
CS 6901 (Applied Algorithms) –
Lecture 2∗

Antonina Kolokolova

September 9, 2014

1 Stable Matching

Recall the Stable Matching problem from the last class: there are two groups of equal
size (e.g. men and women, interns and companies, grad. school applicants and potential
supervisor), where every member of one group has a “preference order” of all members of
the other (e.g., every company has a arranged the list of all potential interns in order of
decreasing desirability, and every intern has a similar list of all companies from one she likes
the most to the least).

Today we will talk about the (Nobel-prize winning) algorithm that solves this problem, prove
its correctness and discuss its properties.

Let us follow the textbook and tradition in calling the two sides “men” and “women”. The
algorithm, due to Gale and Shapley, works as follows.

StableMarriage(n,M,W )

// Here M is an array of men’s rankings, and W is an array of women’s rankings.
1 Initially all mi and all wj are free. Initialize the set S of matched pairs to ∅.
2 while there is a free mi

3 let wj be the highest-ranking woman in mi’s list whom mi has not approached yet
4 if wj is free, add (mi, wj) to S
5 elseif wj prefers mi to its current match mk , remove (mk, wj) from S and add (mi, wj) to S
6 elseif wj prefers her current match, do nothing

7 return S

∗The following topic is adapted from Kleinberg/Tardos “Algorithm design”

4



To see how the algorithm works, consider the following examples.

Example 1 Let our input be as follows.

m1 : w1, w2 w1 : m2,m1

m2 : w1, w2 w2 : m2,m1

That is, both men prefer first woman over second, and both women prefer the first man.
Here is one possible execution of the algorithm. At the start, S = ∅ and all of m1,m2, w1, w2

are free.

1) m1 proposes to w1. Since she is free, she accepts. S becomes S = {(m1, w1)}.

2) m2 proposes to w1. Although she is engaged to m1, since she prefers m2 she switches
to him. Thus, m1 becomes free and S becomes S = {(m2, w1).

3) Now, m1 is free again, so he proposes to the next woman in his list, to w2. Since she
is free, she accepts. So S = {(m1, w2), (m2, w1)}.

4) Every man is engaged now, so the algorithm terminates.

A different run of the algorith on this input could have m2 doing his proposal before m1.
In that case, after both the first and the second rounds, S = {(m2, w1)}, since when m1

proposes to w1 she is just rejects him.

We will show soon that no matter in which order men propose, the algorithm always produces
the same matching.

Example 2 Now consider the other example we have looked at before.

m1 : w1, w2 w1 : m2,m1

m2 : w2, w1 w2 : m1,m2

That is, men’s preferences are a reverse from women’s. Recall that there are two possible
matchings in this case, one where men get their first choice and a different one where women
do.

Here is a possible run of the algorithm.

1) m1 proposes to w1. Since she is free, she accepts. S becomes S = {(m1, w1)}.

2) m2 proposes to w2. She is also free, so she accepts. S = {(m1, w1), (m2, w2)}.

3) Every man is engaged now, so the algorithm terminates.

5



Here, n rounds were enough to construct a matching, since no man was ever rejected.

Notice that in this case the matching the algorithm constructed favours men (the side that
proposes). Indeed, it can be shown that this is always the case.

1.1 Correctness proof

The algorithm worked on those two examples, but how do we know that it will always
terminate, and that when it terminates, it will always construct a stable matching. It is not
even clear apriori that it will construct any perfect matching.

Theorem 1 The Gale-Shapley algorithm for stable matching always terminates and pro-
duces a stable matching on termination.

Proof: First, let’s argue that the algorithm will terminate. For that, we would like to
have some quantity (measure of progress) that will strictly decrease at every round with the
property that when it reaches 0, the program stops. (Equivalently, we can take an increasing
quantity which is guaranteed not to grow larger than a given bound. )

Here, let’s (deviating a little from the KT book) take as such progress measure the number
of pairs (m,w) such that m has not proposed to w so far. Originally, there are n2 such pairs.
At every round some man proposes to a woman he has not contacted before; this eliminates
one pair from the set. Notice that a man never proposes to a woman twice; if he is free, then
there is a womant to whom he has not proposed yet. Also, that a woman that got engaged
can not become free again. Thus, every woman would become engaged at some point; after
all proposals have been made, all the women are engaged (since every woman is on every
man’s list). Since the number of men and women is equal, at that point there are no free
man and so algorithm terminates in at most n2 rounds.

