
CS 6743 Lecture 19 1 Fall 2007

1 #SAT ∈ IP

Define #3SAT to be a function that maps a 3-CNF φ(x1, . . . , xn) into a number s that is
equal to the number of satisfying assignments of φ. We’ll show the following

Theorem 1 (Lund, Fortnow, Karloff, Nisan). #3SAT is in IP.

Remark Here, by IP we mean IP[poly], i.e., an interactive protocol with a polynomial
number of rounds.

The key ingredient in the proof of both results mentioned above is arithmetization of
propositional formulas. Namely, the conversion of a given 3-CNF φ(x1, . . . , xn) into a an
arithmetic formula computing a multivariate polynomial f(x1, . . . , xn) satisfying the follow-
ing property. For any truth assignment a = (a1, . . . , an) (which we view as a 0-1 vector), if
φ(a) is True, then f(a) = 1; and if φ(a) is False, then f(a) = 0.

Such an arithmetization of a formula φ is carried out inductively. A variable x becomes
the function x, and the literal x̄ becomes the function 1 − x. A formula φ1 ∧ φ2 becomes
the function f1 ∗ f2, where fi is an arithmetization of φi, i = 1, 2. Finally, a formula φ1 ∨ φ2

becomes the function 1− (1− f1)(1− f2), where fi is the arithmetization of φi, i = 1, 2. (To
make sense of the last rule, recall that by de Morgan’s rule, φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ.)

Example: Let φ(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x̄3 ∨ x4). Then the corresponding
arithmetic formula will be f(x1, x2, x3, x4) = [1− (1−x1)(1−x2)x3][1−x1x3(1−x4)], which
is a polynomial of degree 6.

Note that the degree of the constructed polynomial is 3 times the number of clauses in φ.
This is not a coincidence. It is easy to see that any 3-CNF φ with m clauses is transformed
by the arithmetization procedure described above into a polynomial of total degree at most
3m.

Lemma 2. Let φ(x1, . . . , xn) be a 3-CNF with m clauses, and let f(x1, . . . , xn) is the arith-
metic formula obtained by arithmetizing φ. Then (1) the total degree of f is at most 3m, (2)
on any 0-1 vector a, f(a) ∈ {0, 1}, and (3) on any 0-1 vector a, f(a) = 1 iff φ(a) is True.

Proof. Exercise. (Hint: use induction.)

For a 3-CNF φ and the corresponding arithmetization f , let’s define #φ= (# satisfying
assignments of φ), and #f =

∑1
x1=0

∑1
x2=0 · · ·

∑1
xn=0 f(x1, x2, . . . , xn). Then, by the lemma

above, we get that #φ = #f . So, proving that #φ = s is equivalent to proving that #f = s.
The latter is what our IP protocol is going to do.

Recall that we take a 3-CNF φ and arithmetize it, obtaining a polynomial f . We get #φ=
(# satisfying assignments of φ) is the same as #f =

∑1
x1=0

∑1
x2=0 · · ·

∑1
xn=0 f(x1, x2, . . . , xn).

So we need to design an IP protocol for proving that #f = s.

1This lecture is based on the notes by Valentine Kabanets

1

Note: 0 ≤ #φ(x1, . . . , xn) ≤ 2n. So, if we take a prime p > 2n, then #φ(mod p) = #φ.
It will be convenient for the Verifier to get such a prime from the Prover, and do all the
checking mod p, i.e., over the finite field Zp.

The Prover will claim that

1∑
x1=0

1∑
x2=0

· · ·
1∑

xn=0

f(x1, x2, . . . , xn) = s, (1)

for some number 0 ≤ s ≤ 2n. The verifier’s strategy will depend on the following way of
“removing” the summation signs from the above arithmetic expression.

Define

f1(z) =
1∑

x2=0

1∑
x3=0

· · ·
1∑

xn=0

f(z, x2, x3, . . . , xn).

