
CS 6743 Lecture 5 Fall 2007

1 Examples for the assignment

Example 1 (Turing machine with stay-put). Consider a variant of Turing machines that has,
in addition to “L” and “R” directions, also a “S” (“stay in place”). That is, it can have
transitions of the form (qi, a) → (qj, b, S), corresponding to the Turing machine overwriting
a with b, switching the state to qj and leaving the head at the same cell.

We want to show that this kind of a Turing machine can be simulated by a usual TM.
That is, we need to show how to imitate the transitions with “S” with just “L” and “R”.
For that we will show how to, starting with an arbitrary stay-put Turing machine M , build
a usual Turing machine M ′ accepting the same language as M .

The idea is to imitate staying at the same place with a move right followed by a move
left (keeping the cell to the right intact). The first attempt would be to designate a “moving
state” qs, such that from qs on any input the Turing machine moves left. However, this
would lose the information about the state in which the machine has to be when it finished
the transition. Therefore, we have to introduce such qs for every state qj in the transition
table (at least for every occurring on the right side of a transition with “S”). Therefore,
set Q′ = Q ∪ {q′

j|qj ∈ Q, qj 6= qa, qj 6= qr}. The transition table has to be modified as
follows: each transition in δ of the form (qi, a) → (qj, b, S) changes into transitions in δ′:
(qi, a) → (q′

j, b, R) and (q′
j, c) → (qj, c, L) for every c ∈ Γ. So M ′ = {Σ, Γ, Q′, δ′}, where Σ

and Γ are the same as for M .

Example 2. Let L = {< M >| Macceptssomestringconsistingofall0s}. To see that L is
semi-decidable write it in the following quantified form: ∃w∃yR(w, y,M), where w is a string,
y is an encoding of a computation, and R is a decidable relation consisting of conjunction of
the following formulae 1) a formula checking that all bits of w are 0s 2) a formula checking
that y is a valid computation of M starting with w and ending in an accept state. Checking
the first condition takes O(|w|) steps, checking the second condition takes O(|y| · |M |) steps
(since for every step encoded in y the machine needs to find that transition in the description
of M). Therefore, R is decidable.

To prove formally that L is semi-decidable we will first show, by reduction from ATM ,
that L is undecidable, and then show how to semi-decide it.

First, we will show that ATM ≤m L. Consider a pair (M, w). We want to construct a
machine M ′

w such that M ′
w accepts a string consisting of all 0s iff M accepts w. Here is one

possible description of M ′
w:

M ′
w: if input x 6= “000′′, then reject

write w on the tape
simulate M on w, if M accepted, accept, otherwise, reject.

If M accepts w, then the language of M ′ consists of one string “000”, and therefore M ′

is in L. If M does not accept w, then the language of M ′ is empty and so M ′ is not in L.
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Now it remains to show an algorithm that accepts all M in L; that algorithm can either
reject or never halt on M /∈ L.

ML: for i = 1 to ∞
Run M for i steps on each of strings consisting of ≤ i 0s.
If any accepted, accept.

2 NP and NP-Completeness

NP is a class of languages that contains all of P, but which most people think also contains
many languages that aren’t in P. Informally, a language L is in NP if there is a “guess-and-
check” algorithm for L. That is, there has to be an efficient verification algorithm with the
property that any x ∈ L can be verified to be in L by presenting the verification algorithm
with an appropriate, short “certificate” string y.

Remark: NP stands for “nondeterministic polynomial time”, because an alternative
way of defining the class uses a notion of a “nondeterministic” Turing machine. It does not
stand for “not polynomial”, and as we said, NP includes as a subset all of P. That is, many
languages in NP are very simple.

We now give the formal definition. For convenience, from now on we will assume that all
our languages are over the fixed alphabet Σ, and we will assume 0, 1 ∈ Σ.

Definition 1. Let L ⊆ Σ∗. We say L ∈NP if there is a two-place predicate R ⊆ Σ∗ × Σ∗

such that R is computable in polynomial time, and such that for some c, d ∈ N we have for
all x ∈ Σ∗

x ∈ L ⇔ there exists y ∈ Σ∗, |y| ≤ c|x|d and R(x, y).

We have to say what it means for a two-place predicate R ⊆ Σ∗ × Σ∗ to be computable
in polynomial time. One way is to say that
{x; y | (x, y) ∈ R} ∈P, where “;” is a symbol not in Σ.
An equivalent way is to say that
{〈x, y〉 | (x, y) ∈ R} ∈P, where 〈x, y〉 is our standard encoding of the pair x, y.
Another equivalent way is to say that there is a Turing machine M which, if given xb/y on
its input tape (x, y ∈ Σ∗), halts in time polynomial in |x| + |y|, and accepts if and only if
(x, y) ∈ R.

Most languages that are in NP are easily shown to be in NP, since this fact usually
follows immediately from their definition,

Example 3. A clique in a graph G = (V, E) is a set of vertices S ⊆ V such that there is an
edge between every pair of vertices in S. That is, ∀u, v ∈ V (u ∈ S ∧ v ∈ S → E(u, v)). The
language CLIQUE = {< G, k > |G is a graph, k ∈ N , G has a clique of size k}. Here, we
take n = |V |, so the size of the input is O(n2).

We will see later that this problem is NP -complete. Now we will show that it is in NP .
Suppose that < G, k >∈ CLIQUE. That is, G has a set S of vertices, |S| = k, such

that for any pair u, v ∈ S, E(u, v). Guess this S using an existential quantifier. It can be
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represented as a binary string of length n, so its length is polynomial in the size of the input.
Now, it takes k2 checks to verify that every pair of vertices in S is connected by an edge. If
the algorithm is scanning E every time, it takes O(n2) steps to check that a given pair has
an edge between them. Therefore, the total time for the check is k2 · n2, which is quadratic
in the length of the input (since E is of size n2, the input is of size O(n2) as well).
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