
CS 6743 Lecture 8 Fall 2007

1 NP Completeness

We will give several version of the first NP-completeness proof. First, we will briefly sketch
the proof hat Circuit-SAT is NP-complete. Then we will do the original Cook’s proof that
SAT is NP-complete, and show how to modify it to obtain Fagin’s theorem that existential
second-order logic captures NP.

Circuit-SAT = {C | C is a satisfiable Boolean circuit}

Theorem 1. Circuit-SAT is NP-complete.

Proof. We need to prove that

1. Circuit-SAT is in NP, and

2. Circuit-SAT is NP-hard (i.e., every language L ∈ NP reduces to Circuit-SAT).

The fact that Circuit-SAT is in NP is easy: Given a circuit C on variables x1, . . . , xn,
nondeterministically guess an assignment to x1, . . . , xn and verify that this assignment is
satisfying; this verification can be done in time polynomial in the size of the circuit. In other
words,

Circuit− SAT = {C | ∃x, |x| ≤ |C|, R′(C, x)}

where R′(C, x) is True iff C(x) = 1 (i.e., C on input x evaluates to 1).
Now we prove NP-hardness. Take an arbitrary L ∈ NP. Say

L = {x | ∃y, |y| ≤ |x|c, R(x, y)}

for some constant c and R ∈ P. Let’s suppose that R(x, y) is computable in time N =
(|x|+ |y|)d, for some constant d.

Consider N steps of computation of the Turing machine deciding R on input x, y. This
computation can be pictured as a sequence of N configurations. A configuration at time
t is a sequence of symbols y1 . . . ym, where each yj contains the following information: the
contents of tape cell j at time t, whether or not tape cell is being scanned by the TM at
time t, and if it is, then what is the state of a TM at time t.

The crucial observation is that the computation of a TM has the following “locality
property”: the value of symbol yi at time t + 1 depends only on the values of symbols
yi−1, yi, yi+1 at time t (as well as the transition function of the TM).

We can construct a constant-size circuit Step that computes the value of yi at time t + 1
from the values of yi−1, yi, yi+1 at time t. Now, we construct a big circuit C(x, y) by replacing
each symbol yi in every configuration at time t by a copy of the circuit Step whose inputs
are the outputs of the corresponding three copies of Step from the previous configuration.
We also modify the circuit so that it outputs 1 on x, y iff the last configuration is accepting.
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The size of the constructed circuit will be at most N ∗ N ∗ |Step| (N configurations, at
most N copies of Step in each), which is polynomial in |x|.

Our reduction from L to Circuit-SAT is the following: Given x, construct the circuit
Cx(y) = C(x, y) as explained above (with x hardwired into C). It is easy to verify that
x ∈ L iff there is y such that Cx(y) = 1. So this is a correct reduction.

SAT = {φ | φ is a satisfiable Boolean formula}

Theorem 2 (Cook-Levin). SAT is NP-complete.

Proof. One way to prove it would be show Circuit− SAT ≤p SAT . But instead we will go
through the proof as it was originally done, without any references to circuits.

Example 3. Consider a very simple non-deterministic Turing machine with 3 states q0, qa, qr

and the following transition table:

(q0, 0) → (q0, , R) (q0, 1) → (q0, , R) (q0, 1) → (qa, , R) (q0, ) → (qr, , R)

That is, TM accepts iff there is a symbol 1 in the input string. The non-determinism comes
from the fact that any of the 1s would lead to an accept state in some computation.

To talk about Turing machine computations we will define a notion of tableau.

Definition 4. A tableau for a Turing machine M on input w running in time nk is a nk×nk

table whose rows are configurations if a branch of the computation of M on input w.

That is, any possible path in the computation tree of M on w can be encoded as a
tableau. To simplify our formulae, we will assume that the first and the last column of the
tableau contains a special symbol #.

The TM from example 3 has the following 3 tableau on string 0110:

T1=
# q0 0 1 1 0 #
# q0 1 1 0 #
# qa 1 0 #

T2=

# q0 0 1 1 0 #
# q0 1 1 0 #
# q0 1 0 #
# qa 0 #

T3=

# q0 0 1 1 0 #
# q0 1 1 0 #
# q0 1 0 #
# q0 0 #
# q0 #
# qr #

The first two correspond to the accepting branches, the last one to the rejecting. So a
NTM accepts a string iff it has an accepting tableau on that string.

We will show how to encode a run of a NTM M on a string w by a propositional formula,
in a sense that the formula will have a satisfying assignment iff there exists an accepting
tableau of M on w. Our formula will have propositional variables xi,j,s where i is the name
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of the row, j is the column and s is a symbol of C = Q ∪ Γ ∪ {#}. The intention is that a
variable xi,j,s is set to True iff symbol s is in the cell i, j.

