
CS 6783 (Applied Algorithms) –

Lecture 3

Antonina Kolokolova∗

January 13, 2012

1 Greedy Algorithms

One algorithm design method on which many fast algorithms and heuristics are based is the greedy method.
This method relies on the ability to achieve the globally optimal solution by making a sequence of locally
optimal choices. In the greedy method, once the choice is made it is never reverted (otherwise it is a case of
a more general backtracking method).

Let’s consider an example (called in KT the ”interval scheduling” problem).

1.1 Activity selection

Consider the following scenario. A university has a large lecture hall, and would like to schedule as many
different activities in that hall as possible. It is given a list of possible activities out of which it is making
its selection, where an activity is defined to be a pair (s, f) of nonnegative integers such that s < f ; the
intuition is that s is the starting time of the activity and f is the finishing time of the activity. We will be
given a sequence of activities, and we wish to schedule as many of them as possible (in one room) so that
no two scheduled activities overlap. If (s, f) and (s′, f ′) are activities, we say they do not overlap if f ≤ s′

or f ′ ≤ s.

More formally, the input is a sequence of n activities, (s1, f1), (s2, f2), · · · , (sn, fn). A schedule is defined to
be a set A ⊆ {1, 2, · · · , n} such that for all i, j ∈ A, if i 6= j then (si, fi) does not overlap (sj , fj). The goal is
to find a schedule A such that |A| (the size of A) is as big as possible. (Since we are only interested in how
many activities are in A, we are in effect treating each activity as if it yields unit profit. More complicated
versions of this problem allow different activities to yield different profits.)

Our greedy algorithm will work as follows. First, we will sort the activities according to nondecreasing finish
times. Then we will go through the activities, one at a time, scheduling each activity if possible. Before
formally stating the algorithm, we give the following exercise.

Exercise: Prove that if, instead of sorting by nondecreasing finish times, we sort by nondecreasing start
times, then the algorithm would not work.
Prove that if, instead of sorting by nondecreasing finish times, we sort by nondecreasing job size (that is,
f − s), then the algorithm would not work.

We now give code for the algorithm. We will use a variable e to keep track of the last finish time of an

∗This set of notes is based on the course notes of U. of Toronto CS 364 as taught by Stephen Cook

1

activity added to A, where e = 0 if A is empty. That is, since the jobs are sorted according to finish time, e
is the earliest start time at which we can add an activity to A.

Greedy:
Sort the activities so that: f1 ≤ f2 ≤ . . . ≤ fn
A← ∅
e← 0
for i : 1..n

if si ≥ e then
A← A ∪ {i}
e← fi

end if
end for

Analyzing the running time of the algorithm, we see that the n log n time for the sort dominates the linear
time for the loop, so the total time is O(n log n).

A Greedy algorithm often begins with sorting the input data in some way. The algorithm then builds up
a solution to the problem, one stage at a time. At each stage, we have a partial solution to the original
problem – don’t think of these as solutions to subproblems (although sometimes they are). At each stage
we make some decision, usually to include or exclude some particular element from our solution; we never
backtrack or change our mind. It is usually not hard to see that the algorithm eventually halts with some
solution to the problem. It is also usually not hard to argue about the running time of the algorithm, and
when it is hard to argue about the running time it is because of issues involved in the data structures used
rather than with anything involving the greedy nature of the algorithm. The key issue is whether or not
the algorithm finds an optimal solution, that is, a solution that minimizes or maximizes whatever quantity
is supposed to be minimized or maximized. We say a greedy algorithm is optimal if it is guaranteed to find
an optimal solution for every input.

Most greedy algorithms are not opitmal! The method we use to show that a greedy algorithm is optimal
(when it is) often proceeds as follows. At each stage i, we define our partial solution to be promising if it can
be extended to an optimal solution by using elements that haven’t been considered yet by the algorithm;
that is, a partial solution is promising after stage i if there exists an optimal solution that is consistent with
all the decisions made through stage i by our partial solution. We prove the algorithm is optimal by fixing
the input problem, and proving by induction on i ≥ 0 that after stage i is performed, the partial solution
obtained is promising. The base case of i = 0 is usually completely trivial: the partial solution after stage
0 is what we start with, which is usually the empty partial solution, which of course can be extended to an
optimal solution. The hard part is always the induction step, which we prove as follows. Say that stage
i + 1 occurs, and that the partial solution after stage i is Si and that the partial solution after stage i + 1 is
Si+1, and we know that there is an optimal solution Sopt that extends Si ; we want to prove that there is
an optimal solution S′opt that extends Si+1 . Si+1 extends Si by making only one decision; if Sopt makes the
same decision, then it also extends Si+1, and we can just let S′opt = Sopt and we are done. The hard part of
the induction step is if Sopt does not extend Si+1. In this case, we have to show either that Sopt could not
have been optimal (implying that this case cannot happen), or we show how to change some parts of Sopt

