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1 Minimum Spanning Trees

An undirected graph G is a pair (V,E); V is a set (of vertices or nodes); E is a set of (undirected) edges,
where an edge is a set consisting of exactly two (distinct) vertices. For convenience, we will sometimes denote
the edge between u and v by [u, v], rather than by {u, v}.
The degree of a vertex v is the number of edges touching v. A path in G between v1 and vk is a sequence
v1, v2, . . . , vk such that each {vi, vi+1} ∈ E. G is connected if between every pair of distinct nodes there is a
path. A cycle (or simple cycle) is a closed path v1, . . . , vk, v1 with k ≥ 3, where v1, ..., vk are all distinct. A
graph is acyclic if it has no cycle. A tree is a connected acyclic graph. A spanning tree of a connected graph
G is a subset T ⊆ E of the edges such that (V, T ) is a tree. (In other words, the edges in T must connect all
nodes of G and contain no cycle.)

If a connected G has a cycle, then there is more than one spanning tree for G, and in general G may have
exponentially many spanning trees, but each spanning tree has the same number of edges.

Lemma 1 Every tree with n nodes has exactly n− 1 edges.

The proof is by induction on n, using the fact that every (finite) tree has a leaf (i.e. a node of degree one).

We are interested in finding a minimum cost spanning tree for a given connected graph G, assuming that
each edge e is assigned a cost c(e). (Assume for now that the cost c(e) is a nonnegative real number.) In
this case, the cost c(T ) is defined to be the sum of the costs of the edges in T . We say that T is a minimum
cost spanning tree (or an optimal spanning tree) for G if T is a spanning tree for G, and given any spanning
tree T ′ for G, c(T ) ≤ c(T ′).

Given a connected graph G = (V,E) with n vertices and m edges e1, e2, . . . , em, where c(ei) = “cost of edge ei”,
we want to find a minimum cost spanning tree. It turns out (miraculously) that in this case, an obvious
greedy algorithm (Kruskal’s algorithm) always works. Kruskal’s algorithm is the following: first, sort the
edges in increasing (or rather nondecreasing) order of costs, so that c(e1) ≤ c(e2) ≤ . . . ≤ c(em); then,
starting with an initially empty tree T , go through the edges one at a time, putting an edge in T if it will
not cause a cycle, but throwing the edge out if it would cause a cycle.

∗This set of notes is based on the course notes of U. of Toronto CS 364 as taught by Stephen Cook
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1.1 Kruskal’s Algorithm:

Sort the edges so that: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
T ← ∅
for i : 1..m
(*) if T ∪ {ei} has no cycle then

T ← T ∪ {ei}
end if

end for

But how do we test for a cycle (i.e. execute (*))? After each execution of the loop, the set T of edges divides
the vertices V into a collection V1 . . . Vk of connected components. Thus V is the disjoint union of V1 . . . Vk,
each Vi forms a connected graph using edges from T , and no edge in T connects Vi and Vj , if i 6= j.

A simple way to keep track of the connected components of T is to use an array D[1..n] where D[i] = D[j]
iff vertex i is in the same component as vertex j. So our initialization becomes:

T ← ∅
for i : 1..n

D[i]← i
end for

To check whether ei = [r, s] forms a cycle with T , check whether D[r] = D[s]. If not, and we therefore want
to add ei to T , we merge the components containing r and s as follows:

k ← D[r]
l← D[s]
for j : 1..n

if D[j] = l then
D[j]← k

end if
end for

The complete program for Kruskal’s algorithm then becomes as follows:

Sort the edges so that: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
T ← ∅
for i : 1..n

D[i]← i
end for
for i : 1..m

Assign to r and s the endpoints of ei
if D[r] 6= D[s] then
T ← T ∪ {ei}
k ← D[r]
l← D[s]
for j : 1..n

if D[j] = l then
D[j]← k

end if
end for
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end if
end for

We wish to analyze the running of Kruskal’s algorithm, in terms of n (the number of vertices) and m (the
number of edges); keep in mind that n−1 ≤ m (since the graph is connected) and m ≤

(
n
2

)
< n2. Let us assume

that the graph is input as the sequence n, I1, I2, . . . , Im where n represents the vertex set V = {1, 2, . . . , n},
and Ii is the information about edge ei, namely the two endpoints and the cost associated with the edge.
To analyze the running time, let’s assume that any two cost values can be either added or compared in one
step. The algorithm first sorts the m edges, and that takes O(m logm) steps. Then it initializes D, which
takes time O(n). Then it passes through the m edges, checking for cycles each time and possibly merging
components; this takes O(m) steps, plus the time to do the merging. Each merge takes O(n) steps, but
note that the total number of merges is the total number of edges in the final spanning tree T , namely
(by the above lemma) n − 1. Therefore this version of Kruskal’s algorithm runs in time O(m logm + n2).
Alternatively, we can say it runs in time O(m2), and we can also say it runs in time O(n2 log n). Since it is
reasonable to view the size of the input as n, this is a polynomial-time algorithm.

1.2 Union-Find data structure

A better way to implement testing for connectivity is by using the Union-Find data structure. That allows
to bring the running time of Kruskal’s algorithm down to O(m log n) time.

Union-Find data structure supports three operations:

1) MakeUnionFind(S): for a set of elements S, returns a Union-Find data structure with each element
of S in its own disjoint set. This is used in Kruskal’s algorithm when initializing the structure with all
vertices of the graph (no edges at that point).

2) Find(u) returns the name of a set containing u (usually a set is named after one of its elements).
In Kruskal’s algorithm, the check whether Find(u) == Find(v) checks if u and v are in the same
connected component.

3) Union(A,B): merge sets A and B (e.g., merge two connected components in Kruskal’s).

