
CS 6901 (Applied Algorithms) –

Lecture 4

Antonina Kolokolova

September 18, 2014

1 Basic graph algorithms

In this lecture, we will briefly review the main graph definitions and basic graph traversal algorithms: BFS
and DFS.

1.1 Graph definitions

• A graph G = (V,E) is defined by a set of vertices (nodes) V and a set of pairs of these vertices (edges)
E. We will consider graphs without self-loops (that is, edges of the form (u, u)) or multiple edges. We
usually use n to denote the number of vertices |V | and m for the number of edges |E|.

• A graph is undirected if whenever (u, v) ∈ E, then (v, u) ∈ E. That is, every edge can be traversed in
both directions. Otherwise, the graph is directed.

• A path in a graph is a sequence of vertices v1, . . . , vk such that ∀i < k, (vi, vi+1) ∈ E. That is, for every
pair of subsequent vertices on the path, there is an edge. A path is simple if no vertex on the path
repeats. A cycle is a path with the same first and last vertex.

• An undirected graph with no cycles is a tree. A directed graph with no cycles is a DAG (”directed
acyclic graph”).

• An indirected graph is connected if there is a path from any vertex to any other vertex. Otherwise, it
can have several connected components. If each connected component of a graph which is not connected
is a tree, then the graph is called a forest.

• A directed graph is strongly connected if there is a path from any vertex to any other vertex. It is
weakly connected if there is such path in the underlying undirected graph (where we add (v, u) for any
(u, v) in the original graph).

• An undirected graph is bipartite if the vertices can be split into two groups such that there are no edges
between vertices in the same group. For example, graphs we used to illustrate the Stable Marriage
problem were bipartite.

There are two main ways of representing a graph as an input to algorithms: adjacency list and adjacency
matrix. In the adjacency list representation, for every vertexu a list of its neighbours (nodes v such that
there is an edge (u, v)) is given. In the adjacency matrix representation, a n× n matrix M is given, where
M(i, j) = 0 if there is no edge from i to j, and M(i, j) = 1 otherwise.

1

Example 1 The following is a directed graph, in which vertices (1, 4, 3) form a directed cycle. This graph
is weakly, but not strongly, connected.

3

1 2

4

Adjacency list:

1: 2,4
2:
3: 1,4
4: 2,3

Adjacency matrix:

1 2 3 4
1 0 1 0 1
2 0 0 0 0
3 1 0 0 1
4 0 1 1 0

1.2 BFS

A traversal algorithm visits nodes of a graph in some order. The two most well-known traversal algorithms
are BFS (breadth first search) and DFS (depth first search). BFS lists vertices layer by layer, starting from
a given vertex. DFS follows a path from a given vertex as far as possible, then backtracks to the nearest
vertex that has unexplored edges and continues from there.

The following is the code for the BFS, starting from a given vertex s. We use the following convention (from
CLRS book): an unexplored vertex is coloured white, a vertex being explored is gray, and once it is finished,
it is coloured black. Usually you would need a wrapper function to initialize all vertices to be white, and
sometime to continue exploring vertices in other connected components.

BFS(s)

1 colour s gray
2 insert s into (initially empty) queue Q
3 while Q is not empty

do
4 take next vertex u off Q
5 for each edge (u, v) ∈ E

do
6 if v is white � (u, v) becomes a BFS tree edge

then
7 colour v gray
8 insert v into Q
9 colour u black

In the example graph above, starting from vertex s = 1, the algorithm would first process vertex 1 putting
2 and 4 on the queue (in some order, say first 4 and then 2), then process 4 putting 3 on the queue, then
process 2, and finally 3. The three layers are {1}, {2, 4} and {3}, and the tree edges are (1, 2), (1, 4), (4, 3).

The running time of this algorithm is O(m), as every edge is visited at most once. If there is a wrapper
which makes sure that all the vertices are traversed in a graph which is not necessarily connected, then the
running time can be better described as O(n + m).

This is the basic BFS traversal. Now, it can be modified to do a number of things. For example, the only
way to see an edge to a gray or black vertex while running BFS on an undirected graph is when the graph has
a cycle, so the algorithm can be used to detect a cycle. Also, this algorithm always finds the shortest paths
from s to any other reachable vertex in the graph; one common modification to keep a distance parameter
say v.dist and set s.dist = 0 at the beginning, then updating v.dist = u.dist + 1 inside the ”if” statement.

Another interesting application of BFS is to test if a graph is bipartite. You can convince yourself that a
graph is bipartite if and only if it has a cycle of odd length. Now, modify the algorithm above by setting

2

s.side = 1, and then, inside the ”if”, setting v.side = −u.side. In that way, vertices are assigned to either
side ”1” or side ”-1”. Also, add a check for gray vertices ”else if v is gray, check if v.side = u.side; if so,
output ”graph is not bipartite. Otherwise, if each vertex got assigned a side, the graph is bipartite.

1.3 DFS

A different traversal algorithm DFS (depth first search) explores the recursively. Here, we again use the
colour convention of white/gray/black, and also, following CLRS book, keep track of the time a vertex was
first discovered (u.d) and a time a vertex was coloured black (finishing time, u.f). Assume that time is a
global variable. Here, we will also use a wrapper to explore all vertices.

DFS-wrapper(G)

1 colour all vertices white and put them into a list
2 time← 0
3 while there is a white vertex u

do
4 DFS(u)

The following DFS algorithm explores the graph starting from a given vertex.

DFS(s)

1 time← time + 1
2 u.d← time; u.colour ← gray
3 for each v such that (u, v) ∈ E

do
4 if v is white, DFS(v)
5 u.colour ← black
6 time← time + 1
7 u.f ← time

In the example graph above, if we start traversing from vertex 1, one of the possible executions of DFS
proceeds like this. Set the discovery time for vertex 1 (let us call it v1 here to avoid confusion) to ”1.” Then,
for example, go to vertex v4, and set its discovery time v4.d = 2. From there, say we explore v2 next, with
discovery time v2.d = 3. As there is nowhere to go from v2, we are finished with this vertex; set v2.f = 4
and backtrack to v4. From there, go to v3, resulting in v3.d = 5 and v3.f = 6. Back to v4, which is now done
so it gets v4.f = 7. Finally, set v1.f = 8. Sometimes we will use the notation ”2/7” to mean the discovery
time is 2 and the finish time is 7 for a specific vertex (especially on the pictures). The edges of the DFS tree
for this run of DFS are (1, 4), (4, 2), (4, 3).

Note one property of these discovery and finish times of vertices: if a vertex v is a descendant of a vertex
u (that is, v is in the tree underneath the u), then u.d < v.d < v.f < u.f . This property is quite useful for
proving correctness of algorithms based on DFS.

3