The final formula will consist of a conjunction of 4 parts, call them φcell, φstart, φaccept

and φmove.

1. The first formula says that there is exactly one symbol in every cell:

φcell =
∧

1≤i,j<nk

((∨
s∈C

xi,j,s

)
∧

( ∧
s,t∈C,s 6=t

(xi,j,s ∨ xi,j,t)

))

2. The second formula forces the values of starting configuration by taking a conjunction
of the corresponding variables. In the example 3, on string 0110, the formula will look
like this:

φstart = x1,1,# ∧ x1,2,q0 ∧ x1,3,0 ∧ x1,4,1 ∧ x1,5,1 ∧ x1,6,0 ∧ x1,7, ∧ x1,8,#

3. The third formula says that the tableau corresponds to an accepting computation:

φaccept =
∨

1≤i,j<nk

xi,j,qa

4. The last formula φmove is the most complicated part. It has to encode the fact that
every line in the tableau came from the previous line by a valid transition of M . This
formula encodes, for every symbol xi,j,s, all possible transitions that can lead to cell
[i, j] having a value s. The crucial property that allows us to encode that is that
every symbol in the configuration can be determined by looking at the three symbols
in the previous line: symbol above and symbols to the left and right of it. That is, to
determine the value of xi+1,j,s it is sufficient to know, for all symbols, values of xi,j−1,?,
xi,j,? and xi,j+1,?.Here, ? runs through all possible symbols. If there is no head position
symbol among these three, then the value of xi,j,s = xi+1,j,s. In the example 3 there
are two possibilities for the content of cell [3,4], either q0 or qa. This is encoded by the
following formula

x2,3,q0 ∧ x2,4,1 ∧ x2,5,1 → (x3,4,q0 ∨ x3,4,qa)

Notice here that the only time there is a ∨ on the right side of the implication is when
there is a non-deterministic choice of a transition.

Now, suppose that the formula has a satisfying assignment. That assignment encodes
precisely a tableau of an accepting computation of M . For the other direction, take an
accepting computation of M and set exactly those xi,j,s corresponding to the symbols in the
accepting tableau.

Finally, to show that our reduction is polynomial, we will show that the resulting formula
is of polynomial size. The number of variables is N = nk × nk × |Q ∪ Γ ∪ {#}|. In φcell

there are O(N) variables, same for φaccept. Only nk variables are in φstart. Finally, φmove has
O(N × |δ|) clauses. Therefore, the size of the formula is polynomial.
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A slight modification of this proof Fagin to adapt Cook’s theorem to the finite model
theory setting. In that setting, an input is a structure, and the question is whether a given
formula (hardcoded) is true on this structure (this is called the model checking problem). A
structure is encoded as a number which is the size of the structure, together with relational
variables encoded as tables (k-dimensional, in general). An example of a structure is a
graph: it is encoded by the number of vertices followed by the edge relation represented by
its adjacency matrix.

Definition 5. In finite model theory, a logic L captures a complexity class C on a class of
structures K if 1) the model checking problem for these formulae on this class of structures
can be done within the class, and 2) for a collection of structures from the class (closed under
isomorphism and decidable in C) there is a formula in L true on all and only structures from
that class.

In simpler words, for each property (such as 3-colourability) of structures (such as graphs)
decidable in C there is a formula from L true on all and only structures that have this
property.

Definition 6. Second-order existential logic (∃SO) consists of formulae of the form
∃P1 . . . Pkφ(P1, . . . , Pk), where φ is a first-order formula that can have other free relational
variables, and Pi are sets of di-tuples, where di it the arity of Pi, treated by φ as relational
variables.

Theorem 7 (Fagin). ∃SO logic captures NP .

Proof. The bulk of Fagins proof was showing how to encode an order relation in ∃SO logic.
We will skip this here and only show how to modify Cook’s theorem proof for the finite
model theory setting, assume we have an order relation in the language. The order relation
is necessary for saying things like “subsequent configuration”, “next cell” and such.

Let n be the size of the structure; the length of the input and thus the running time of
the machine M is polynomial in n. For each symbol s ∈ Q ∪ Γ ∪ {#} define a second-order
variable Cs of arity 2k. Then Cs(i, j) is equivalent to xi,j,s. Now the new formulae φcell,
φstart, φaccept and φmove will be very similar to the old ones, just replacing xi,j,s with Cs(i, j)
and placing quantifiers instead of big ∨ and ∧. For example, new φaccept = ∃i, j Cqa(i, j).
We will leave it as an exercise to show that there exists an accepting tableau of M on w iff
there exist values for Cs over a structure encoding the input string w as a unary relational
variable W .

Open Question: Is it possible to capture P without an order relation in the language?
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