
CSC 364S Notes University of Toronto, Spring, 2003Flow AlgorithmsThe networks we will consider are directed graphs, where each edge has associated with ita nonnegative capacity. The intuition is that if edge (u; v) has capacity c, then this meansthat at most c amount of \stu�" (for example water, or electricity, or bits) can ow alongthe edge from u to v. We will also have two distinguished vertices s and t (for source andterminus), and the goal is to compute the maximum amount of \stu�" that can be made toow through the network from s to t. Of course, we also have to obey the \ow conservation"constraint that for every vertex v other than s or t, the total amount of stu� owing into vis equal to the total amount owing out of v. Actually, instead of having the two notions ofstu� owing into a vertex and of stu� owing out of a vertex, we will allow negative owsalong an edge; if there is a ow of x on the edge (u; v), then there will be a ow of �x onthe edge (v; u). The ow conservation constraint then becomes the statement that the totalamount owing out of vertex v (other than s or t) is exactly 0; this is equivalent to sayingthat the total amount owing into v is exactly 0. We now state all this formally.A Flow network F = (G; c; s; t) consists of:� a directed graph G = (V;E); actually, G is bidirected, that is, if (u; v) 2 E then(v; u) 2 E; we also assume there are no self loops;� a nonnegative capacity function c : E ! R�0;� two distinguished vertices: s (the source) and t (the terminus or target).Note: The terminology \ow network" is pretty standard, but in fact it should be called a\capacity network" (or perhaps to be more grammatical, a \capacitated network") to stressthe fact that we start with capacities and not ows.We can assume (without loss of generality) that for every v 2 V , there is a path s to t, andwe can also assume that for all (u; v) 2 E, either c(u; v) > 0 or c(v; u) > 0 (or both).We now de�ne the notion of a ow in F . Note that unlike capacities, ow values are allowedto be negative. For a vertex u, we use the notation N(u) to denote the neighbors of u:N(u) = fv 2 V j (u; v) 2 Eg.
1

A ow in F is a function f : E ! R satisfying:� capacity constraint: f(u; v) � c(u; v) for every (u; v) 2 E� skew symmetry: f(u; v) = �f(v; u) for every (u; v) 2 E� ow conservation: For all u 2 V other than s or t, Xv2N(u)f(u; v) = 0The value of a ow f is jf j = Xv2N(s)f(s; v).Note that although we de�ned jf j to be the amount owing out of s, we will see later thatthis is equal to the amount owing into t.Maximum ow problem:Given a ow network (G; c; s; t), �nd a ow of maximum possible value from s to t.Example: The following is an example of a ow network. Only edges with positive capacitiesare shown; edges with capacity 0 are omitted from the diagram. Each edge is labelled withits capacity. For each edge (u; v) that is shown, the edge (v; u) is also assumed to be present;if the edge (v; u) is not shown, then it has capacity 0.FLOW NETWORK F :
7

4

10

13

4

20

8

14

15

22

v1 v3v2 v4s tThe following shows the above example of a ow network, together with a ow.The notation x=y on an edge (u; v) meansx is the ow (x = f(u; v))y is the capacity (y = c(u; v))Only ows on edges of positive capacity are shown. Note that negative ows on edges of 0capacity are not shown. For example, f(v2; s) = �8, but this is not explicitly shown on thediagram. In this example we have:jf j = 13 + 8 = 21. 2

