
CS 6743 Lecture 17 1 Fall 2007

1 Randomized Computation

Why is randomness useful? Imagine you have a stack of bank notes, with very few counterfeit
ones. You want to choose a genuine bank note to pay at a store. However, suppose that you
don’t know how to distinguish between a “good” bank note and a “bad” one. What can you
do? Well, if you pick a bank note at random, you will be lucky with high probability (here
the probability of picking a good bank note is equal to the fraction of good bank notes in
your stack).

Let’s consider a more realistic example. Alice and Bob communicate over some channel.
The communication is very expensive. Both Alice and Bob have an n-bit number. Alice has
a = a1 . . . an and Bob has b = b1 . . . bn. They want to know if a = b.

Clearly, this check can be achieved with at most n + 1 communicated: Alice just sends
her number a to Bob. Bob then compares a and b, and sends back to Alice one bit (1 if
a = b, and 0 otherwise). If we allow only deterministic protocols, then this bound is the best
one can get.

However, if we allow randomized protocols, we can do much better. Here, a randomized
protocol may have Alice and Bob make a mistake (e.g., they may think that a = b when
in fact a 6= b), but this error should happen with very small probability over the random
choices of Alice and Bob. Next, we’ll describe a O(log n)-communication protocol to check
if a = b.

Alice and Bob will first find the smallest prime number p such that n2 ≤ p ≤ n3. (The
high density of primes guarantees that there will be a prime between n2 and n3; in the interval
1, 2, . . . ,m, there are about Θ(m/ ln m) primes.) Then Alice picks a random element r ∈ Zp,
computes A(r) = a1r

n−1 + a2r
n−2 + · · · + an mod p, and sends to Bob the pair (r, A(r)).

Upon receiving this pair, Bob will compute B(r) = b1r
n−1 + b2r

n−2 + . . . bn mod p and test
if A(r) = B(r). If they are equal, Bob will send 1 to Alice (saying that he thinks that a = b);
otherwise, Bob will send 0 to Alice (saying that he thinks a 6= b).

Observe that the amount of communication for the described protocol is at most 2|p|+1 ∈
O(log n), by our choice of p ≤ n3. Now let’s analyze the correctness. First, if a = b, then
A(x) = B(x) as polynomials, and hence, A(r) = B(r) for any r. So in this case, Alice and
Bob correctly decide that a = b with probability 1.

In the case where a 6= b, we have that A(x) and B(x) are different polynomials of degree
at most n − 1. So, their difference C(x) = A(x)− B(x) is a non-zero polynomial of degree
at most n− 1. The probability that Alice and Bob erroneously decide that a = b is exactly
Prr∈Zp [C(r) = 0]. Now, since C(x) is of degree at most n − 1, it may have at most n − 1
roots, i.e., values r at which C is zero. So, we have

Prr∈Zp [C(r) = 0] ≤ (n− 1)/|Zp| ≤ n/n2 = 1/n.

1This lecture is a modification of notes by Valentine Kabanets

1

So, in case a 6= b, Alice and Bob will decide that a 6= b with probability at least 1− 1/n.
Note that by picking p to be a larger number, e.g., at least n100, we can make the

error probability of this protocol smaller than n−99. The communication complexity remains
O(log n).

2 Randomized Complexity Classes

A language L ∈ RP if there is a deterministic polytime TM M(x, r) such that

1. for all x ∈ L, Prr[M(x, r) accepts] ≥ 1/2, and

2. for all x 6∈ L, Prr[M(x, r) accepts] = 0.

Now, to decide L, on input x, a randomized algorithm may first flip |r| random coins to
compute a random string r, and then simulate M(x, r). This randomized algorithm will run
in polytime, and will be correct for all x 6∈ L with probability 1, and will be correct for all
x ∈ L with probability at least 1/2.

Note that if L ∈ RP, then L ∈ NP. So, we get that RP ⊆ NP. The class RP contains
those languages that can be decided probabilistically with one-sided error: an algorithm
may err on positive instances, but never on negative instances. Next, we define the class of
languages decidable with two-sided error.

A language L ∈ BPP if there is a polytime DTM M(x, r) such that

1. for all x ∈ L, Prr[M(x, r) accepts] ≥ 3/4, and

2. for all x 6∈ L, Prr[M(x, r) accepts] ≤ 1/4.

Note that now we allow a “small” probability of error even on inputs not in the language.

