
CS 6743 Lecture 6 Fall 2007

Definition 1. Let L ⊆ Σ∗. We say L ∈NP if there is a two-place predicate R ⊆ Σ∗ × Σ∗

such that R is computable in polynomial time, and such that for some c, d ∈ N we have for
all x ∈ Σ∗

x ∈ L ⇔ there exists y ∈ Σ∗, |y| ≤ c|x|d and R(x, y).

1 Nondeterminism

DTM (deterministic TM): next step of computation is completely determined by the
current configuration of a TM
NTM (nondeterministic TM): there may be several possibilities for a next step

Formally. NTM’s transition function is δ : Q×Σ → 2Q×Σ×{L,R,−}, i.e., a pair (state,symbol)
is mapped to a set {(state,symbol,movement) }.

Thus, DTM’s computation is a path; whereas NTM’s computation is a tree.
Accept/Reject criteria for NTMs: x ∈ L iff there exists some accepting computa-

tion.
Note: if x ∈ L, then there may be some rejecting computations as well.
Time = maxpaths p {length of p }
Space = maxpaths p {number of work-tape cells touched on a path p }

2 Nondeterministic Complexity Classes

NTime(f(n)) = {L | some multi-tape NTM decides L in time at most f(n)}
NSpace(f(n)) = {L | some multi-tape NTM decides L in space at most f(n)}

• NP = ∪kNTime(nk)

• NEXP = ∪kNTime(2nk
)

• NL = NSpace(log n)

• NPSPACE = ∪kNSpace(nk)

Remark We’ll see later that NPSPACE = PSPACE, and so there is really no need to use
the name NPSPACE.

Recall our previous definition of NP: L ∈ NP if there is a relation R ∈ P and a constant
c such that

L = {x | ∃y, |y| ≤ |x|c, R(x, y)}

Lemma 2. The two given definitions of NP are equivalent.

1

Proof. First we will show that every language computable by nondeterministic TM in poly-
nomial time can be represented in the form ∃y, |y| ≤ |x|c, R(x, y) for some c, d and R. For
simplicity, assume that the machine has at most 2 possible choices for every transition (that
is, its computation tree is binary).

Let L be a language and M a polytime NTM computing L. Let x be a string over
the alphabet of L. Consider a computation of M on x, represented as a tree. By our
assumption, this tree is binary. Now, if x is in the language, then there exists a sequence
of choices (encodes as a binary string) that M makes to get to an accepting configuration.
If x is not in the language, then any sequence of choices ends in a rejecting configuration.
Now, take y to be the sequence of choices, and R a check that M can get to accepting
configuration by following this sequence of choices. Note that R is deterministic polynomial-
time computable, since all nondeterministic choices of M are encoded in y. If M runs in
time nk, we can take c = 1, d = k, since the number of nondeterministic choices cannot be
larger than the running time of M .

For the other direction, consider a language L represented as ∃y|y| ≤ c|x|dR(x, y). Make
a complete binary tree in which each path corresponds to a possible y; there will be 2c|x|d

such paths. At the end of every path, run a computation of R on x and the y corresponding
to this path; this computation is polynomial-time. If at any leaf of the tree R accepted,
accept.

NTMs cannot be efficiently implemented. So they are an abstraction. But, a huge number
of real-life problems are in NP because they are of the form: problem description such that
a solution to the problem is “small” and the solution is “easy” to test for correctness. (So
we can nondeterministically guess a solution, and then test its correctness in polytime.)

3 Relations

Lemma 3. L ⊆ NL, P ⊆ NP, PSPACE ⊆ NPSPACE and EXP ⊆ NEXP

Proof. Trivial: a DTM is a special case of an NTM. In fact, PSPACE=NPSPACE, we will
show it later.

Theorem 4. NP ⊆ PSPACE

Proof. Try all possible y’s (of polynomial length) sequentially. The only information that
needs to be preserved is which y is being used at the moment.

Theorem 5. NL ⊆ P

Proof. Configuration graph of an NL NTM has only polynomially many configurations, just
like for an L TM. Therefore, a path from start to an accepting configuration can be evaluated
by a breadth-first or depth-first search, which can be done in polynomial time.

2

Major Open Problem: P
?
= NP

This is a problem of “Generating a solution vs. Recognizing a solution”. Some examples:
student vs. grader; composer vs. listener; writer vs. reader; mathematician vs. computer.

3