FLOW NETWORK F WITH A FLOW f :
8/13 4/4

7/71/4

13/20

14/14

17/22

11/15

4/8
−1/10 v4 ts v2 v3v1

Residual NetworksLet F be a ow network, f a ow. For any (u; v) 2 E, the residual capacity of (u; v) inducedby f is cf (u; v) = c(u; v)� f(u; v) � 0:The residual graph of F induced by f isGf = (V;Ef)where Ef = f(u; v) 2 E j cf (u; v) > 0g:The ow f also gives rise to the residual ow network Ff = (G; cf ; s; t).The residual network Ff is itself a ow network with capacities cf , and any owin Ff is also a ow in F .The next lemma shows that if we have a ow f in a network and a ow f0 in the residualnetwork, then f0 can be added to f to obtain an improved ow in the original network.This will be a technique we will use to continuously improve ows until we have a maximumpossible ow.Lemma 1 Let F = (G; c; s; t) be a ow network and let f be a ow in F . Let Ff be theresidual network induced by f , and let f0 be a ow in Ff . Then the ow sum de�ned by(f + f0)(u; v) d= f(u; v) + f0(u; v)is a ow in F with value jf + f0j = jf j+ jf0j:3

Proof: In order to show that f + f0 is a ow in F , we have to check that the capacityconstraint, skew symmetry, and ow conservation hold.Capacity Constraint:(f +f0)(u; v) = f(u; v)+f0(u; v) � f(u; v)+ cf(u; v) = f(u; v)+(c(u; v)�f(u; v)) = c(u; v).Skew Symmetry:(f + f0)(u; v) = f(u; v) + f0(u; v) = �f(v; u)� f0(v; u) = �(f(v; u) + f0(v; u)) =�(f + f0)(v; u).Flow Conservation:Let u be a vertex other than s or t. Then Pv2N(u)(f + f0)(u; v) =Pv2N(u)(f(u; v) + f0(u; v)) =Pv2N(u) f(u; v) +Pv2N(u) f0(u; v) = 0 + 0 = 0.It remains to check that jf + f0j = jf j + jf0j. We have jf + f0j = Pv2N(s)(f + f0)(s; v) =Pv2N(s)(f(s; v) + f0(s; v)) =Pv2N(s) f(s; v) +Pv2N(s) f0(s; v) = jf j+ jf0j.Augmenting PathsGiven a ow network F = (G; c; s; t) and a ow f , an augmenting path � is a simple path(that is, a path where no vertex repeats) from s to t in the residual graph, Gf ; note that everyedge in Gf has positive capacity. Equivalently, an augmenting path is a simple path from sto t in G consisting only of edges of positive residual capacity. We will use an augmentingpath to create a ow f0 of positive value in Ff , and then add this to f as in the abovelemma, in order to create the ow f 0 = f + f0 of value bigger than f .The maximum amount of net ow we can ship along the edges of an augmenting path � iscalled the residual capacity of �. We denote it by cf(�); because � is augmenting, cf (�) isguaranteed to be positive.cf(�) = minfcf(u; v) j (u; v) is on �g > 0:Lemma 2 Fix ow network F = (G; c; s; t), ow f , augmenting path �, and de�nef� : E ! R: f�(u; v) =8<: cf (�) if (u; v) is on ��cf (�) if (v; u) is on �0 otherwiseThen f� is a ow in Ff , and jf�j = cf (�) > 0.Proof: In order to show that f� is a ow in Ff , we have to check that the capacity constraint,skew symmetry, and ow conservation hold.Capacity Constraint:If (u; v) is on �, then f�(u; v) = cf (�) � cf (u; v); this last inequality holds since by de�nition,4

cf (�) is the smallest residual capacity of the edges of �.If (u; v) is not on �, then f�(u; v) � 0 � cf (u; v).Skew Symmetry:If (u; v) is on �, then we have f�(u; v) = cf (�), and f�(v; u) = �cf (�), sof�(u; v) = �f�(v; u).If neither (u; v) nor (v; u) is on �, then f�(u; v) = f�(v; u) = 0, so f�(u; v) = �f�(v; u).Flow Conservation:Let u be a vertex other than s or t.Let us �rst consider the case where u is on �. Say that edges (w; u) and (u; v) are on �.Then f�(u; v) = cf (�) and f�(u;w) = �cf(�); for every x 2 N(u) other than v or w, wehave f�(u; x) = 0. So Px2N(u) f�(u; x) = 0.Now consider the case where u is not on �. Then for every x 2 N(u), f�(u; x) = 0. SoPx2N(u) f�(u; x) = 0.It remains to check that jf�j = cf(�). Let (s; v) be the unique edge coming out of s that ison �. Then f�(s; v) = cf (�). For every x 2 N(s) other than v, we have f�(s; x) = 0. SoPx2N(s) f�(s; x) = cf (�).Corollary 1 Fix ow network F = (G; c; s; t), ow f , augmenting path �, and let f� bede�ned as above. Let f 0 = f + f�. Then f 0 is a ow in F , andjf 0j = jf j+ jf�j > jf j:Example: Continuing the previous example, the following diagram shows the residual graphGf consisting of edges with positive residual capacity. The residual capacity of each edge isalso shown. An augmenting path � is indicated by � � �. We havecf (�) = 4.THE RESIDUAL GRAPH Gf WITH AUGMENTING PATH �:
11