3 Reducing the error probability

Consider any L ∈ RP. Let M(x, r) be the corresponding polytime DTM. We design a new
DTM M ′(x; r1, . . . , rl) such that M ′(x; r1, . . . , rl) accepts iff there is some 1 ≤ i ≤ l such
that M(x, ri) accepts; in other words, M ′ simulates M for l independent random strings.
We claim that the error probability of the new M ′ is at most 2−l.

Indeed, if x 6∈ L, then M(x, ri) rejects for every i, and so M ′ also rejects for all sequences
r1, . . . , rl. On the other hand, if x ∈ L, then Prr1,...,rl

[M ′(x; r1, . . . , rl) rejects] is equal to∏l
i=1 Prri

[M(x, r1) rejects] ≤ (1/2)l. So, in the case where x ∈ L, the TM M ′ accept for a
fraction 1− 2−l of all random sequences r1 . . . rl.

This ability to reduce error probability allows us to prove the following.

Theorem 1. RP ⊆ BPP

2

Proof. By the argument above, for any L ∈ RP, there is a DTM M(x, r) such that, for every
x ∈ L, Prr[M(x, r) accepts] ≥ 1 − 1/4 = 3/4 — simply take l = 2 in the above-mentioned
error reduction procedure. On the other hand, for every x 6∈ L. Prr[M(x, r) accepts] = 0 <
1/4. So, L ∈ BPP.

What about NP and BPP? Is one a subclass of the other? It is unknown! The general
belief is that BPP = P, and therefore, BPP is a subset of NP. But, no unconditional result
of that kind is known.

4 Reducing the error in BPP

Recall that a language L is in BPP if there is a deterministic polytime TM M(x, r), such
that for x ∈ L, M(x, r) accepts at least 3/4 of r’s, and for x 6∈ L, M(x, r) accepts at most
1/4 of all r’s. In each case, the probability that M makes a mistake (e.g., accepts x 6∈ L) is
at most 1/4. The choice of this error probability to be 1/4 is rather arbitrary. As we show
next, it is always possible to make the error probability exponentially small, by increasing
the running time only slightly.

The idea is to choose l independent copies of a random string r, i.e., chose independently
uniformly at random r1, r2, . . . , rl. Then simulate M(x, ri), for each 1 ≤ i ≤ l, noting
whether M accepts or rejects for each ri. Finally, our new algorithm will accept if and only
if the majority (i.e., > l/2) of random strings ri’s were accepted.

Intuitively, if x ∈ L, then each ri has the probability at least 3/4 of being accepted by
M(x, ri). So, on average, M will accept at least 3/4 of the strings in the list r1, r2, . . . , rl. It
seems very unlikely that the actual number of accepted ri’s will deviate significantly from the
expected number. (This is basically the Law of Large Numbers from Probability Theory.)

To make this intuition precise, we’ll need the following theorem.

Theorem 2 (Chernoff bounds). Let X1, . . . , Xn be independent identically distributed ran-
dom variables such that Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p, for some 0 ≤ p ≤ 1.
Consider the new random variable X =

∑n
i=1 with expectation µ = pn. Then, for any

0 < δ ≤ 1 2,
Pr[|X − µ| > δµ] < 2e−δ2µ/3.

The proof of this theorem can be found in many textbooks (e.g., Papadimitriou’s book),
and will not be proved in class.

Back to the analysis of our new algorithm that simulates M(x, r) on l independent copies
of random string ri. Let’s define a random variable Xi, for 1 ≤ i ≤ l, such that Xi = 1
if M(x, ri) produces a correct answer (i.e., accepts if x ∈ L, and rejects if x 6∈ L), and
Xi = 0 otherwise. Observe that, by definition of BPP, we have Pr[Xi = 1] = p ≥ 3/4. Let’s
analyze the probability that our new algorithm makes a mistake, i.e., that the majority of

2For large δ, the quadratic dependence on δ in the exponent of the right-hand side is not true — the
exponent becomes only linear in δ.

3

the variables X1, . . . , Xl are 0. Let X =
∑l

i=1 Xi, and let µ = pl ≥ (3/4)l be the expectation
of X. We have

Pr[X < l/2] ≤ Pr[X < (2/3)µ] = Pr[|X − µ| > µ/3].

By the Chernoff theorem, the last probability is at most 2e−µ/27 ≤ 2e−l/36, which is expo-
nentially small in l, the number of times we run the original algorithm M .

Thus, by taking l = poly(n), where n = |x|, we can reduce the probability error of a new
algorithm below an inverse exponential in n, while still running in polytime.

5 BPP and Small Circuits

The ability to reduce the error probability in BPP has a curious consequence that every
language in BPP is computable by a family of polysize Boolean circuits.