to create a solution S′opt such that

• S′opt extends Si+1, and

• S′opt has value (cost, profit, or whatever it is we’re measuring) at least as good as Sopt, so the fact that
Sopt is optimal implies that S′opt is optimal.

For most greedy algorithms, when it ends, it has constructed a solution that cannot be extended to any

2

solution other than itself. Therefore, if we have proven the above, we know that the solution constructed
must be optimal.

Let us now use this method to prove the algorithm above for the activity scheduling problem does produce
an optimal solution.

Theorem 1 This Greedy algorithm outputs an optimal (that is, largest possible) schedule.

Let Ai and ei be the values of A and e after the body of the ‘for’ loop has been executed i times. It is easy
to prove by induction on i that for all i, 0 ≤ i ≤ n:
(*) Ai ⊆ {1, 2, · · · , i} and
(**) ei = max{fj | j ∈ Ai} (where max ∅ = 0).

The Theorem clearly follows from the following Lemma.

Lemma 1 For 0 ≤ i ≤ n, Ai is promising after stage i, that is, there exists an optimal schedule Aopt such
that Ai ⊆ Aopt ⊆ Ai ∪ {i + 1, · · · , n}.

Proof of Lemma: Clearly A0 is promising after stage 0.

So let 0 ≤ i < n and assume that Ai is promising after stage i. We want to show Ai+1 is promising after
stage i + 1. Let Aopt be an optimal schedule such that
Ai ⊆ Aopt ⊆ Ai ∪ {i + 1, · · · , n}. Clearly (*) and (**), together with the fact that the finish times are in
sorted order, imply that ei ≤ fi+1.

Case 1: si+1 < ei, so Ai+1 = Ai.
Then, since ei is the finish time of an activity in Ai and ei ≤ fi+1, we see that activity i + 1 overlaps an
activity in Ai, so i + 1 /∈ Aopt. So Ai+1 ⊆ Aopt ⊆ Ai+1 ∪ {i + 2, · · · , n}.

Case 2: si+1 ≥ ei, so Ai+1 = Ai ∪ {i + 1}.

Subcase 2A: i + 1 ∈ Aopt.
Then Ai+1 ⊆ Aopt ⊆ Ai+1 ∪ {i + 2, · · · , n}.

Subcase 2B: i + 1 /∈ Aopt.
Since si+1 ≥ ei, (**) implies that activity i + 1 does not overlap any activity in Ai. Aopt cannot equal
Ai, for then Aopt ∪ {i + 1} would be a larger schedule than Aopt. So let u ≥ i + 2 be the activity in
Aopt − Ai with the smallest finish time. Consider the activities in Aopt − Ai other than u: since these all
have start times ≥ fu, and since fu ≥ fi+1, we see that none of these activities overlap activity i + 1. Let
A′opt = (Aopt − {u}) ∪ {i + 1}. A′opt is a schedule, and since it has the same size as Aopt, it is an optimal
schedule. We also clearly have Ai+1 ⊆ A′opt ⊆ Ai+1 ∪ {i + 2, · · · , n}. �

Exercise 1 Generalize this to work with multiple rooms in which to schedule activities. In particular, gen-
eralize this algorithm so that it would produce a way to schedule all activities using the minimal number of
(identical) rooms.

1.2 A Greedy Algorithm for Scheduling Jobs with Deadlines and Profits

The setting is that we have n jobs, each of which takes unit time, and a processor on which we would like
to schedule them in as profitable a manner as possible. Each job has a profit associated with it, as well as
a deadline; if the job is not scheduled by the deadline, then we don’t get the profit. Because each job takes
the same amount of time, we will think of a Schedule S as consisting of a sequence of job “slots” 1, 2, 3, . . .

3

where S(t) is the job scheduled in slot t.
(If one wishes, one can think of a job scheduled in slot t as beginning at time t− 1 and ending at time t, but
this is not really necessary.)

