CS 6743

Lecture 3¹

1 Complexity Classes

Unless explicitly stated, by a TM we will mean a *multi-tape* TM. When we talk about the space used by a multi-tape TM, we only count the number of cells on the worktape(s) that are touched by the TM during its computation. That is, we *do not* count the input tape or the output tape.

Below n will denote the input size. For some function $f : \mathbb{N} \to \mathbb{N}$,

- $\mathsf{Time}(f(n)) = \{L \mid L \text{ is decided by some TM in at most } f(n) \text{ steps} \}$
- Space $(f(n)) = \{L \mid L \text{ is decided by some TM that touches at most } f(n) \text{ cells of its worktapes} \}$

For example,

- $\mathsf{P} = \bigcup_{k>1} \mathsf{Time}(n^k),$
- EXP = $\cup_{k\geq 1}$ Time (2^{n^k}) ,
- $L = Space(\log n)$,
- PSPACE = $\cup_{k \ge 1}$ Space (n^k) .

In general, a complexity class is a collection of languages decidable within a given amount of computational resources.

The relationship between these classes is as follows:

$$\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{PSPACE}\subseteq\mathsf{EXP}$$

We will show in the next lecture how to simulate space by time and vice versa. Note that although all these inclusions are not strict (e.g., it is not impossible that P = L or that P = PSPACE, albeit unlikely), we can show that $L \subsetneq PSPACE$ and $P \subsetneq EXP$. The general form of a result like this is called the hierarchy theorems (for space and time, in this case).

2 Hierarchy Theorems

First we recall a basic result from Computability Theory that there are undecidable languages. This can be argued as follows. There is a 1-1 correspondence between algorithms (TMs) and natural numbers. There is a 1-1 correspondence between languages (over the binary alphabet) and real numbers (in the interval [0,1]). Since the set of reals is bigger

¹This lecture is a modification of notes by Valentine Kabanets

than the set of natural numbers (as argued by Cantor a couple of hundred years ago), we have the existence of an undecidable language.

The problem with the argument above is its non-constructiveness. We haven't exhibited a particular example of a language that is not decidable. Turing was the first to give such examples. The most famous is his Halting Problem.

Recall $Halt = \{(M, x) \mid TM \ M \text{ halts on } x\}$. (This is a version of the Halting Problem. A different definition considers $Halt = \{M \mid TM \ M \text{ halts on blank tape}\}$)

Theorem 1. Halt is undecidable.

We will prove the theorem in two stages. First, we define a certain language Diag and show that Diag is undecidable. Then we will show that Diag is reducible to Halt, and hence, Halt is also undecidable. (Note the use of a reduction to prove a lower bound on the complexity of Halt.)

To define Diag, we consider an enumeration x_1, x_2, x_3, \ldots of all binary strings. Let M_1, M_2, M_3, \ldots be an enumeration of all Turing machines whose descriptions are x_1, x_2, x_3, \ldots (Note some binary strings correspond to "broken" TMs. We will assume that a broken TM does not accept any string.) We define Diag as follows:

 $Diag = \{M \mid M \text{ does not accept input } M\}.$

Lemma 2 (Turing). Diag is undecidable.

Proof. Our proof is by contradiction. Suppose some TM D decides Diag. Then we have one of two cases:

- 1. D accepts D, OR
- 2. D does not accept D.

In the first case, we get $D \notin Diag$ (by definition of Diag). Since D decides Diag (by our assumption), D does not accept D. A contradiction.

In the second case, we get $D \in Diag$ (by definition of Diag). Since D decides Diag (by our assumption), D accepts D. Again a contradiction.

Thus, our assumption that *Diag* is decidable must be wrong.

Proof of Theorem 1. Now we reduce Diag to Halt. If Halt were decidable by some TM H, then we could decide Diag as follows:

"On input M, run the TM H on (M, M), and negate the output (i.e., Accept if H rejects, and Reject if H accepts)."

It is easy to see that the described algorithm decides Diag. But, by our Lemma 2, Diag is undecidable. Hence, so is Halt.

The proof of Theorem 1 uses two very important techniques:

- simulation, and
- diagonalization.

The same ideas are used to prove *Hierarchy Theorems*: with more time (space), one can compute more languages.

In this course, we will always use *proper* complexity functions f(n). A function f(n) is called *proper* if there is a TM M that, on input 1^n , outputs exactly f(n) symbols and runs in time O(f(n) + n) and space O(f(n)). The usual functions like $\log n$, \sqrt{n} , n^2 , 2^n , n! are proper. Also, if f and g are proper, then so are f + g, fg, f(g), f^g , 2^g .

Lemma 3. Let f(n) be any proper complexity function. The language

 $Halt_f = \{(M, x) \mid TM \ M \ accepts \ x \ in \ at \ most \ f(|x|) \ steps\}$

is decidable in time $g(n) = (f(n))^3$.

