
CS 6783 (Applied Algorithms) –

Lecture 3

Antonina Kolokolova

January 14, 2013

1 Representative problems: brief overview of the course

In this lecture we will look at several problems which, although look somewhat similar to each other, have
quite different complexity. We will look at some algorithm design techniques that can be used to solve some
of these problems (much of the course will be devoted to in-depth study of these techniques), and at some
problems for which no efficient algorithms are known.

1.1 Scheduling with deadlines and profits: greedy algorithms

Let’s start with the following problem. Suppose there is a list of jobs (tasks) to be scheduled on a processor,
each of which needs to be finished by its (given) deadline. In the simplest form, suppose that all jobs are
equal; also, their lengths are the same. We want to design an algorithm which would take a list of such jobs
and create a schedule with as many jobs as possible. More precisely, define the problem as

Scheduling with Deadlines
Input: d1, . . . , dn
Output: A schedule (array) S with the maximal number of scheduled jobs, where |S| ≤ n, S(i) = j means
that the job i is scheduled in time slot j, no job is scheduled more than once and ∀i, if S(i) = j then dj ≥ i.

The following simple algorithm solves this problem. Consider the jobs one by one and schedule each job
in the latest available time slot before its deadline. For example, if the input had jobs with deadlines
d1 = 2, d2 = 2, d3 = 1, d4 = 4, then the schedule will be S = [1, 2, 0, 4], where 0 denotes that there is no
job scheduled at that time. You can convince yourself that this algorithm works and produces the optimal
solution (we will talk about proving correctness of such algorithms later in the course). This algorithm looks
at every job just once; however, the simplest implementation using an array for S would need up to n steps
to check for the latest available time slot, giving quadratic in n running time (as we will write it, O(n2) –
we will cover this notation in the next lecture). With the use of a more complex data structure ”union-find”
(sometimes called ”disjoint set”), the running time could be made almost linear in n.

Now consider a slightly more complex version of the problem: suppose that jobs are not equal, and though
they still take the same amount of time, there is also a profit (gain) value assigned to each job. Now,
naturally, the task would be to maximize the profit (sum of the gains of individual jobs in the schedule) as
opposed to the number of jobs.

Scheduling with Deadlines and Profits
Input: (d1, g1), (d2, g2) . . . , (dn, gn)

1

Output: A schedule (array) S, where |S| ≤ n, S(i) = j means that the job i is scheduled in time slot j, no
job is scheduled more than once and ∀i, if S(i) = j then dj ≥ i, such that Σj:∃iS(i)=jgj is maximized.

This time the algorithm is very similar, except now it does matter in which order we consider the jobs. Since
we want to give higher-gain jobs ”more chance” at being scheduled, the algorithm starts by sorting the jobs
in order of diminishing gain, then proceeds as above.

SchedulingWithDeadlinesAndProfits[(d1, g1), . . . , (dn, gn)]

1 Sort the jobs so that: g1 ≥ g2 ≥ . . . ≥ gn
2 for t = 1 to n
3 S(t)← 0 � {Initialize array S(1), S(2), ..., S(n)}
4 for i = 1 to n
5 Schedule job i in the latest possible free slot meeting its deadline;

� if there is no such slot then do not schedule i.

Example 1 Input:

Job i: 1 2 3 4 Comments
Deadline di: 3 2 3 1 (when job must finish by)
Profit gi: 9 7 7 2 (already sorted in order of profits)

Initialize S(t):
t 1 2 3 4

S(t) 0 0 0 0

Apply the algorithm above: Job 1 is the most profitable, and we consider it first. After 4 iterations:

t 1 2 3 4
S(t) 3 2 1 0

Job 3 is scheduled in slot 1 because its deadline t = 3, as well as slot t = 2, has already been filled.

P (S) = g3 + g2 + g1 = 7 + 7 + 9 = 23.

Here again if we use the array implementation of the schedule, then checking if there is an available slot can
take linear amount of time (think of all jobs having the same deadline = n). In that case, the running time
of the algorithm is dominated by the scheduling part. However, if this part is done using union-find data
structure, then the running time of the algorithm is dominated by the sorting, giving us O(n log n) time.

1.2 Scheduling with deadlines, profits and durations: dynamic programming

Now let’s add one more parameter to our jobs. Suppose that in addition to deadline di and profit gi each
job has a duration ti; a job has to finish on or before its deadline. So if a job has a deadline 5 and a duration
3, the latest it can start is 2.

Scheduling with deadlines, profits and durations
Input: (t1, d1, g1) . . . , (tn, dn, gn)
Output: A schedule (array) S, where now S(i) = si is the starting time of ith job; let si = −1 if a job
cannot be scheduled.