The array implementation we discussed before is not the most efficient one for this data structure. A better
implementation is pointer-based: for every element, a node is created. When two sets are merged in a union
operation, the pointer of a node at the root of the tree representing the smaller set is pointed to the root
representing the larger set. That is, merging two disjoint nodes results in a tree with a root and one child;
merging another disjoint node to it gives a tree with the same root as before, but two children and so on.
To know which set is larger, we need an additional field keeping the size of a tree rooted in a given node.
In this representation, Union() operation takes constant time (update the pointer of a smaller set’s root
and the size of the larger set’s root). The Find() takes O(logn) time because in the worst case one has
to follow the path from a leaf to the root of the tree; however because of every time the smaller tree gets
attached to the root of the larger one, if a path increased by 1 the size of the whole tree at least doubled.
And MakeUnionFind() takes O(n) time, which is OK since it is only done once.

1.3 Correctness of Kruskal’s Algorithm

It is not immediately clear that Kruskal’s algorithm yields a spanning tree at all, let alone a minimum cost
spanning tree. We will now prove that it does in fact produce an optimal spanning tree. To show this, we
reason that after each execution of the loop, the set T of edges can be expanded to an optimal spanning tree
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using edges that have not yet been considered. Hence after termination, since all edges have been considered,
T must itself be a minimum cost spanning tree.

We can formalize this reasoning as follows:

Definition 1 A set T of edges of G is promising after stage i if T can be expanded to a optimal spanning
tree for G using edges from {ei+1, ei+2, . . . , em}. That is, T is promising after stage i if there is an optimal
spanning tree Topt such that T ⊆ Topt ⊆ T ∪ {ei+1, ei+2, . . . , em}.

Lemma 2 For 0 ≤ i ≤ m, let Ti be the value of T after i stages, that is, after examining edges e1, . . . , ei.
Then the following predicate P (i) holds for every i, 0 ≤ i ≤ m:

P (i) : Ti is promising after stage i.

Proof:
We will prove this by induction. P (0) holds because T is initially empty. Since the graph is connected, there
exists some optimal spanning tree Topt, and
T0 ⊆ Topt ⊆ T0 ∪ {e1, e2, . . . , em}.

For the induction step, let 0 ≤ i < m, and assume P (i). We want to show P (i + 1). Since Ti is promising
for stage i, let Topt be an optimal spanning tree such that
Ti ⊆ Topt ⊆ Ti ∪ {ei+1, ei+2, . . . , em}. If ei+1 is rejected, then Ti ∪ {ei+1} contains a cycle and Ti+1 = Ti.
Since Ti ⊆ Topt and Topt is acyclic, ei+1 /∈ Topt. So
Ti+1 ⊆ Topt ⊆ Ti+1 ∪ {ei+2, . . . , em}.

Now consider the case that Ti∪{ei+1} does not contain a cycle, so we have Ti+1 = Ti∪{ei+1}. If ei+1 ∈ Topt,
then we have Ti+1 ⊆ Topt ⊆ Ti+1 ∪ {ei+2, . . . , em}.
So assume that ei+1 /∈ Topt. Then according to the Exchange Lemma below (letting T1 be Topt and T2

be Ti+1), there is an edge ej ∈ Topt − Ti+1 such that T ′
opt = Topt ∪ {ei+1} − {ej} is a spanning tree.

Clearly Ti+1 ⊆ T ′
opt ⊆ Ti+1 ∪ {ei+2, . . . , em}. It remains to show that T ′

opt is optimal. Since Topt ⊆
Ti ∪ {ei+1, ei+2, . . . , em} and ej ∈ Topt − Ti+1, we have j > i + 1. So (because we sorted the edges)
c(ei+1) ≤ c(ej), so c(T ′

opt) = c(Topt) + c(ei+1)− c(ej) ≤ c(Topt). Since Topt is optimal, we must in fact have
c(T ′

opt) = c(Topt), and T ′
opt is optimal.

This completes the proof of the above lemma, except for the Exchange Lemma.

Lemma 3 (Exchange Lemma) Let G be a connected graph, let T1 be any spanning tree of G, and let T2 be
be a set of edges not containing a cycle. Then for every edge e ∈ T2 − T1 there is an edge e′ ∈ T1 − T2 such
that T1 ∪ {e} − {e′} is a spanning tree of G.

Proof:
Let T1 and T2 be as in the lemma, and let e ∈ T2 − T1. Say that e = [u, v]. Since there is a path from
u to v in T1, T1 ∪ {e} contains a cycle C, and it is easy to see that C is the only cycle in T1 ∪ {e}. Since
T2 is acyclic, there must be an edge e′ on C that is not in T2, and hence e′ ∈ T1 − T2. Removing a single
edge of C from T1 ∪{e} leaves the resulting graph acyclic but still connected, and hence a spanning tree. So
T1 ∪ {e} − {e′} is a spanning tree of G.

We have now proven Lemma 4. We therefore know that Tm is promising after stage m; that is, there is an
optimal spanning tree Topt such that Tm ⊆ Topt ⊆ Tm ∪ ∅ = Tm, and so Tm = Topt. We can therefore state:

Theorem 1 Given any connected edge weighted graph G, Kruskals algorithm outputs a minimum spanning
tree for G.
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1.4 Prim’s algorithm

A somewhat different algorithm for Min Spanning Tree problem is due to Prim. This algorithm resembles
Dijkstra’s algorithm for the shortest-path problem. There is no initial step of sorting; instead, a min spanning
tree is grown starting from a root node by adding, at every step, a minimum-weight edge connecting the
partial tree with a node outside of a tree. Here, as in Dijstra’s algorithm, a priority queue is the main data
structure being used: nodes are stored in a priority queue, with their keys being minimal attachment cost
to the tree so far.

5


