
CS 6743 Lecture 9 1 Fall 2007

1 Importance of the Cook-Levin Theorem

There is a trivial NP-complete language:

Lu = {(M, x, 1k) | NTM M accepts x in ≤ k steps}

Exercise: Show that Lu is NP-complete.
The language Lu is not particularly interesting, whereas SAT is extremely interesting

since it’s a well-known and well-studied natural problem in logic. After Cook and Levin
showed NP-completeness of SAT, literally hundreds of other important and natural problems
were also shown to be NP-complete. It is this abundance of natural complete problems
which makes the notion of NP-completeness so important, and the “P vs. NP” question so
fundamental.

2 Viewing NP as a game

Nondeterministic computation can be viewed as a two-person game. The players are Prover
and Verifier. Both get the same input, e.g., a propositional formula φ. Prover is all-powerful
(but not trust-worthy). He is trying to convince Verifier that the input is in the language
(e.g., that φ is satisfiable). Prover sends his argument (as a binary string) to Verifier. Verifier
is computationally bounded algorithm. In case of NP, Verifier is a deterministic polytime
algorithm.

It is not hard to argue that the class NP of languages L is exactly the class of languages
for which there is a pair (Prover, Verifier) with the property: For inputs in the language,
Prover convinces Verifier to accept; for inputs not in the language, any string sent by Prover
will be rejected by Verifier. Moreover, the string that Prover needs to send is of length
polynomial in the size of the input.

Once we have this set-up, we can vary computational resources allowed for Verifier to use.
For instance, we can let Verifier be a randomized polytime algorithm, thus allowing some
small probability that Verifier is incorrectly convinced the input outside the language. We
can also allow Verifier random access to the string sent by Prover, i.e., Verifier can choose a
few (say, 3) locations in the string and look only at the corresponding 3 bits. What class of
languages can we capture with this kind of randomized protocols where Verifier reads only
3 bits of Prover’s string? It turns out all of NP! This is basically the content of the famous
PCP Theorem (where “PCP” stands for “Probabilistically Checkable Proofs”). That is, for
every language in NP, there is a pair (Prover, Verifier) such that, for inputs in the language
Prover sends a polynomial-length string that is accepted by Verifier with probability 1, while
for inputs not in the language any such string is rejected by Verifier with constant probability
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(say, 1/2). Moreover, Verifier always reads (randomly selected) constantly many (say, 3) bits
of Prover’s string.

We will talk more about this alternative characterization of NP and its applications later
in the course.

3 Co-NP

We say that a language L ∈ coNP if the complement of L is in NP.
In other words, if L ∈ coNP, then there is a NTM M with the property: if x ∈ L, then

every computation path of M on x is accepting; if x 6∈ L, then at least one computation
path of M on x is rejecting.

Another, equivalent definition of coNP is as follows. A language L ∈ coNP if there exist
a constant c and a polynomial-time computable relation R ∈ P such that

L = {x | ∀y, |y| ≤ |x|c, R(x, y)}

Open Question: NP
?
= coNP

Define the language

TAUT = {φ | φ is a tautology (i.e., identically true)}

Theorem 1. TAUT is coNP-complete.

Proof. The proof is easy once you realize that TAUT is essentially the same as the comple-
ment of SAT. Since SAT is NP-complete, its complement is coNP-complete. (Check this!)

The “NP vs. coNP” question is about the existence of short proofs that a given formula
is a tautology.

The common belief is that NP 6= coNP, but it is believed less strongly than that P 6= NP.

Lemma 2. If P = NP, then NP = coNP.

Proof. First observe that P = coP (check it!) Now we have NP = P implies coNP = coP.
We know that coP = P, and that P = NP. Putting all this together yields coNP = NP.

The contrapositive of this lemma says that: NP 6= coNP implies P 6= NP.
Thus, to prove P 6= NP, it is enough to prove that NP 6= coNP. This means that resolving

the “NP vs. coNP” question is probably even harder than resolving the “P vs. NP” question.
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