
Applied Algorithms February 14, 2012

Bellman-Ford algorithm

Professor: Antonina Kolokolova Scribe: Abdullah Al Mamun

1 Bellman-Ford algorithm

Finding shortest path in a graph with only positive weights can be done by Dijkstra’s algorithm.
The problem becomes a lot harder for the graphs that contain negative weights: in the worst
case, a path from s to t may go through a negative cycle, so the shortest path would have
weight of negative infinity. Thus, a different algorithm is needed, both to detect the presence
of negative cycles in the graph (reachable from s, at least), and to find a shortest path when
there are negative weights, although no negative cycles are reachable. The (standard) Bellman-
Ford algorithm achieves both goals. There is a different version of this algorithm in Kleinberg-
Tardos, which assumes that there are no negative cycles; their version does fit into the dynamic
programming paradigm better.

”Standard” Version

Problem: s-t shortest path with negative weights
Initialize:
s.distance = 0;
∀ v 6= s v.distance = ∞
for i = 1 to n− 1 do
for every edge (u, v) do
if v.distance > u.distance + weight(u.v)
then v.distance ← u.distance + weight(u, v)

For every edge (u, v) do
if v.distance > u.distance + weight(u.v)
output ”negative cycle”

Why does this algorithm works? Note that the longest possible path from s to t is of length
n − 1. After 1 step, all edges connected by an edge to the source will get non-infinite values.
Moreover, all paths from s of length 1 will get their correct shortest path values after the first
step. In general, if the best path from s to t has i edges, after i steps it will be computed correctly.
Since without negative cycles the best path from s to t will have at most n− 1 edges, it will be
computed correctly after n− 1 steps.

KT Version

1) A(i,v): best path from v to t using at most i edges.
Answer: A(n-1, s)

2) A(i, v) = min{A(i-1, v), min{A(i-1, w) + weight(u, v)}}

Here, the assumption is that the graph contains no negative cycle.

1


	Bellman-Ford algorithm