More formally, the input is a sequence (d1, g1), (d2, g2), · · · , (dn, gn) where gi is a nonnegative real number
representing the profit obtainable from job i, and di ∈ N is the deadline for job i; it doesn’t hurt to assume
that 1 ≤ di ≤ n. (The reason why we can assume that every deadline is less than or equal to n is because
even if some deadlines were bigger, every feasible schedule could be “contracted” so that no job was placed
in a slot bigger than n.)

Definition 1 A schedule S is an array: S(1), S(2), ..., S(n) where
S(t) ∈ {0, 1, 2, · · ·n} for each t ∈ {1, 2, · · · , n}.

The intuition is that S(t) is the job scheduled by S in slot t; if S(t) = 0, this means that no job is scheduled
in slot t.

Definition 2 S is feasible if
(a) If S(t) = i > 0, then t ≤ di. (Every scheduled job meets its deadline)
(b) If t1 6= t2 and S(t1) 6= 0, then S(t1) 6= S(t2). (Each job is scheduled at most once.)

We define the profit of a feasible schedule S by
P (S) = gS(1) + gS(2) + ... + gS(n), where g0 = 0 by definition.

Goal: Find a feasible schedule S whose profit P (S) is as large as possible; we call such a schedule optimal.

We shall consider the following greedy algorithm. This algorithm begins by sorting the jobs in order of
decreasing (actually nonincreasing) profits. Then, starting with the empty schedule, it considers the jobs
one at a time; if a job can be (feasibly) added, then it is added to the schedule in the latest possible (feasible)
slot.

Greedy:
Sort the jobs so that: g1 ≥ g2 ≥ . . . ≥ gn
for t : 1..n

S(t)← 0 {Initialize array S(1), S(2), ..., S(n)}
end for
for i : 1..n

Schedule job i in the latest possible free slot meeting its deadline;
if there is no such slot, do not schedule i.

end for

Example. Input of Greedy:

Job i: 1 2 3 4 Comments
Deadline di: 3 2 3 1 (when job must finish by)
Profit gi: 9 7 7 2 (already sorted in order of profits)

Initialize S(t):
t 1 2 3 4

S(t) 0 0 0 0

Apply Greedy: Job 1 is the most profitable, and we consider it first. After 4 iterations:

t 1 2 3 4
S(t) 3 2 1 0

4

Job 3 is scheduled in slot 1 because its deadline t = 3, as well as slot t = 2, has already been filled.

P (S) = g3 + g2 + g1 = 7 + 7 + 9 = 23.

Theorem 2 The schedule output by the greedy algorithm is optimal, that is, it is feasible and the profit is
as large as possible among all feasible solutions.

We will prove this using our standard method for proving correctness of greedy algorithms.
We say feasible schedule S′ extends feasible schedule S iff for all t (1 ≤ t ≤ n),
if S(t) 6= 0 then S′(t) = S(t).

Definition 3 A feasible schedule is promising after stage i if it can be extended to an optimal feasible schedule
by adding only jobs from {i + 1, · · · , n}.

Lemma 2 For 0 ≤ i ≤ n, let Si be the value of S after i stages of the greedy algorithm, that is, after
examining jobs 1, · · · , i. Then the following predicate P (i) holds for every i, 0 ≤ i ≤ n:

P (i) : Si is promising after stage i.

This Lemma implies that the result of Greedy is optimal. This is because P (n) tells us that the result of
Greedy can be extended to an optimal schedule using only jobs from ∅. Therefore the result of Greedy
must be an optimal schedule.

Proof of Lemma: To see that P (0) holds, consider any optimal schedule Sopt. Clearly Sopt extends the
empty schedule, using only jobs from {1, · · · , n}.

So let 0 ≤ i < n and assume P (i). We want to show P (i + 1). By assumption, Si can be extended to some
optimal schedule Sopt using only jobs from {i + 1, · · · , n}.

Case 1: Job i + 1 cannot be scheduled, so Si+1 = Si.
Since Sopt extends Si, we know that Sopt does not schedule job i + 1. So Sopt extends Si+1 using only jobs
from {i + 2, · · · , n}.

Case 2: Job i + 1 is scheduled by the algorithm, say at time t0 (so Si+1(t0) = i + 1 and t0 is the latest free
slot in Si that is ≤ di+1).

Subcase 2A: Job i + 1 occurs in Sopt at some time t1 (where t1 may or may not be equal to t0).

Then t1 ≤ t0 (because Sopt extends Si and t0 is as large as possible) and Sopt(t1) = i + 1 = Si+1(t0).

