
CS 6901 (Applied Algorithms) –

Lecture 11

Antonina Kolokolova

October 21, 2014

1 Single-source shortest path with negative weights/cycles: Bellman-
Ford algorithm

Dijkstra’s algorithm is fast and powerful when the weights of the edges
are arbitrary positive numbers. However, it breaks down when edges are
allowed to be negative numbers. For example, consider a graph with vertex
s connected by a vertex t by a directed edge of length 5, and also by a path
starting with an edge (s, v) of weight 10, followed by an edge (v, t) of weight
−7. Then, the distance from s to t should be 3, via the path s, v, t. However,
Dijkstra’s algorithm will take t off the queue first when its distance value is
still 5, and never update it again.

5

s

v

t

10
−7

Another issue that comes up when negative weights are introduced is the possibility of negative cycles, that
is, cycles of total weight < 0. In that case, the shortest (minimal weight) path is meaningless: the minimal
weight is achieved by going to the negative cycle, and circling around it forever. Thus, an algorithm is
needed that would be able to detect negative cycles, and if there are none, compute the shortest distances.
The following algorithm, due to Bellman and Ford, solves this problem in time O(nm).

Bellman-Ford(G,c)
Initialize s.key = 0, s.pred = null
∀v 6= s, v.d =∞; v.pred = null
for i = 1 to n− 1

for each edge (u, v)
if u.d + c(u, v) < v.d then
v.d = u.d + c(u, v); v.pred = u

for each edge (u, v)
if u.d + c(u, v) < v.d then
output ”Negative cycle found”

return G

Now, running this algorithm on
the graph above, we will have the
following distances after the cor-
responding number of iterations
of the first for loop (assuming
order (v, t), (s, t), (s, v) ):

s v t
0 0 ∞ ∞
1 0 10 5
2 0 10 3

Alternatively, consider adding the edge of
weight 4 from t to v. Now, the ta-
ble changes as follows (assuming order
(v, t),(s, t),(s, v),(t, v)). And during the
check for a negative cycle, t.d > v.d+c(v, t).

s v t
0 0 ∞ ∞
1 0 9 5
2 0 6 2

5

s

v

t

10
−7

4

To show that Bellman-Ford algorithm is correct, we need to prove two properties. First, that if there are no
negative cycles, then it correctly computes the distances. And second, if there is a negative cycle, then the
final for loop catches it, but the check passes if there are no negative cycles.

1



To prove that the algorithm correctly computes shortest distances when there are no negative cycle, consider
a shortest path from s to an arbitrary vertex t: since there are no negative cycles, such a path exists and
it is a simple path. Moreover, for any vertex v on this path, its shortest distance from s is the distance it
has on this path. Now, we claim that at the first iteration of Bellman-Ford, all vertices that have shortest
distance from s by their edge from s will have the correct distances computed. Similarly, on ith iteration
of the outer for loop, all vertices that are i edges from s on their shortest path will be computed correctly
(by induction). Therefore, since no simple path in an n-vertex graph can have more than n− 1 edges, after
n− 1 iterations all shortest paths will be computed correctly.

Now, suppose that there are no negative cycles. Then, since by the previous statement, the nested for
loops computed the shortest paths from s to every vertex v, it holds that v.d ≤ u.d + w(u, v) (otherwise v.d
would not have been the shortest distance to v). Thus, for every edge the check in the final for loop passes.
Alternatively, suppose there is a negative cycle in the graph. Then for at least one vertex on the cycle its
v.d can be improved by coming from the previous vertex in the cycle: to see that, just sum the distances to
vertices in the cycle, and notice that this sum consists of the sum of v.d’s in the cycle plus the sum of the
edges in the cycle; the latter sum is less than 0.

2


