
CS 6901 (Applied Algorithms) –
Lecture 14

Antonina Kolokolova∗

November 4, 2014

1 Network flows

1.1 Motivating examples

A matching in a bipartite (undirected) graph G is a set of edges such that each vertex has
in at most one edge in the matching. A matching is maximal if it has at least as many
edges as any other matching in the graph; it is perfect, on a graph with n vertices on each
side, if every vertex is an endpoint of exactly one edge included in the matching. This is the
same meaning of the word ”matching” as in the ”stable matching”; however, there are no
rankings, but also no edges between some pairs of vertices on different sides.

The first example we consider will be the following problem: given a bipartite graph G, find
a maximal matching. Alternatively, we can ask, given G, whether there exists a perfect
matching, and if not, what is the maximal matching in this graph. For example, in a graph
with vertices a, b, c on one side and x, y, z on the other, with edges (a, y), (b, z), (c, y)(b, x)
the maximal matchings are of size 2: for example, (b, z), (c, y) is such a matching. However,
if we change (b, x) to (a, x), we can obtain a perfect matching (a, x), (b, z), (c, y).

The second problem sounds very different, but we will approach it using some of the same
tools.

Imagine a mining company that is constructing an open-pit mine for some mineral deposit.
Say they mapped the deposit, and they know, for each cubic meter of soil, what it’s value
would be, and also what is the cost of taking out this cubic meter provided by then there
is nothing above it (assuming they cannot dig horizontally; there could be different ways to

∗This set of notes uses a variety of sources, in particular some material from Kleinberg-Tardos book and
notes from University of Toronto CSC 364

1

describe ”above”, too: for simplicitly, let’s just say the cubic meter of earth directly above
needs to be taken out). They need to decide what to dig out, and what to leave to maximize
profits.

We will approach both of these problems using an algorithm design paradigm called network
flow.

1.2 Flow networks and their properties

Consider a weighted directed graphs, with all weights (here called capacities) all non-negative
real numbers, and two vertices marked s and t. Such a graph (G, c, s, t) is called a flow
network (though a name ”capacity network” or ”capacitated network” could have been
more correct). An intuition for such definition is that in many real-world problems we are
dealing with a system of channels (roads, pipes, etc), where each channel has a capacity, and
the goal is to get as much ”stuff” through the system from the source s to the target t as
possible. In real life applications, of course, there can be multiple sources and targets, but
here we will so far simplify to have only one s and one t. For example, the goal could be to
route traffic through the network where every link has a fixed bandwidth, or get a fleet of
trucks from one location to another, where different roads could have different capacities.

With this intuition in mind, define a flow with respect to this graph as a function f : E → R+

satisfying several properties:

1) (Capacity constraints) ∀e ∈ E, f(e) ≤ c(e). That is, an edge can only have flow up to
its capacity.

2) (Flow conservation) ∀v ∈ V −{s, t},Σu∈V f((u, v)) = Σu∈V f((v, u)). That is, for every
intermediate (not a source and not the target) vertex in the graph, as much stuff that
flows in will flow out.

We will use the notation f(G, c, s, t) (or simply f(G)) to mean the total flow on the flow
network (G, c, s, t), and define it as f(G, c, s, t) = Σu∈V f((s, v)), that is, sum of the flows on
all edges exiting the source s. You will see later that it is the same as defining it as sum of
flows on all edges into t

Example 1 The following is an example of a flow network. Only edges with positive capac-
ities are shown; edges with capacity 0 are omitted from the diagram. Each edge is labelled
with its capacity. For each edge (u, v) that is shown, the edge (v, u) is also assumed to be
present; if the edge (v, u) is not shown, then it has capacity 0.

2

FLOW NETWORK F :

t

v1 v3

v2 v4

7

4

10

13

4s

20

8

14

15

22

The following shows the above example of a flow network, together with a flow.
The notation x/y on an edge (u, v) means

x is the flow (x = f(u, v))
y is the capacity (y = c(u, v))

Only flows on edges of positive capacity are shown. In this example we have |f | = 13+8 = 21.

FLOW NETWORK F WITH A FLOW f :

0/10

v4

t

8/13 4/4

s 7/71/4

v2

v3v1

13/20

14/14

17/22

11/15

4/8

1.3 Residual Networks

Let F be a flow network, f a flow. For any (u, v) ∈ E, the residual capacity of (u, v) induced
by f is

cf (u, v) = c(u, v)− f(u, v) + f(v, u) ≥ 0.

The residual graph of F induced by f is

Gf = (V,Ef)

3

where
Ef = {(u, v) ∈ E | cf (u, v) > 0}.

The flow f also gives rise to the residual flow network Ff = (G, cf , s, t).

The residual network Ff is itself a flow network with capacities cf , and any flow
in Ff is also a flow in F .

Note that if we have a flow f in a network and a flow f0 in the residual network, then f0 can
be added to f to obtain an improved flow in the original network. This will be a technique
we will use to continuously improve flows until we have a maximum possible flow.

