
CS 6783 (Applied Algorithms) –
Lecture 2∗

Antonina Kolokolova

January 9, 2013

1 Stable Matching

Recall the Stable Matching problem from the last class: there are two groups of equal
size (e.g. men and women, interns and companies, grad. school applicants and potential
supervisor), where every member of one group has a “preference order” of all members of
the other (e.g., every company has a arranged the list of all potential interns in order of
decreasing desirability, and every intern has a similar list of all companies from one she likes
the most to the least).

Today we will talk about the (Nobel-prize winning) algorithm that solves this problem, prove
its correctness and discuss its properties.

Let us follow the textbook and tradition in calling the two sides “men” and “women”. The
algorithm, due to Gale and Shapley, works as follows.

StableMarriage(n, M,W )

// Here M is an array of men’s rankings, and W is an array of women’s rankings.
1 Initially all mi and all wj are free. Initialize the set S of matched pairs to ∅.
2 while there is a free mi

3 let wj be the highest-ranking woman in mi’s list whom mi has not approached yet
4 if wj is free, add (mi, wj) to S
5 elseif wj prefers mi to its current match mk , remove (mk, wj) from S and add (mi, wj) to S
6 elseif wj prefers her current match, do nothing

7 return S

∗The following topic is adapted from Kleinberg/Tardos “Algorithm design”

4



To see how the algorithm works, consider the following examples.

Example 1 Let our input be as follows.

m1 : w1, w2 w1 : m2, m1

m2 : w1, w2 w2 : m2, m1

That is, both men prefer first woman over second, and both women prefer the first man.
Here is one possible execution of the algorithm. At the start, S = ∅ and all of m1, m2, w1, w2

are free.

1) m1 proposes to w1. Since she is free, she accepts. S becomes S = {(m1, w1)}.

2) m2 proposes to w1. Although she is engaged to m1, since she prefers m2 she switches
to him. Thus, m1 becomes free and S becomes S = {(m2, w1).

3) Now, m1 is free again, so he proposes to the next woman in his list, to w2. Since she
is free, she accepts. So S = {(m1, w2), (m2, w1)}.

4) Every man is engaged now, so the algorithm terminates.

A different run of the algorith on this input could have m2 doing his proposal before m1.
In that case, after both the first and the second rounds, S = {(m2, w1)}, since when m1

proposes to w1 she is just rejects him.

We will show soon that no matter in which order men propose, the algorithm always produces
the same matching.

Example 2 Now consider the other example we have looked at before.

m1 : w1, w2 w1 : m2, m1

m2 : w2, w1 w2 : m1, m2

That is, men’s preferences are a reverse from women’s. Recall that there are two possible
matchings in this case, one where men get their first choice and a different one where women
do.

Here is a possible run of the algorithm.

1) m1 proposes to w1. Since she is free, she accepts. S becomes S = {(m1, w1)}.

2) m2 proposes to w2. She is also free, so she accepts. S = {(m1, w1), (m2, w2)}.

3) Every man is engaged now, so the algorithm terminates.

5



Here, n rounds were enough to construct a matching, since no man was ever rejected.

Notice that in this case the matching the algorithm constructed favours men (the side that
proposes). Indeed, it can be shown that this is always the case.

1.1 Correctness proof

The algorithm worked on those two examples, but how do we know that it will always
terminate, and that when it terminates, it will always construct a stable matching (it is not
even clear that it will construct any perfect matching).

Theorem 1 The Gale-Shapley algorithm for stable matching always terminates and pro-
duces a stable matching on termination.

Proof: First, let’s argue that the algorithm will terminate. For that, we would like to
have some quantity (measure of progress) that will strictly decrease at every round with the
property that when it reaches 0, the program stops. (Equivalently, we can take an increasing
quantity which is guaranteed not to grow larger than a given bound. )

Here, let’s (deviating a little from the KT book) take as such progress measure the number
of pairs (m, w) such that m has not proposed to w so far. Originally, there are n2 such pairs.
At every round some man proposes to a woman he has not contacted before; this eliminates
one pair from the set. Notice that a man never proposes to a woman twice; if he is free, then
there is a womant to whom he has not proposed yet. Also, that a woman that got engaged
can not become free again. Thus, every woman would become engaged at some point; after
all proposals have been made, all the women are engaged (since every woman is on every
man’s list). Since the number of men and women is equal, at that point there are no free
man and so algorithm terminates in at most n2 rounds.

Thus, this algorithm is very efficient: it’s running time is O(n2) (each round can be im-
plemented efficiently), and the size of the input is already O(n2), making it a linear time
algorithm.

Now, let us argue that the algorithm returns a perfect matching which is, moreover, stable.
First, notice that S is always a matching: a pair (m, w) is only added to S if there is no
pair containing m (since he must be free to be proposing), and if a pair containing w, if it
exists, is removed. Suppose it is not a matching; then at termination there is a free woman.
Thus, there is also a free man. The free woman is on his list, so there is still a possible round
where he proposes to her. Thus, at the end, every man is paired with a woman (and thus
every woman with a man), forming a perfect matching.

But why would this matching be stable? Suppose that the matching returned by the al-
gorithm isn’t: that is, there are (m, w) and (m′, w′) where m and w′ prefer each other.
Consider the moment when m proposed to w. By then, since he likes w′ more, he should

6



have proposed to w′. So he must have gotten rejected by her, but this is not possible, since
if she was with somebody even better than m, she would not have accepted the proposal
from m′ (women get better and better choices as the algorithm progresses).

Putting it all together, the algorithm terminated and returns a stable matching. �

1.2 Properties of the matching returned by the algorithm

There are two (related) facts – first, that the algorithm always returns the same matching no
matter in what order men propose. Second, men get their best possible choice (“possible”
as in there is a stable matching in which this is their choice: the KT book calls it “valid
partner”). Moreover, women get their worst valid partner.

In order to show that the algorithm always returns the same matching independently of the
order of proposals, just need to show that it returns the (unique) matching in which every
man gets his best valid partner.

Here, it is not even obvious that such a matching exists: why can’t two men have the same
best valid partner? And how is it possible that every man gets the best choice?

Lemma 1 The Gale-Shapley algorithm always returns the unique matching in which every
man is paired with his best valid partner.

There was no time to cover the proof in the class in detail; please see KT book for the proof.

7