Now, let us argue that the algorithm returns a perfect matching which is, moreover, stable.
First, notice that S is always a matching: a pair (m,w) is only added to S if there is no
pair containing m (since he must be free to be proposing), and if a pair containing w, if it
exists, is removed. Suppose it is not a matching; then at termination there is a free woman.
Thus, there is also a free man. The free woman is on his list, so there is still a possible round
where he proposes to her. Thus, at the end, every man is paired with a woman (and thus
every woman with a man), forming a perfect matching.

But why would this matching be stable? Suppose that the matching returned by the al-
gorithm isn’t: that is, there are (m,w) and (m′, w′) where m and w′ prefer each other.
Consider the moment when m proposed to w. By then, since he likes w′ more, he should
have proposed to w′. So he must have gotten rejected by her, but this is not possible, since
if she was with somebody even better than m, she would not have accepted the proposal
from m′ (women get better and better choices as the algorithm progresses).

6



Putting it all together, the algorithm terminates and returns a stable matching. �

1.2 Data structures used in the Stable Matching algorithm

We would like to analyse the time complexity of this algorithm. We will be using the standard
worst-case asymptotic complexity notation. Recall that f(n) ∈ O(g(n)) means that ∃c >, n0

such that ∀n > n0, f(n) ≤ cg(n). That is, if f(n) is an upper bound on the number of unit
steps the algorithm takes on an input of length n, for any n, then if f(n) ∈ O(g(n)), then
we say that the asymptotic running time of the algorithm in question is O(g(n)). Most of
the algorithms we will see have running time O(n) (linear), O(n log n), O(n2) (quadratic);
if the algorithm has running time O(nc) for some constant c it is said to run in polynomial
time (which is considered to be efficient).

We have shown above that Gale-Shapley algorithm terminates in n2 steps. Thus, if each
round can be implemented in constant time, this algorithm is very efficient: it’s running
time is O(n2). Note that the size of the input is log n+ 2n2 log n, so in terms of the number
of input bits it would be a linear time algorithm. In order to show how to implement each
iteration of the ”while” loop in constant time, we need to discuss technical details about the
data structures used, and do some precomputation. For this algorithm we will only need
arrays and linked lists: recall that looking up an array entry, removing the front element
from a linked list and adding an element (front or back) to a linked list are all constant time
operations.

We are given, as an input, the preference arrays W and M , where W [wi, j] = m if m is
jth in wi’s preference list, and M [mi, j] = w if w is jth in mi’s preference list, respectively.
Additionally, we need to precompute the following data structures.

• Linked list Free of free men (starts containing all numbers from 1 to n)

• Array Next, where Next[m] = w if w is the next woman m would propose to.

• Array Current, where Current[w] = m if m is the man w is currently matched with,
and a dummy null value otherwise.

• Array Ranking, where Ranking[w,m] = i if m is ith in w’s preference list (to speed
up comparison of mi with mk = Current[w]).

Each of these arrays can be precomputed by one pass over the input matrices, therefore
the time complexity of the preprocessing step is no more than the time complexity of the
actual algorithm. Thus, the sum of the preprocessing time and the algorithm run time is
still O(n2). Also, note that it is enough to maintain Current to have the information about
the matching, so there is no need to keep a separate S. And using these data structures,
each operation inside the loop can be done in constant time: checking if there is a free man
mi, taking mi off the list of free men, finding wj = Next[m] to propose. Checking if wj

7



is engaged is done by checking if Current[wj] = null, and choosing between mi and mk

by comparing Ranking[wi, Current[wj]) and Ranking[wj,mi]. Finally, updating Next[mi]
and Current[wj], and adding either mi or mk to the Free list takes constant time as well.
Therefore, one iteration of the ”while” loop takes constant time, making the algorithm run
time O(n2).

1.3 Properties of the matching returned by the algorithm

There are two (related) facts – first, that the algorithm always returns the same matching no
matter in what order men propose. Second, men get their best possible choice (“possible”
as in there is a stable matching in which this is their choice: the KT book calls it “valid
partner”). Moreover, women get their worst valid partner.

In order to show that the algorithm always returns the same matching independently of the
order of proposals, just need to show that it returns the (unique) matching in which every
man gets his best valid partner.

Here, it is not even obvious that such a matching exists: why can’t two men have the same
best valid partner? And how is it possible that every man gets the best choice?

Lemma 1 The Gale-Shapley algorithm always returns the unique matching in which every
man is paired with his best valid partner.

Please see KT book for the proof.

8


