a bit more complicated. A group of vertices in a graph forms a weakly connected component if its underlying
undirected graph (that is, ignoring the directions of edges) is connected (and maximal). A group of vertices
forms a strongly connected component if within this group every vertex is reachable from any other vertex
in the component; again, we want every vertex with this property to be part of the component.
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Example 2 This graph has two weakly
connected components ({i, j} and the rest),
but four strongly connected components
({i, j}, {a, c, d}, {b}, {e, f, g, h}).

j

a b

c d e

f

g

h

i

The following algorithm computes strongly connected components of a graph G. We will postpone the
running time analysis and correctness proof until next class.

SCC(G)

1 Run DFS on G
2 Compute Gr � where Gr is G with all edge directions reversed
3 Run DFS on Gr, considering vertices in the order of decreasing finishing time computed by DFS(G)
4 return DFS forest from the second run; each tree is a separate strongly connected component.

Example 3 Consider running SCC algorithm on the graph from the previous example. Suppose we obtained
the following start/finish times: a : (3, 4), b : (19, 20), c : (1, 14), d : (2, 13), e : (5, 12), f : (6, 11), g : (7, 10),
h : (8, 9), i : (15, 18), j : (16, 17) from the first DFS run. Now, running DFS on the reverse graph Gr, we
first start with b. As all edges of b are outgoing in G, all edges are incoming in Gr, and so there is nothing
else in its connected component. Then run DFS starting with i, obtaining component {i, j}. Then proceed
to c; here, a, b and d are accessible, since edge (e, d) is incoming to this component. As b has been processed
already, it does not become part of this tree, leaving only {c, a, d} as elements of this component. The final
tree is rooted at e, and consists of {e, h, g, f}.

For the intuition why this algorithm works, consider a graph where each component is represented by a
vertex, its SCC graph. This graph is a DAG, and DFS(Gr) constructs trees in reverse topological order with
respect to this DAG.
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