Note that f1(z) is a univariate polynomial in variable z of degree at most that of f , i.e., at
most 3m. Clearly, equality (1) is true iff

f1(0) + f1(1) = s. (2)

But how can we compute f1(z)? It is very hard. The polytime verifier will not be able
to do it (unless NP = P or something even more dramatic happens). However, the Prover
can compute f1(z). So, the Verifier can just ask the Prover to send the coefficients of f1(z).
Since f1 has degree at most 3m, the Prover needs to send at most 3m + 1 coefficients over
Zp, which is small enough amount of information that the polytime Verifier can handle.

If the Prover is honest, then he’ll send a correct s and f1 so that equality (2) holds.
What about a dishonest Prover? Suppose that the Prover sends a wrong s, i.e., equality (1)
is false. Then the prover sends g1(z) (of degree at most 3m), and claims that g1(z) ≡ f1(z).
Suppose that the Verifier checks first that g1(0) + g1(1) = s. If the check does not pass, the
Verifier rejects. Either the polynomial g1 sent by the Prover does not pass this check and
the Verifier rejects, or g1(0) + g1(1) = s. In the latter case, since s is a wrong number, it
must be the case that g1(z) 6≡ f1(z) (because f1(0) + f1(1) 6= s).

So, if the cheating Prover passes the Verifier’s check, then it must be the case that g1(z)
and f1(z) are different polynomials. Since both polynomials are of degree at most 3m, if
the Verifier picks a random value r1 ∈ Zp, then with high probability (at least 1− (3m)/p),
g1(r1) 6= f1(r1).

What is f1(r)? Note that f1(r) =
∑1

x2=0 · · ·
∑1

xn=0 f(r, x2, . . . , xn). The expression on
the right hand side is of the same type as the initial equality in (1), except with one less
summation sign. By setting s1 = g1(r1), the Verifier reduces the original question about
equality (1) to the new question about the equality with fewer summations:

1∑
x2=0

· · ·
1∑

xn=0

f(r, x2, . . . , xn) = s1. (3)

By what we argued above, the cheating Prover will have to give a wrong polynomial g1(z)
so that, with high probability, equality (3) is wrong.

2

Now the Prover and the Verifier can engage in the same protocol as before, but for a
smaller instance - equality (3). After n rounds of communication, the Prover has sent to the
Verifier a last polynomial gn(z) which is supposed to be equal to f(r1, r2, . . . , rn−1, z), for
r1, . . . , rn−1 chosen by the Verifier in the preceding rounds of the protocol. The Verifier again
checks if gn(0) + gn(1) = sn−1, for the value sn−1 determined by the Verifier in the previous
round. If the check does not pass, the Verifier rejects. Otherwise, the Verifier checks if
gn(z) ≡ f(r1, . . . , rn−1, z) by testing if the two polynomials agree on 3m+1 distinct elements
of Zp. If they disagree, the Verifier rejects. Otherwise, the Verifier accepts.

Analysis First, note that an honest Prover, by answering truthfully to all challenges, will
convince the Verifier to accept with probability 1. Now, suppose that a Prover is dishonest,
and gives a wrong value of s to the Verifier. Then, either the Prover does not pass one of
the Verifier’s checks of the form gi(0) + gi(1) = si−1 in round i, 1 ≤ i ≤ n, or all such checks
are passed by the Prover. In the former case, the Verifier will reject, correctly. In the latter
case, if the Prover cheated in round i−1, he’ll be forced to cheat in round i, with probability
at least 1− (3m)/p. So the probability that equality of type (1) holds in any of the n rounds
is at most n(3m)/p, exponentially small. Thus, with high probability, in the last round of
the protocol, gn(z) 6≡ f(r1, . . . , rn−1, z), and this will be discovered by the Verifier. So, if the
Prover cheats, then with high probability, the Verifier will reject.

Remark Note that the Verifier in the described protocol just sends random strings to
the Prover. So, the described protocol is actually of the Arthur-Merlin type.