Proof. We can construct a universal TM H with 3 tapes that does the following. Given an input (M, x), our TM H converts a (possibly multi-tape) TM M to an equivalent one-tape TM M'. If M accepts x in at most f(|x|) steps, then the new TM M' will accept x in at most $(f(|x|))^2$ steps.

Next, H will simulate M' on x for at most $(f(|x|))^2$ steps. Each step of M' can be simulated by H in at most |M'| steps (i.e., the size of the description of the TM M', which is some constant dependent on M'); this constant is at most f(|x|). Thus, our entire simulation will take at most $(f(|x|))^3$ steps. (Note that we needed f(n) to be a proper function in order to be able to simulate M for at most f(n) steps!)

Consider the language

 $Diag_f = \{M \mid \text{TM } M \text{ does not accept input } M \text{ in at most } f(|M|) \text{ steps} \}$

By Lemma 3, the language $Diag_f$ is in Time(g(2n)).

Theorem 4. $Diag_f$ is not in Time(f(n)).

Proof. The proof is virtually the same as the one showing that the language Diag (defined earlier) is undecidable. The details are left as an exercise.

Hence, we have

Theorem 5 (Time Hierarchy). For every proper complexity function $f(n) \ge n$,

$$\mathsf{Time}(f(n)) \subsetneq \mathsf{Time}((f(2n))^3)$$

Note that the version in Sipser's book is a stronger result:

 $\mathsf{Time}(f(n)/\log n) \subsetneq \mathsf{Time}(f(n))$

Similarly, we can prove

Theorem 6 (Space Hierarchy). For every proper complexity function $f(n) \ge \log n$,

 $\mathsf{Space}(f(n)) \subsetneq \mathsf{Space}((f(n)) \log f(n)).$

Again, the version in the book is stronger: it states that for any proper f(n) there exists a language A decidable in space O(f(n)) but not in space o(f(n)).

As a simple application of these Hierarchy Theorems, we can prove that $P \subsetneq \mathsf{EXP}$ and $\mathsf{L} \subsetneq \mathsf{PSPACE}$.

3 Reductions and completeness

Recall the definitions of reducibilities from the last lecture. In this lecture, we will give some examples of many-one reductions \leq_m .

In the previous section we talked about several different variants of the halting problem, in particular variant called A_{TM} in the book, $A_{TM} = \{M, x \mid \text{TM } M \text{ accepts input } x\}$ and a variant with halting on blank tape, $HaltB = \{M \mid \text{TM } M \text{ halts when started on blank}$ tape. Now we will show that these problems are essentially equivalent by showing that they can be reduced to each other.

Lemma 7. $Halt B \leq_m A_{TM}$.

Proof. We need to present a computable function f which takes instances of HaltB and maps them to instances of A_{TM} , preserving the membership in the respective languages. That is, we need $f(\langle M \rangle) = (\langle M' \rangle, x)$ such that $M \in HaltB$ iff $(\langle M' \rangle, x) \in A_{TM}$. (recall that $\langle M \rangle$ is a string encoding the description of a Turing machine; we need the descriptions since languages are sets of strings). Consider the following M':

M': simulate M starting with blank tape if M halted, accept

Technically M' is the same as M, except the rejecting state of M is an accepting state of M'. Now, set $x = \lambda$ (empty string).

Suppose that $M \in HaltB$. Then M' accepts when starting on blank tape, because M halts when starting on blank and both halting states of M are accepting states of M'. Now suppose that $M \notin HaltB$. Then the simulation of M will run forever, so M' will never have a chance to halt and accept.

The reduction in other direction is a little bit more involved.

Lemma 8. $A_{TM} \leq_m Halt B$.

Proof. We construct a function f such that $f(\langle M \rangle, x) = \langle M' \rangle$. Note that in this case x becomes part of the description of M'. Define M' as follows:

```
M': write x on the tape
simulate M on x
if M rejects, go into infinite loop
```

The first step can be done by using |x| new states, so x becomes encoded as a part of transition table. To go into infinite loop, two states should be enough: one moves left, another right, and they switch between each other independently of the tape contents. \Box

Note that the relation \leq_m (as well as \leq_p and most other) is transitive. That is, if $L_1 \leq L_2$ and $L_2 \leq L_3$, then $L_1 \leq L_3$. The usefulness of the following definition is based on this fact.

Definition 9. For a complexity class C, we say that a language L is C-complete if

- 1. $L \in C$, and
- 2. every language in C is reducible to L.

Interpretation A C-complete language L is a "hardest" language in C (everybody else in C is at most as hard as L.)

Usefulness A C-complete language *captures* the complexity of the entire class C. So, we can reason about C by thinking about a single concrete problem from C.

We say that a language L is C-hard if every language in C is reducible to L (i.e., L may or may not be in C).