
CS 6783 (Applied Algorithms) –
Lecture 1

Antonina Kolokolova

January 7, 2013

In this course we will review, and study more deeply the main algorithm design paradigms
and techniques. In particular, we will look at greedy algorithms, dynamic programming,
backtracking; we will also consider such famous techniques as Fast Fourier Transform (FFT)
and Integer Linear Programming. The main emphasis will be on applications. There will
be no programming requirements for this course, all algorithm design will be done in pseu-
docode.

We will start with a clean, yet quite applied problem of Stable Marriage. It is especially
appropriate this year, as just a few months ago the Nobel Prize in Economics was given to
Alvin Roth and Lloyd Shapley, with Shapley’s contribution being primarily the algorithm
for the very problem we are going to talk about now.

1 Stable matching problem

Imagine a situation where there are two types of entities (say organizations and applicants,
for example interns applying to companies for their internships or students applying to
supervisors for graduate studies). Each of them has a ranking on entities of the opposite
type: for example, a student would have a ranking of supervisors with whom he would prefer
more to work, and each supervisor, in turn, would have a ranking of students that applied to
her.) Now, the question is to find the ”best” way of matching the two: matching supervisors
with students, companies with interns and so on.

First, let’s simplify the problem. Suppose there is exactly the same number of both types,
and each of them has to be matched with exactly one of the other type. The classical toy
problem description talks about n men and n women, each intending to marry one person of
the opposite gender (hence the ”stable marriage problem” name). In graph representation,
we have a bipartite graph with n vertices on both sides, and looking for a perfect matching
in it.

1



But finding a perfect matching is not quite enough for this problem, because we also want to
take into account the rankings. Also, we have not yet defined what it means for the matching
to be ”good”. Would it mean that every applicant (man) gets his best choice? Or would best
be the best for the other side? When economists Gale and Shapley considered this problem,
their main concern was not making everybody happy, but, rather, stability: it would have
to be a matching such that nobody would like to change their matching to another person,
and have that other person accept the switch. That is, the instability is when there are, say,
two applicants a1 and a2, and two supervisors s1 and s2 such that a1 got assigned to s1 and
a2 to s2, but really both a2 would rather be matched with s1, and s1 would prefer a2 over
a1. In the language of ”stable marriage”, this is described as a a married man and a married
woman who both prefer each other to their spouses – not a stable situation.

Example 1 Suppose there are two supervisors s1 and s2, and two applicants a1 and a2.
Consider the following possibilities. One is when both a1 and a2 would prefer s1, and both
s1 and s2 would prefer a1. In that case, the applicant everybody likes gets matched with the
supervisor everybody likes; neither of them has an incentive to switch to the other choice,
so it is stable. If, on the other hand, a2 were matched to s1 and a1 to s2, it would not be
stable since a1 and s1 prefer each other to their pairs.

Now suppose a1 prefers s1, a2 prefers s2, but s2 would rather be matched with a1, and
s1 prefers a2. In this case, there are two possible matchings that are both stable: either
applicants get their choice (and then they have no desire to switch), or the supervisors are,
similarly, happier with their current match.

Notice that in the last example there were two possible matchings, both of which were stable.
This leads to a question:is it always the case that there would be a stable matching? We will
show there is always one by producing an algorithm that is guaranteed to find such matching
for any rankings. But the existence of such a matching is far from a trivial problem: a slight
modification of this problem called ”stable roommates” problem, in which the graph is not
bipartite (there is a group of 2n people, and each of them can be paired with any of the
other 2n− 1) has instances for which no stable matching exists.

1.1 Solving the stable marriage problem

Here is the main idea of the algorithm due to Gale and Shapley that solves the stable match-
ing problem. Imagine the following scenario. Suppose the applicants (”men” in the marriage
version terminology) start by contacting (”proposing to”) the supervisors (”women”). They
only contact a supervisor if they are not currently assigned to any. When such an appli-
cant contacts a supervisor, there could be three possibilities. Either the supervisor is free
and looking for applicants, or she is already matched with another applicant. In the first
case, she says ”maybe” to the applicant, and they are considered matched, for now. If she
is already matched with somebody, though, there are two possibilities: either she likes her
current match more (in which case she says ”no” and the applicant goes on to propose to

2



another supervisor), or she says ”sorry, I found somebody better” to her current match,
and takes the new applicant. For example, suppose a1 is applying to s2, and s2 is already
matched with a2, although s2 prefers a1. Then the match (a1, s2) is created and a2 becomes
free. It makes sense for the applicant to start with the person whom they like the most. It
also makes sense that once they got a ”no” from somebody, there is no point in trying them
again. We will talk more about this when discussing the correctness of the algorithm.

The input to the algorithm will be the two sides of the bipartite graph, let’s call them
applicants a1, . . . , an and supervisors s1, . . . , sn, together with 2n preference lists, each of
length n. We assume that for every applicant ai, for any to supervisors sj and sk, both sj
and sk are in ai’s list, and either sj comes before sk, or sk comes before sj, but they are not
equal. The output of the algorithm will be the list of matched pairs.

StableMarriage(n,A, S)

// Here A is an array of applicants’s rankings, and S is an array of supervisors’.
1 Initially all ai and all sj are free. Initialize the set M of matched pairs to ∅.
2 while there is a free ai
3 let sj be the highest-ranking supervisor in ai’s list whom ai has not approached yet
4 if sj is free, add (ai, sj) to M
5 elseif sj prefers ai to its current match ak , remove (ak, sj) from M and add (ai, sj) to M
6 elseif sj prefers her current match, do nothing

7 return M

3


