Lecture 6

Definition 1. Let $L \subseteq \Sigma^*$. We say $L \in \mathbf{NP}$ if there is a two-place predicate $R \subseteq \Sigma^* \times \Sigma^*$ such that R is computable in polynomial time, and such that for some $c, d \in \mathbb{N}$ we have for all $x \in \Sigma^*$

 $x \in L \Leftrightarrow \text{there exists } y \in \Sigma^*, |y| \leq c|x|^d \text{ and } R(x, y).$

1 Nondeterminism

DTM (deterministic TM): next step of computation is completely determined by the current configuration of a TM

NTM (nondeterministic TM): there may be several possibilities for a next step Formally. NTM's transition function is $\delta : Q \times \Sigma \to 2^{Q \times \Sigma \times \{L,R,-\}}$, i.e., a pair (state,symbol)

is mapped to a set {(state,symbol,movement) }.

Thus, DTM's computation is a path; whereas NTM's computation is a tree.

Accept/Reject criteria for NTMs: $x \in L$ iff there exists some accepting computation.

Note: if $x \in L$, then there may be some rejecting computations as well.

 $\mathbf{Time} = \max_{\text{paths } p} \{ \text{length of } p \}$

Space = $\max_{\text{paths } p}$ {number of work-tape cells touched on a path p }

2 Nondeterministic Complexity Classes

 $\begin{aligned} \mathsf{NTime}(f(n)) &= \{L \mid \text{some multi-tape NTM decides } L \text{ in time at most } f(n) \} \\ \mathsf{NSpace}(f(n)) &= \{L \mid \text{some multi-tape NTM decides } L \text{ in space at most } f(n) \} \end{aligned}$

- $\mathsf{NP} = \bigcup_k \mathsf{NTime}(n^k)$
- NEXP = $\cup_k \mathsf{NTime}(2^{n^k})$
- $NL = NSpace(\log n)$
- NPSPACE = $\cup_k NSpace(n^k)$

Remark We'll see later that NPSPACE = PSPACE, and so there is really no need to use the name NPSPACE.

Recall our previous definition of NP: $L \in NP$ if there is a relation $R \in P$ and a constant c such that

$$L = \{x \mid \exists y, |y| \le |x|^{c}, R(x, y)\}$$

Lemma 2. The two given definitions of NP are equivalent.

Proof. First we will show that every language computable by nondeterministic TM in polynomial time can be represented in the form $\exists y, |y| \leq |x|^c, R(x, y)$ for some c, d and R. For simplicity, assume that the machine has at most 2 possible choices for every transition (that is, its computation tree is binary).

Let L be a language and M a polytime NTM computing L. Let x be a string over the alphabet of L. Consider a computation of M on x, represented as a tree. By our assumption, this tree is binary. Now, if x is in the language, then there exists a sequence of choices (encodes as a binary string) that M makes to get to an accepting configuration. If x is not in the language, then any sequence of choices ends in a rejecting configuration. Now, take y to be the sequence of choices, and R a check that M can get to accepting configuration by following this sequence of choices. Note that R is deterministic polynomialtime computable, since all nondeterministic choices of M are encoded in y. If M runs in time n^k , we can take c = 1, d = k, since the number of nondeterministic choices cannot be larger than the running time of M.

For the other direction, consider a language L represented as $\exists y|y| \leq c|x|^d R(x, y)$. Make a complete binary tree in which each path corresponds to a possible y; there will be $2^{c|x|^d}$ such paths. At the end of every path, run a computation of R on x and the y corresponding to this path; this computation is polynomial-time. If at any leaf of the tree R accepted, accept.

NTMs cannot be efficiently implemented. So they are an abstraction. But, a huge number of real-life problems are in NP because they are of the form: problem description such that a solution to the problem is "small" and the solution is "easy" to test for correctness. (So we can nondeterministically guess a solution, and then test its correctness in polytime.)

3 Relations

Lemma 3. $L \subseteq NL$, $P \subseteq NP$, $PSPACE \subseteq NPSPACE$ and $EXP \subseteq NEXP$

Proof. Trivial: a DTM is a special case of an NTM. In fact, PSPACE=NPSPACE, we will show it later. \Box

Theorem 4. $NP \subseteq PSPACE$

Proof. Try all possible y's (of polynomial length) sequentially. The only information that needs to be preserved is which y is being used at the moment.

Theorem 5. $NL \subseteq P$

Proof. Configuration graph of an NL NTM has only polynomially many configurations, just like for an L TM. Therefore, a path from start to an accepting configuration can be evaluated by a breadth-first or depth-first search, which can be done in polynomial time.

Major Open Problem: $P \stackrel{?}{=} NP$

This is a problem of "Generating a solution vs. Recognizing a solution". Some examples: student vs. grader; composer vs. listener; writer vs. reader; mathematician vs. computer.