5

8

3

11

7

4

5

413

7

14

4

4

17v2v1 v3v4 tsThe following diagram shows the network F with ow f 0 = f + f�. We havejf 0j = jf j+ jf�j = 21 + cf (�) = 21 + 4 = 25. 5

FLOW NETWORK F WITH FLOW f 0:
4/4

7/71/4

13/20

14/14

11/15

−1/10

12/13

0/8

21/22v4 ts v2 v3v1
After creating the improved ow f 0, it is natural to try the same trick again and look for anaugmenting path with respect to f 0. That is, we consider the new residual graph Gf 0 andlook for a path from s to t. We see however, that no such path exists.THE RESIDUAL GRAPH Gf 0:

11 3

11

412

7

7

13

1

8

14

4

21

1

v1 v3s tv2 v4All of the above suggests the famous Ford-Fulkerson algorithm for network ow. The algo-rithm begins by initializing the ow f to the all-0 ow, that is, the ow that is 0 along everyedge. The algorithm then continually improves f by searching for an augmenting path �,and using this path to improve f , as in the previous lemma. The algorithm halts when thereis no longer any augmenting path.Ford-Fulkerson(G; c; s; t)Initialize ow f to the all-0 owWHILE there exists an augmenting path in Gf DOchoose an augmenting path �f f + f�end WHILE 6

There are a number of obvious questions to ask about this algorithm. Firstly, how are wesupposed to search for augmenting paths? That is, how do we look for a path from s to tin the graph Gf? There are many algorithms we could use. However, since all we want todo is �nd a path between two points in an unweighted, directed graph, two of the simplestand fastest algorithms we can use are \depth-�rst search" or \breadth-�rst" search. Each ofthese algorithms runs in time linear in the size of the graph, that is, linear in the number ofedges in the graph.The next question is, is the algorithm guaranteed to halt? The answer to this, remarkably,is NO. If we do not constrain how the algorithm searches for augmenting paths, then thereare examples where it can run forever. These examples are complicated and use irrationalcapacities, and we will not show one here.What if the capacities are all integers? Then it is clear that the algorithm increases the owby at least 1 each time through the loop, and so it will eventually halt. (Exercise: �ll in thedetails of this argument; give a similar argument in case the capacities are only guaranteedto be rational numbers.) However, this may still take a very long time.As an example, consider the following ow network with only 4 vertices. If we are lucky(or careful), the algorithm will choose [s; v1; t] for the �rst augmenting path, creating a owwith value 1000; it will then have no choice but to choose [s; v2; t] for the next augmentingpath, and it will be halt, having created a ow with value 2000. However, the algorithmmay choose [s; v1; v2; t] as its �rst augmenting path, creating a ow with value 1; it may thenchoose [s; v2; v1; t] as the next augmenting path, creating a ow with value 2; continuing inthis way, it may go 2000 times through the loop before it eventually halts.EXAMPLE OF A BAD FLOW NETWORK FOR FORD-FULKERSON:
1

1000

1000 1000

1000s tv2
v1

We will see later, however, that if we constrain how Ford-Fulkerson chooses its augmentingpaths, then we can get a version of the algorithm that runs in time polynomial in the sizeof the network. 7