In this case, a greedy algorithm does not work anymore; consider for example a set of the following three
jobs: (10, 10, 10), (5, 10, 9), (5, 10, 8), (1, 5, 1). The greedy algorithm would pick the first job as it has the

2

largest profit, but the optimal solution consists of second and third. Similarly, picking the shortest job or
a job with the earliest deadline does not work. So we will resort to a more complex technique, dynamic
programming.

Dynamic programming technique, which we will consider as our second algorithm design paradigm, works
by iteratively computing an array with values of subproblems of a problem (in our case, a subproblem will
be scheduling jobs to finish by the time d and using the first i jobs). This algorithm is fairly fast when the
number of jobs is comparable with the largest deadline. However, it could be the case that deadlines are
very large (e.g., on the order of 2n, where n is the number of jobs). In this case, this algorithm does not
run fast (that is, in polynomial time) anymore. Moreover, we can show that this problem, as stated, is an
NP-hard problem and therefore is unlikely to be solvable by an efficient algorithm.

1.3 NP-hardness of Scheduling and Knapsack, and a greedy algorithm for 1/2
approximation for Simple Knapsack

What does it mean for a problem to be NP-hard? A problem is NP-hard if every problem in the complexity
class NP can be reduced to (think ”disguised as”) this problem. In particular, solving any problem in NP
would only take as much time as the NP-hard problem times, roughly, the increase in size of the input
description that disguising created (plus the time it takes to do the disguising).

The complexity class NP itself is the class of all decision problems with efficiently verifiable solutions, where
”efficiently” = ”in time polynomial in the length of the input in binary”. A problem is a decision problem if
its output is a yes/no answer. For example, if a scheduling problem is asking ”is there a schedule with profit
at least K?” is a decision problem, whereas ”compute the best possible schedule” is not a decision problem.
In complexity theory, most of the time decision problems are considered – if nothing else, it avoids the case
of problems with very long solutions.

Now, a problem is NP-complete if it is both in NP (that is, it is a decision problem with polynomial-time
verifiable solutions) and is NP-hard (that is, any problem in NP can be disguised to look like it in polynomial
time). Sometimes people use terms ”NP-hard” and ”NP-complete” as if they are synonyms (usually to mean
”hard”), but this is not quite correct: a problem can easily be NP-hard without being NP-complete. So,
say, a version of Knapsack where the output is the optimal set of weights would be NP-hard, but not NP-
complete. For such problems (although definitely not for all NP-hard problems) it holds that if P=NP, then
they are solvable in polynomial time; this applies to all NP-complete problems, but not all NP-hard ones
(though it does apply to ”find an optimal solution” type of problems). Also, all such problems are solvable
given exponential time (even when the amount of available space is still polynomial). However, there are
problems solvable in exponential time which are NP-hard, but provably not solvable in polynomial time.

Problems of these types do arise in practice, though: what can we do then? One possibility is to use
heuristics (we will look at them later in the course) and hope that they work. Another is to analyze the
problem carefully to see if maybe only a special case needs to be solved, and if that special case is easier
than the general problem. Yet another approach is to design an algorithm which, although not guaranteed
to produce an optimal solution, can produce a solution which is ”not too far” from the optimal, and can do
it in a reasonably fast way. For example, consider the Simple Knapsack problem. Suppose you are trying to
fly a prospecting mission to Arctic, and the aircraft can only take certain amount of equipment, and you are
choosing what to bring with you to maximize usefulness, and yet staying within the aircraft weight limits.

Simple Knapsack
Input: Weights w1, . . . , wn, capacity C
Output: A set S ⊆ {1..n} such that Σi∈Swi ≤ C and, additionally, Σi∈Swi is maximal possible over all
such S

This problem is a simplified example of the Knapsack problem, in which each item has both a weight and

3

a profit, just like we had jobs with deadlines and profits, and jobs with just the deadlines. However, even
in this simple case Knapsack is NP-hard (and a version of the Simple Knapsack asking if there is a set with
sum at least B for some bound B is NP-complete). If you have done a course on complexity theory, you
might have seen the SubsetSum problem (asking if, given a set of numbers, there is a subset summing up to
a specified number t). You can see that this problem can be reduced to Simple Knapsack decision problem
by treating these numbers as weights, and asking if there is a subset of size both at most t (so set C = t)
and at least t (so B = t as well). Also, Knapsack is a special case of Scheduling with deadlines, profits and
durations: just treat weights as durations, profits, if there are any, as profits, and set all deadlines to be the
capacity; this gives us NP-hardness of such Scheduling.