1.4 Augmenting Paths

Given a flow network F = (G, c, s, t) and a flow f , an augmenting path π is a simple path
(that is, a path where no vertex repeats) from s to t in the residual graph, Gf ; note that every
edge in Gf has positive capacity. Equivalently, an augmenting path is a simple path from s
to t in G consisting only of edges of positive residual capacity. We will use an augmenting
path to create a flow f0 of positive value in Ff , and then add this to f as in the above
lemma, in order to create the flow f ′ = f + f0 of value bigger than f .

The maximum amount of net flow we can ship along the edges of an augmenting path π is
called the residual capacity of π. We denote it by cf (π); because π is augmenting, cf (π) is
guaranteed to be positive.

cf (π) = min{cf (u, v) | (u, v) is on π} > 0.

Lemma 1 Fix flow network F = (G, c, s, t), flow f , augmenting path π, and define
fπ : E → R+:

fπ(u, v) =

{
cf (π) if (u, v) is on π
0 otherwise

Then fπ is a flow in Ff , and |fπ| = cf (π) > 0.

Corollary 1 Fix flow network F = (G, c, s, t), flow f , augmenting path π, and let fπ be
defined as above. Let f ′ = f + fπ. Then f ′ is a flow in F , and

|f ′| = |f |+ |fπ| > |f |.

Example: Continuing the previous example, the following diagram shows the residual graph
Gf consisting of edges with positive residual capacity. The residual capacity of each edge is

4

also shown. An augmenting path π is indicated by − − −. We have
cf (π) = 4.

THE RESIDUAL GRAPH Gf WITH AUGMENTING PATH π:

17

11

5

8

3

11

7

4

5

v2

v1 v3

v4

t

4

s

13

7

14

4

4

The following diagram shows the network F with flow f ′ = f + fπ. We have
|f ′| = |f |+ |fπ| = 21 + cf (π) = 21 + 4 = 25.

FLOW NETWORK F WITH FLOW f ′:

21/22

v4

t

4/4

s 7/71/4

v2

v3v1

13/20

14/14

11/15

0/10

12/13

0/8

After creating the improved flow f ′, it is natural to try the same trick again and look for an
augmenting path with respect to f ′. That is, we consider the new residual graph Gf ′ and
look for a path from s to t. We see however, that no such path exists.

THE RESIDUAL GRAPH Gf ′ :

5

v4

v1 v3

11 3

11

s

4
12

7

7

13

1

8

14

4

21

1

t

v2

All of the above suggests the famous Ford-Fulkerson algorithm for network flow. The algo-
rithm begins by initializing the flow f to the all-0 flow, that is, the flow that is 0 along every
edge. The algorithm then continually improves f by searching for an augmenting path π,
and using this path to improve f , as in the previous lemma. The algorithm halts when there
is no longer any augmenting path.

Ford-Fulkerson(G, c, s, t)

Initialize flow f to the all-0 flow
WHILE there exists an augmenting path in Gf DO

choose an augmenting path π
f ← f + fπ

end WHILE

There are a number of obvious questions to ask about this algorithm. Firstly, how are we
supposed to search for augmenting paths? That is, how do we look for a path from s to t
in the graph Gf? There are many algorithms we could use. However, since all we want to
do is find a path between two points in an unweighted, directed graph, two of the simplest
and fastest algorithms we can use are “depth-first search” or “breadth-first” search. Each of
these algorithms runs in time linear in the size of the graph, that is, linear in the number of
edges in the graph.

The next question is, is the algorithm guaranteed to halt? The answer to this, remarkably,
is NO. If we do not constrain how the algorithm searches for augmenting paths, then there
are examples where it can run forever. These examples are complicated and use irrational
capacities, and we will not show one here.

What if the capacities are all integers? Then it is clear that the algorithm increases the flow
by at least 1 each time through the loop, and so it will eventually halt. (Exercise: fill in the
details of this argument; give a similar argument in case the capacities are only guaranteed
to be rational numbers.) However, this may still take a very long time.

As an example, consider the following flow network with only 4 vertices. If we are lucky
(or careful), the algorithm will choose [s, v1, t] for the first augmenting path, creating a flow

6

with value 1000; it will then have no choice but to choose [s, v2, t] for the next augmenting
path, and it will be halt, having created a flow with value 2000. However, the algorithm
may choose [s, v1, v2, t] as its first augmenting path, creating a flow with value 1; it may then
choose [s, v2, v1, t] as the next augmenting path, creating a flow with value 2; continuing in
this way, it may go 2000 times through the loop before it eventually halts.

Thus, we can bound the running time by O(mC), where C = Σvc(s, v).

EXAMPLE OF A BAD FLOW NETWORK FOR FORD-FULKERSON:

1000

s t
1

v2

v1

1000

1000 1000

The Edmonds-Karp version of this algorithm looks for a path in Gf using breadth-first search.
This finds a path that contains as few edges as possible. We call this algorithm FF-EK:

FF-EK(G, c, s, t)

Initialize flow f to the all-0 flow
WHILE there exists an augmenting path in Gf DO

choose an augmenting path π using breadth-first search in Gf

f ← f + fπ
end WHILE

Let us assume (without loss of generality) that |E| ≥ |V |. Then breadth-first search finds
an augmenting path (if there is one) in time O(|E|). Using an augmenting path to improve
the flow takes time O(|E|), so each execution of the main loop runs in time O(|E|).