For the moment, we will concern ourselves with one last question about the algorithm. Let'sassume it does halt; is it then the case that the ow it has found is as large as possible? Theanswer turns out to be YES! We know that if an augmenting path exists then the currentow is not optimal. We want to prove that if there is no augmenting path, then the currentow is optimal.This is a very subtle proof. Let us �x ow network F = (G; c; s; t), G = (V;E), and owf . We are going to introduce the new notion of a cut of F . We will see that if there is noaugmenting path, then there will exist a special cut that shows that f is optimal.Cuts of Flow NetworksA cut (S; T) of F is a partition of V into S and T = V � S such that s 2 S and t 2 T . Wede�ne the capacity of (S; T) to be the sum of the capacities over all edges going from S toT ; note that this is a sum of nonnegative numbers. We de�ne the ow across (S; T) to bethe sum of the ows over all edges going from S to T ; note that this sum may consist ofnegative numbers. More formally:The capacity of the cut (S; T) is de�ned byc(S; T) = X(x;y)2(S�T)\E c(x; y)The ow across (S; T) is f(S; T) = X(x;y)2(S�T)\E f(x; y)Note that we are slightly abusing notation by extending the de�nition of ows and capacitiesto sets of nodes.Example: Consider our earlier example of the ow network F with ow f 0. Considerthe cut (S; T) = (fs; v3g; ft; v1; v2; v4g). We have c(S; T) = 20 + 13 + 8 + 22 = 63 andf 0(S; T) = 13 + 12 + (�14) + (�7) + 21 = 25.We see that f(S; T) in the above example is exactly equal to jf j, and this is no coincidence.Intuitively it makes sense that the amount owing out of s should be exactly the same asthe amount owing across any cut, and this is proven in the next lemma. In particular, byconsidering the cut (V �ftg; ftg), we see that jf j is exactly equal to the amount owing intot.Lemma 3 Fix ow network F = (G; c; s; t) and ow f . Then for every cut (S; T),f(S; T) = jf j. 8

Proof: Let (S; T) be a cut. Consider the following �ve sets of edges:E1 = (S � T) \ E;E2 = (S � V) \ E;E3 = (S � S) \ E;E4 = (fsg � V) \ E;E5 = ((S � fsg)� V) \ E;First, we claim that Pe2E3 f(e) = 0. This is because for every edge (u; v) in E3, (v; u) isalso in E3, and by skew symmetry we have f(u; v) + f(v; u)=0.We next claim thatPe2E5 f(e) = 0. This is because ow conservation for every node u otherthan s or t allows us to writePe2E5 f(e) =Pu2S�fsgPv2N(u) f(u; v) =Pu2S�fsg 0 = 0.Since E2 is the disjoint union of E1 and E3, we havePe2E2 f(e) =Pe2E1 f(e) +Pe2E3 f(e) =Pe2E1 f(e).Since E2 is the disjoint union of E4 and E5, we havePe2E2 f(e) =Pe2E4 f(e) +Pe2E5 f(e) =Pe2E4 f(e).Putting all this together, we havef(S; T) =Pe2E1 f(e) =Pe2E2 f(e) =Pe2E4 f(e) = jf j.Lemma 4 Fix ow network F = (G; c; s; t) and ow f . Then for every cut (S; T),f(S; T) � c(S; T).Proof: f(S; T) =Pe2(S�T)\E f(e) �Pe2(S�T)\E c(e) = c(S; T).Corollary 2 The value of every ow in F is less than or equal to the capacity of every cutof F .We now state and prove the famous \max-ow, min cut" theorem. This theorem says thatthe maximum value over all ows in F is exactly equal to the minimum capacity over allcuts. It also tells us that if F has no augmenting paths with respect to a ow f , then jf j isthe maximum possible.Theorem 1 (MAX-FLOW, MIN-CUT THEOREM)Fix ow network F = (G; c; s; t), G = (V;E), and ow f . Then the following are equivalent1. f is a max ow (that is, a ow of maximum possible value) in F .2. There are no augmenting paths with respect to f .3. jf j = c(S; T) for some cut (S; T) of F . 9

