
Midterm test study sheet for CS6902

Turing machines and decidability.

• A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine
is a 6-tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject). Here, Q is a finite set of states as before, with three
special states q0 (start state), qaccept and qreject. The last two are called the halting states, and they
cannot be equal. Σ is a finite input alphabet. Γ is a tape alphabet which includes all symbols from
Σ and a special symbol for blank, t. Finally, the transition function is δ : Q.× Γ→ Q× Γ× {L,R}
where L,R mean move left or right one step on the tape. Also know encoding languages and Turing
machines as binary strings.

• Equivalent (not necessarily efficiently) variants of Turing machines:two-way vs. one-way infinite tape,
multi-tape, non-deterministic, oblivious.

• PAL is decidable in linear time on a two-tape machine, but in quadratic time on one-tape.

• Church-Turing Thesis Anything computable by an algorithm of any kind (our intuitive notion of
algorithm) is computable by a Turing machine.

• A Turing machine M accepts a string w if there is an accepting computation of M on w, that is,
there is a sequence of configurations (state,non-blank memory,head position) starting from q0w and
ending in a configuration containing qaccept, with every configuration in the sequence resulting from
a previous one by a transition in δ of M . A Turing machine M recognizes a language L if it accepts
all and only strings in L: that is, ∀x ∈ Σ∗, M accepts x iff x ∈ L. As before, we write L(M) for the
language accepted by M .

• A language L is called Turing-recognizable (also recursively enumerable, r.e, or semi-decidable) if ∃ a
Turing machine M such that L(M) = L. A language L is called decidable (or recursive) if ∃ a Turing
machine M such that L(M) = L, and additionally, M halts on all inputs x ∈ Σ∗. That is, on every
string M either enters the state qaccept or qreject in some point in computation. A language is called co-
semi-decidable if its complement is semi-decidable. Semi-decidable languages can be described using
unbounded ∃ quantifier over a decidable relation; co-semi-decidable using unbounded ∀ quantifier.
There are languages that are higher in the arithmetic hierarchy than semi- and co-semi-decidable;
they are described using mixture of ∃ and ∀ quantifiers and then number of alternation of quantifiers
is the level in the hierarchy. An example of such decidable relation can be CheckA(M,w, y), which
verifies that y is a transcript of an accepting computation of M on w. CheckR and CheckH can be
defined similarly for rejecting and halting computations.

• Decidable languages are closed under intersection, union, complementation, Kleene star, etc. Semi-
decidable languages are not closed under complementation, but closed under intersection and union.
If a language is both semi-decidable and co-semi-decidable, then it is decidable.

• Universal language ATM = {〈M,w〉 | w ∈ L(M)}. Undecidability; proof by diagonalization and
getting the paradox. ATM is undecidable.

• A many-one reduction: A ≤m B if exists a computable function f such that ∀x ∈ Σ∗A, x ∈ A ⇐⇒
f(x) ∈ B. To prove that B is undecidable, (not semi-decidable, not co-semi-decidable) pick A which
is undecidable (not semi, not co-semi.) and reduce A to B. To prove that a language is in the class
(e.g., semi-decidable), give an algorithm.

• Know how to do reductions and place languages in the corresponding classes, similar to the assignment
(both easiness and hardness directions, where applicable).

• Examples of undecidable languages: ATM , HaltB, NE, Total, All, Know which are semi-decidable,
which co-semi-decidable and which neither.

1

Complexity theory, NP-completeness

• A Turing machine M runs in time t(n) if for any input of length n the number of steps of M is at
most t(n) (worst-case running time).

• Time complexity classes Time(f(n)) are sets of languages decidable in worst-case time f(n). Similarly
for Space(f(n)) and non-deterministic time NTime(f(n)). For non-deterministic time, the bound
f(n) must hold for all branches of the computation.

• A language L is in the complexity class P (stands for Polynomial time) if there exists a Turing machine
M , L(M) = L and M runs in time O(nc) for some fixed constant c. The class P =

⋃
k≥0 Time(n

k)
is believed to capture the notion of efficient algorithms.

• A language L is in the class NP if there exists a polynomial-time verifier, that is, a relation R(x, y)
computable in polynomial time such that ∀x, x ∈ L ⇐⇒ ∃y, |y| ≤ c|x|d ∧R(x, y). Here, c and d are
fixed constants, specific for the language.

• A different, equivalent, definition of NP is a class of languages accepted by polynomial-time non-
deterministic Turing machines. The name NP stands for “Non-deterministic Polynomial-time”.

• Time(f(n)) ⊆ NTime(f(n)) ⊆ Space(f(n)) ⊆ Time(2O(f(n))). In particular, P ⊆ NP ⊆ EXP, where
EXP is the class of languages computable in time exponential in the length of the input. All of them
are decidable. Alternating quantifiers, get polynomial-time hierarchy PH: P ⊆ NP∩coNP ⊆ NP∪coNP ⊆
PH ⊆ PSPACE ⊆ EXP ⊆ NEXP.

• Time hierarchy theorem: Time(f(n)) (Time(f(n)/ log n). Space hierarchy theorem: Space(f(n)) (
Space(o(f(n))). In particular, P (EXP and LogSpace (PSPACE.

• By padding, equalities between complexity classes translate upward and inequalities downward. So
if P = NP then EXP = NEXP.

• Examples of languages in P: connected graphs, relatively prime pairs of numbers (and, quite recently,
prime numbers), palindromes,etc. In NP: all languages in P, Clique, Hamiltonian Path, SAT, etc.
Technically, functions computing an output other than yes/no are not in NP since they are not
languages. Maximizers such as LargestClique are not known to be in NP.

• Major Open Problem: is P = NP? Widely believed that not, weird consequences if they were, including
breaking all modern cryptography and automating creativity.

• Polynomial-time reducibility : A ≤p B if there exists a polynomial-time computable function f such
that ∀x ∈ Σ, x ∈ A ⇐⇒ f(x) ∈ B.

• A language L is N-hard if every language in NP reduces to L. A language is NP-complete it is both in
NP and NP-hard.

• Steps of proving NP-completeness of a given language L:

1. Show that L ∈ NP by giving respective R, c, d and explaining how y encodes a solution.

2. Show that L is NP-hard via a reduction as follows:

(a) Find a suitable known NP-complete language L′ such as 3SAT, Partition, IndSet.

(b) Describe a polynomial-time reduction f from this NP-complete language to your L, L′ ≤p L,
for example 3SAT ≤p L.

(c) Show that x ∈ 3SAT → f(x) ∈ L (or x ∈ L′ → f(x) ∈ L if L′ 6= 3SAT)

(d) Show that f(x) ∈ L→ x ∈ 3SAT (or f(x) ∈ L→ x ∈ L′)
(e) Briefly explain why f is polynomial-time computable.

2