It is a difficult theorem (that we will not prove here) that the main loop of FF-EK will be
executed at most O(|V ||E|) times. Thus, FF-EK halts in time O(|V ||E|2). Hence, this is a
polynomial time algorithm. A huge amount of research has been done in this area, and even
better algorithms have been found. One of the fastest has running time O(|V |3).

7

Example: Consider the previous example of flow network F with flow f ′. We know that
|f ′| = 25, and so the flow across every cut will be 25, and the capacity of every cut will be
greater than or equal to 25. We have seen that there is no augmenting path, so the above
theorem tells us that there must be a cut of capacity 25. It even tells us how to find such a
cut: let S be the set of nodes reachable from s in Gf ′ . In fact, it is easy to check that if we
choose S = {s, v1, v2, v4} and T = {v3, t}, then c(S, T) = 14 + 7 + 4 = 25.

1.5 Solving bipartite matching problem

Now recall our first motivating example: the bipartite matching problem.

It turns out that there is a way to convert such a matching problem into a flow problem.
First we add two vertices to create V ′ = V ∪ {s, t}. We add edges from s to each vertex in
L, and edges from each vertex in R to t; all of these edges (including the original edges in
E) are assigned capacity 1. Lastly, we add the the reverse of all these edges, with capacity
0. In this way we form the flow network F = (G′, c, s, t), G′ = (V ′, E ′). Consider integer
flows in F , that is, flows that take on integer values on every edge; for each edge of capacity
1, the flow on it must be either 1 or 0 (since its reverse edge has capacity 0). It is easy to
see that Ford-Fulkerson, when applied to a network with only integer capacities, will always
yield an integer (maximum) flow. The following two lemmas show that an integer flow f can
be used to construct a matching of size |f |, and that a matching M can be used to construct
a flow of value |M |. This will allow us to use Ford-Fulkerson to compute a maximum flow
in polynomial time.

Lemma 2 Let G = (V,E) and F = (G′, c, s, t) be as above, and let f be an integer flow in
F . Then there is a matching M in G such that |M | = |f |.

Proof:
Let f be an integer flow. Let M = {(u, v) ∈ L×R | f(u, v) = 1.}.

To see why M is a matching, imagine that (u, v1), (u, v2) ∈M for some v1 6= v2; since u has
only one edge of positive capacity (namely 1) coming into it, we would have

∑
v∈N(u) f(u, v) ≥

1, contradicting flow conservation. (A similar argument shows that no two edges in M can
share a right endpoint.)

We now show that |M | = |f |. Recall that |f | is equal to the total flow coming out of s. So
we must have |f | distinct vertices u1, u2, . . . , u|f | such that
f(s, u1) = 1, f(s, u2) = 1, . . . , f(s, u|f |) = 1. So in order for flow conservation to hold, for
each ui we must have some vi ∈ R such that f(ui, vi) = 1. So (ui, vi) ∈ M for each i, and
we have |M | = |f |.

Lemma 3 Let G = (V,E) and F = (G′, c, s, t) be as above, and let M be a matching in G.
Then there exists a flow f in F with |f | = |M |.

8

Proof:
Let M = {(u1, v1), (u2, v2), . . . , (u|M |, v|M |) ⊆ L×R} be a matching. Define f by
f(s, ui) = 1, f(ui, vi) = 1, f(vi, t) = 1 for each i, and f(e) = 0 for every other edge e ∈ E ′.
It is easy to check that f is a flow, and that |f | = |M | (exercise).

We now see how to use Ford-Fulkerson to find a maximum matching in G = (V,E). Assume,
without loss of generality, that |V | ≤ |E|. Note that |V ′| ∈ O(|V |) and |E ′| ∈ O(|E|).

We first construct F = (G′, c, s, t) as above; this takes time O(|E|). We then perform the
Ford-Fulkerson algorithm to create a maximum flow f . We observe that this algorithm, no
matter how we find augmenting paths, will increase the flow value by exactly 1 each time,
and hence will execute its main loop at most |V | times. If we use an O(|E|) time algorithm
to search for augmenting paths, then each execution of the loop will take time O(|E|). So
the total time of the Ford-Fulkerson algorithm here is O(|V ||E|). Lastly, we use the integer
flow f to create a matching M in G such that |M | = |f |; this takes time O(|E|). The last
lemma above tells us that since f is a maximum flow, M must be a maximum matching.

So the entire maximum matching algorithm runs in time O(|V ||E|). This is a polynomial
time algorithm. Faster algorithms have also been found. For example, there is an algorithm
for this problem that runs in time O(

√
|V ||E|).

Example: The following is an example of a (directed) bipartite graph G. The next figure
shows the network F derived from G, together with a maximum flow f in F . The last figure
shows the maximum matching M obtained from f .

ts
1/1

1/1

1/1

1/1

0/1

0/1

0/1

1/1

1/1

1/1

1/1

0/1

1/1

9