Proof:(1)) (2)Suppose (1) holds. We have already seen that if there were an augmenting path with respectto f , then a ow with value larger than jf j could be constructed. Since f is a max ow,there must be no augmenting paths.(2)) (3)Suppose (2) holds. Then there is no path from s to t in Gf .Let S = fv 2 V j there exists a path from s to v in Gfg, and let T = V � S. Clearly (S; T)is a cut. We claim that jf j = c(S; T). From the above Lemma 3, it su�ces to show thatf(S; T) = c(S; T). For this, it su�ces to show that for every edge (u; v) 2 (S � T) \ E,f(u; v) = c(u; v). So consider such an edge (u; v). If we had f(u; v) < c(u; v), then (u; v)would be an edge with positive residual capacity, and hence (u; v) would be an edge of Gf ,and hence (since u 2 S), there would be a path in Gf from s to v, and hence v 2 S { acontradiction.(3)) (1)Suppose (3) holds. Let (S; T) be a cut of F such that jf j = c(S; T). From the abovecorollary, we know that every ow has value less than or equal to c(S; T), and hence everyow has value less than or equal to jf j. So f is a max ow.This theorem tells us that if Ford-Fulkerson halts, then the resulting ow is optimal. Let usnow return to the question of how to modify Ford-Fulkerson so that it is guaranteed to notonly halt, but to halt reasonably quickly.The Edmonds-Karp version of this algorithm looks for a path in Gf using breadth-�rst search.This �nds a path that contains as few edges as possible. We call this algorithm FF-EK:FF-EK(G; c; s; t)Initialize ow f to the all-0 owWHILE there exists an augmenting path in Gf DOchoose an augmenting path � using breadth-�rst search in Gff f + f�end WHILELet us assume (without loss of generality) that jEj � jV j. Then breadth-�rst search �ndsan augmenting path (if there is one) in time O(jEj). Using an augmenting path to improvethe ow takes time O(jEj), so each execution of the main loop runs in time O(jEj).It is a di�cult theorem (that we will not prove here) that the main loop of FF-EK will beexecuted at most O(jV jjEj) times. Thus, FF-EK halts in time O(jV jjEj2). Hence, this is apolynomial time algorithm. A huge amount of research has been done in this area, and evenbetter algorithms have been found. One of the fastest has running time O(jV j3).10

Example: Consider the previous example of ow network F with ow f 0. We know thatjf 0j = 25, and so the ow across every cut will be 25, and the capacity of every cut will begreater than or equal to 25. We have seen that there is no augmenting path, so the abovetheorem tells us that there must be a cut of capacity 25. It even tells us how to �nd such acut: let S be the set of nodes reachable from s in Gf 0. In fact, it is easy to check that if wechoose S = fs; v1; v2; v4g and T = fv3; tg, then c(S; T) = 14 + 7 + 4 = 25.An Application to Finding MaximumMatchings in Bipartite GraphsThere are many applications of max-ow algorithms to areas which appear very di�erent.As an example, we shall show how to use a max ow algorithm to �nd a maximummatchingin a bipartite graph.A bipartite graph is a directed graph G = (V;E) where V is partitioned into two parts L andR (for left and right) such that all edges go from L to R. That is, V = L[R, L\R = ;, andE � L � R. A matching is de�ned to be a set of edges M � E such that no two (distinct)edges of M have a vertex in common. The size of M is de�ned to be jM j, the number ofedges in M . We wish to �nd a maximum matching, that is, a matching of biggest possiblesize.It turns out that there is a way to convert such a matching problem into a ow problem.First we add two vertices to create V 0 = V [fs; tg. We add edges from s to each vertex inL, and edges from each vertex in R to t; all of these edges (including the original edges inE) are assigned capacity 1. Lastly, we add the the reverse of all these edges, with capacity0. In this way we form the ow network F = (G0; c; s; t), G0 = (V 0; E0). Consider integerows in F , that is, ows that take on integer values on every edge; for each edge of capacity1, the ow on it must be either 1 or 0 (since its reverse edge has capacity 0). It is easy tosee that Ford-Fulkerson, when applied to a network with only integer capacities, will alwaysyield an integer (maximum) ow. The following two lemmas show that an integer ow f canbe used to construct a matching of size jf j, and that a matchingM can be used to constructa ow of value jM j. This will allow us to use Ford-Fulkerson to compute a maximum owin polynomial time.Lemma 5 Let G = (V;E) and F = (G0; c; s; t) be as above, and let f be an integer ow inF . Then there is a matching M in G such that jM j = jf j.Proof:Let f be an integer ow. Let M = f(u; v) 2 L�R j f(u; v) = 1:g.To see why M is a matching, imagine that (u; v1); (u; v2) 2M for some v1 6= v2; since u hasonly one edge of positive capacity (namely 1) coming into it, we would havePv2N(u) f(u; v) �1, contradicting ow conservation. (A similar argument shows that no two edges in M canshare a right endpoint.) 11