If t0 = t1 we are finished with this case, since then Sopt extends Si+1 using only jobs from {i + 2, · · · , n}.
Otherwise, we have t1 < t0. Say that Sopt(t0) = j 6= i + 1. Form S′opt by interchanging the values in slots
t1 and t0 in Sopt. Thus S′opt(t1) = Sopt(t0) = j and S′opt(t0) = Sopt(t1) = i + 1. The new schedule S′opt is
feasible (since if j 6= 0, we have moved job j to an earlier slot), and S′opt extends Si+1 using only jobs from
{i + 2, · · · , n}. We also have P (Sopt) = P (S′opt), and therefore S′opt is also optimal.

Subcase 2B: Job i + 1 does not occur in Sopt.

Define a new schedule S′opt to be the same as Sopt except for time t0, where we define S′opt(t0) = i+ 1. Then
S′opt is feasible and extends Si+1 using only jobs from {i + 2, · · · , n}.

To finish the proof for this case, we must show that S′opt is optimal. If Sopt(t0) = 0, then we have P (S′opt) =
P (Sopt) + gi+1 ≥ P (Sopt). Since Sopt is optimal, we must have P (S′opt) = P (Sopt) and S′opt is optimal. So
say that Sopt(t0) = j, j > 0, j 6= i + 1. Recall that Sopt extends Si using only jobs from {i + 1, · · · , n}. So

5

j > i + 1, so gj ≤ gi+1. We have P (S′opt) = P (Sopt) + gi+1 − gj ≥ P (Sopt). As above, this implies that S′opt
is optimal. �

We still have to discuss the running time of the algorithm. The initial sorting can be done in time O(n log n),
and the first loop takes time O(n). It is not hard to implement each body of the second loop in time O(n), so
the total loop takes time O(n2). So the total algorithm runs in time O(n2). Using a more sophisticated data
structure one can reduce this running time to O(n log n), but in any case it is a polynomial-time algorithm.

1.3 Approximating Simple Knapsack

In many situations, a greedy algorithm does not produce an optimal solution. But sometimes a greedy
algorithm can give a reasonably good approximation for an otherwise hard (e.g., NP-hard) problem. Such
is the case with the Simple Knapsack problem.

Informally, the problem is that we have a knapsack that can only hold weight C, and we have a bunch of
items that we wish to put in the knapsack; each item has a specified weight, and the total weight of all
the items exceeds C; we want to put items in the knapsack so as to come as close as possible to weight C,
without going over. More formally, we can express the problem as follows. Let w1, . . . , wd ∈ N be weights,
and let C ∈ N be a weight. For each S ⊆ {1, . . . , d} let K(S) =

∑
i∈S wi. (Note that K(∅) = 0.)

Find:
M = max

S⊆{1,...,d}
{K(S)|K(S) ≤ C}

For large values of d, brute force search is not feasible because there are 2d subsets of {1, . . . , d}.

We can estimate M using the Greedy method:
We first sort the weights in decreasing (or rather nonincreasing order)

w1 ≥ w2 ≥ ... ≥ wd

We then try the weights one at a time, adding each if there is room. Call this resulting estimate M .

It is easy to find examples for which this greedy algorithm does not give the optimal solution; for example
weights {501, 500, 500} with C = 1000. Then M = 501 but M = 1000. However, this is just about the worst
case:

Lemma 3 M ≥ 1
2M

Proof: We first show that if M 6= M , then M > 1
2C; this is left as an exercise. Since C ≥ M , the Lemma

follows.

The notion of a polynomial-time algorithm is basic to complexity theory, and to this course (see definition
below). Roughly speaking, we regard an algorithm as feasible (or tractable) if and only if it runs in polynomial
time. The above greedy algorithm runs in polynomial time (see below) and is feasible to execute for values
of d in the thousands or even millions. On the other hand, the blind search algorithm takes more than 2d

steps, is not polynomial-time, and will never run on any physical computer (now or in the future) for values
of d as small as 200 – the universe will expire first.

Unfortunately the greedy algorithm does not necessarily yield an optimal solution. This brings up the
question: is there any polynomial-time algorithm that is guaranteed to find an optimal solution to the simple
knapsack problem? The answer is that this knapsack problem is “NP hard” (assuming that the weights are
given using binary or decimal notation), and hence is very unlikely to be solvable by a polynomial-time
algorithm.

6