2 Generalization to the IP = PSPACE

Since TQBF is a complete problem for PSPACE, it suffices to give an IP protocol for TQBF.
A QBF φ can be of the form ∀x1∀x2∃x3 . . . φ(x1, x2, . . . , xn). As before, we can arithme-
tize the formula φ, obtaining a multivariate polynomial f(x1, . . . , xn) that agrees with φ
over any Boolean n-bit input. By induction, it’s easy to show that the QBF φ is True iff∏1

x1=0

∏1
x2=0

∑1
x3=0 . . . f(x1, x2, . . . , xn) > 0. That is, we replace each ∀xi quantifier with∏1

xi=0, and each ∃xj with
∑1

xj=0. Let’s call the resulting arithmetic expression A.

As in the #3SAT protocol in the previous section, we could try to remove the
∑

’s and∏
’s, one by one, and doing the checks of the form gi(0) + gi(1) = si−1 or gi(0) ∗ gi(1) = si−1,

respectively.
There are several problems with this approach. First, the value of A can be as big as 22n

,
since for the formula with n universal quantifiers, we need to multiply together f(a1, . . . , an),
for all 2n possible binary vectors (a1, . . . , an). To deal with this problem, we can use modular
arithmetic (as in the case of Polynomial Identity Testing for Arithmetic Circuits). So, we
pick a random prime p of about poly(n) bit-size, and do all our verification mod p.

Another problem is the following. Suppose we “remove” the left-most
∑
x1 (or

∏
x1),

and consider the univariate polynomial f1(z) equal to the original expression A where x1 is
replaced by z and the quantification over x1 is dropped. This univariate polynomial in z can
have degree as large as 2n−1, since there may be n − 1

∏
’s between the quantified x1 and

3

the occurrence of x1 in the QBF formula φ, and each such
∏

doubles the degree of z in the
polynomial f1(z). So, a polytime Verifier cannot ask the Prover for the coefficients of f1(z)
— there are just too many of them!

This is a much more serious problem than the first. Upon closer study, one observes that
this problem is due to the fact that a QBF may have an unbounded number of ∀-quantifiers
between a quantifier for a variable x and the occurrence of x in the formula. If we could
somehow transform any given QBF so that between any quantifier for x and the occurrence
of x in the formula there is at most one universal quantifier, we would be able to argue that
the degree of polynomial f1(z) is at most 2∗(the degree of f(x1, . . . , xn)), which is small
enough for the Verifier to be able to receive the coefficients of f1(z).

It turns out that such a transformation is indeed possible! Here’s how. For every occur-
rence of the situation Qx . . .∀y . . . x, we introduce a new “place-holder” variable x′ for x,
and write the equivalent QBF Qx . . .∃x′((x′ ↔ x)∧ ∀y . . . x′). Note that after this transfor-
mation, there is one universal quantifier between ∃x′ and the occurrence of x′ in the formula.
At the same time, the number of universal quantifiers between Qx and the occurrence of x
in the new formula is decreased by 1. So, continuing in the same way, we can convert any
given QBF to a QBF of the desired form, where there is at most one universal quantifier
between any Qx and the occurrence of x in the formula. Observe that this transformation
results in a QBF which may not be in prenex form with all the quantifiers in the front of
the formula, but it’s OK for our purposes.

So, after doing the aforementioned transformation of a given QBF, and doing all verifi-
cation modulo a large enough prime, we can design an IP protocol for TQBF which is very
similar to the one for #3SAT described earlier. This proves that PSPACE ⊆ IP. The other
inclusion IP ⊆ PSPACE is fairly straightforward: in PSPACE we can compute the probability
that a Verifier accepts a given input; the details are left as an exercise.

3 AM and MA

Now we will briefly look at two restricted versions of interactive protocols. Instead of allowing
a polynomial number of rounds, there are just two rounds and the prover can see verifier’s
randomness. Call the class where the Prover starts the interaction MA, and where the
Verifier starts AM . In these names “A” stands for “Arthur” and “M” for Merlin. Merlin is
the prover: the all-powerful wizard, and Arthur is the king Arthur who has limited power,
but does not want to be fooled by Merlin. The class MA can be viewed as a version of NP
in which verification is randomized.

Theorem 3. MA ⊆ AM .

We skip the proof.

4