So since Simple Knapsack is NP-hard, we cannot hope to have a polynomial-time algorithm solving it exactly
without resolving the P vs. NP problem (which currently seems out of reach, and it’s million dollar prize
from the Clay Mathematical Institute is still unclaimed). However, there is a greedy algorithm that can get
us ”close enough” – it is guaranteed to produce a solution which is at least 1/2 of the optimal solution (there
is also a dynamic programming algorithm that can get us nearly as close as we like, with the ”closeness” as
a parameter, but we will not discuss it here).

SimpleKnapsack-1/2approx[w1, . . . , wn, C]

1 Sort the weights so that: w1 ≥ w2 ≥ . . . ≥ wn

2 S ← ∅; M ← 0 � Initialize the set and the sum
3 for t = 1 to n
4 if wi + M ≤ C then
5 S ← S ∪ {i}; M ←M + wi � Add ith element to knapsack
6 return S

We first sort the weights in decreasing (or rather nonincreasing order): w1 ≥ w2 ≥ ... ≥ wd We then try the
weights one at a time, adding each if there is room. Call this resulting estimate M .

It is easy to find examples for which this greedy algorithm does not give the optimal solution; for example
weights {501, 500, 500} with C = 1000. Then M = 501 but M = 1000. However, this is just about the worst
case:

Lemma 1 M ≥ 1
2M

Proof: We will show that if M 6= M , then M > 1
2C. Since C ≥M , the Lemma follows.

Suppose, for the sake of contradiction, that M ≤ C. Since M 6= M , there is at least one element i in the
optimal solution which is not in S produced by our algorithm. Since i is in the optimal solution, wi ≤ C.
Now, consider two cases. Either wi > 1/2C; but in this case, the algorithm would have considered it
early in the run (before putting in everything it did add). If at that point i did not fit, there must have
been something already in the knapsack; and that something must have been even larger, i.e., with weight
wj ≥ wi > 1/2C. But then M ≥ 1/2C. So the wi < 1/2C. But then, if there is more than 1/2C space
left in the knapsack, wi could easily fit, and so the algorithm would have put it there while considering it.
Therefore, in both cases assuming that M 6= M and M ≤ 1/2C lead to a contradiction. Indeed, the only
way M ≤ 1/2C is possible is when sum of all weights is ≤ 1/2C. But in that case, there is no solution better
than the sum of all weights, and the algorithm gets it.

The running time of this algorithm is dominated by the sorting’s O(n log n) time ; if the elements are given
to us already sorted, then the running time of the algorithm is O(n).

4

1.4 Assigning TAs to courses: network flows

There is another special class of problems for which it is possible (under certain reasonable restrictions) to
find a solution in polynomial time. Consider, for example, the following problem. A secretary wants to assign
grad. students to be teaching assistants (TAs) for courses. Some courses need more than one TA; say each
grad student can have up to 2 TA positions. However, not all grad. students qualify to be teaching assistant
in all courses: e.g., if a student has not done advanced graphics before, she cannot take a TA position for an
advanced graphics course. This task is not quite the same as in the Stable Marriage problem: there, every
pair was possible, just some were less desirable. However, such TA assignment problem can also be solved in
polynomial time by using the Network Flows technique (provided the input is ”reasonable” – the technique
wouldn’t work if there are e.g. irrational numbers).

This technique will give us a nice set of problems that can be modeled (and solved) using graphs.

1.5 AI planning: PSPACE, beyond NP

Finally, let me comment on some problems that are believed to be even harder than NP problems, and
yet which arise in practice quite commonly. This is the class of problems that we know how to solve in
exponential time, but using only polynomial amount of space: this class is called PSPACE. It contains many
”winning strategy in a game” type problems: ones of the form ”if the first player does this, the second
should respond like that, and then if the first player...”. Classical planning in artificial intelligence is another
example of such problem. Even when defined as a decision problem (e.g., ”is there a winning strategy starting
with a given board?” in chess), it is not at all clear how to verify that a given solution is correct, since it
has to account for all possible decisions by the other player, at every stage of the game. When complexity
classes are described in terms of quantifier complexity of their problems (e.g., for NP it is one existential
quantifier: ∃y, |y| ≤ |x|dCheckCorrectness(x, y), where CheckCorrectness(x, y) runs in time polynomial in
|x|+ |y|), PSPACE problem descriptions can have an arbitrary number of quantifiers.

Are they the hardest possible problems? Not at all – they can still be done by brute-force search in exponential
time. It can be proven that for every exponential increase in time, there are problems that do require that
much time; some require 22

2...

– a tower of n exponents – time. Moreover, some are not solvable at all in
their full generality...

5