We now show that jM j = jf j. Recall that jf j is equal to the total ow coming out of s. Sowe must have jf j distinct vertices u1; u2; : : : ; ujf j such thatf(s; u1) = 1; f(s; u2) = 1; : : : ; f(s; ujf j) = 1. So in order for ow conservation to hold, foreach ui we must have some vi 2 R such that f(ui; vi) = 1. So (ui; vi) 2 M for each i, andwe have jM j = jf j.Lemma 6 Let G = (V;E) and F = (G0; c; s; t) be as above, and let M be a matching in G.Then there exists a ow f in F with jf j = jM j.Proof:Let M = f(u1; v1); (u2; v2); : : : ; (ujM j; vjM j) � L �Rg be a matching. De�ne f byf(s; ui) = 1, f(ui; vi) = 1, f(vi; t) = 1 (and f(ui; s) = �1, f(vi; ui) = �1, f(t; vi) = �1) foreach i, and f(e) = 0 for every other edge e 2 E0. It is easy to check that f is a ow, andthat jf j = jM j (exercise).We now see how to use Ford-Fulkerson to �nd a maximummatching in G = (V;E). Assume,without loss of generality, that jV j � jEj. Note that jV 0j 2 O(jV j) and jE0j 2 O(jEj).We �rst construct F = (G0; c; s; t) as above; this takes time O(jEj). We then perform theFord-Fulkerson algorithm to create a maximum ow f . We observe that this algorithm, nomatter how we �nd augmenting paths, will increase the ow value by exactly 1 each time,and hence will execute its main loop at most jV j times. If we use an O(jEj) time algorithmto search for augmenting paths, then each execution of the loop will take time O(jEj). Sothe total time of the Ford-Fulkerson algorithm here is O(jV jjEj). Lastly, we use the integerow f to create a matching M in G such that jM j = jf j; this takes time O(jEj). The lastlemma above tells us that since f is a maximum ow, M must be a maximum matching.So the entire maximum matching algorithm runs in time O(jV jjEj). This is a polynomialtime algorithm. Faster algorithms have also been found. For example, there is an algorithmfor this problem that runs in time O(pjV jjEj).Example: The following is an example of a (directed) bipartite graph G. The next �gureshows the network F derived from G, together with a maximumow f in F . The last �gureshows the maximum matching M obtained from f .
12

A BIPARTITE GRAPH G:
FLOW NETWORK F DERIVED FROM G, WITH A MAXIMUM FLOW f :

ts
1/1

1/1

1/1

1/1

0/1

0/1

0/1

1/1
1/1

1/1

1/1

0/1

1/1

A MAXIMUM MATCHING IN G DERIVED FROM FLOW f :
13