Theorem 3. BPP ⊂ P/poly

Remark: Note that P ⊂ P/poly trivially, since a polytime deterministic TM can be
simulated by a polysize Boolean circuit. However, it is not at all trivial to argue that every
BPP algorithm can also be simulated by a small Boolean circuit. The problem seems to
be: what do we do with random strings used by the BPP algorithm? Now, we’ll prove the
theorem, and thus explain what to do with all those random strings.

Proof. Consider an arbitrary L ∈ BPP. Since we know how to reduce the error probability
below any inverse exponential in the input size, we may assume that there is a deterministic
polytime TM M(x, r) such that, for every x ∈ L, Prr[M(x, r) = 1] > 1−2−2n, and for every
x 6∈ L, Prr[M(x, r) = 1] < 2−2n, where |x| = n, and |r| is some polynomial in n.

Now, Prr[∃x s.t. M(x, r) is wrong] ≤ 2nPrr[M(x, r) is wrong for a fixed x] ≤ 2n2−2n =
2−n � 1. The first inequality is the so-called “union bound” saying that for any events
E1, . . . , En, Pr[E1 ∨ E2 . . . En] ≤

∑n
i=1 Pr[Ei]. The second inequality uses the fact that M

has error probability at most 2−2n for every input of size n.
Hence, there must exists at least one string r̂ such that M(x, r̂) is correct for every input

x of length n. We can use such a string r̂ as an advice string, and then just simulate M(x, r̂)
on any given input x of length n. Thus, L ∈ P/poly.

6 BPP and P

It is a big open question whether every language in BPP can be decided in deterministic
polytime, i.e., whether BPP = P. There is some evidence that this equality indeed holds.
The reason is the following result.

Theorem 4 (Impagliazzo, Wigderson). If DTime(2O(n)) contains a language L of circuit
complexity 2Ω(n), then BPP = P.

4

The proof of this theorem is too involved to be presented in the “Intro to Complexity”
course.

Some remarks about the Impagliazzo-Wigderson theorem. First, note that the complete
derandomization of BPP is possible if we can efficiently deterministically construct truth
tables of Boolean functions of near-maximum circuit complexity (since the maximum circuit
complexity of an n-variable Boolean function is about 2n/n). The condition that L ∈
DTime(2O(n)) is equivalent to saying that the truth table of some “hard” Boolean function
in n variables can be produced deterministically in time poly(2n), polynomial in the size of
the truth table. Note the interplay of uniform and nonuniform complexities here: We want
to produce efficiently uniformly (in time poly(2n)) truth tables of Boolean functions of high
(2Ω(n)) nonuniform (i.e., circuit) complexity.

The second comment is that there is a tradeoff between circuit complexity of a language
in EXP and the efficiency of derandomization. For example, Babai, Fortnow, Nisan, and
Wigderson showed that if some language in EXP needs more than polynomial circuit size,
then every language in BPP can be decided deterministically in subexponential time, i.e.,
time DTime(2nε

), for any ε > 0.
Finally, there is an intimate relation between derandomizing BPP and proving circuit

lower bounds. It is shown by Impagliazzo and Kabanets that in order to prove BPP =
P, one would have to prove superpolynomial circuit lower bounds of some kind. Thus,
derandomization and circuit complexity are inextricably connected.

7 BPP and PH

It is not known how BPP and NP are related to each other. They both belong to PSPACE,
however. (For BPP, we just enumerate all random strings of polysize, counting how many of
them are accepted by our randomized polytime algorithm. This can be done in polyspace.)

Actually, even more is known about BPP.

Theorem 5 (Sipser). BPP ⊆ Σp
2 ∩ Πp

2

Proof. Since BPP = coBPP (check this!), it suffices to prove that BPP ⊆ Σp
2.

We’ll follow the proof due to Lautemann. The idea is simple. Assume that a given
L ∈ BPP is decided by a probabilistic TM M with error probability less than 2n, where n is
the input size. As we saw in the last lecture, we can always reduce the error probability to
be that low. Fix an input x of size n. Consider the set of A of random strings r on which
our TM M accepts x, i.e., A = {r | M(x, r) accepts}. Let R be the set of all random strings
r, for an input of size n.

There are two cases. Case I: x ∈ L. Then, by our assumption, |A|
|R| > 1 − 2−n. We will

consider translations of the set A: given a binary string s, where |s| = |r|, we define the set
A ⊕ s = {a ⊕ s | a ∈ A}, where a ⊕ s means the bitwise XOR of the strings a and s. We
will argue that, since A is big, there will be a small number of strings s1, . . . , sk, for k = |r|,
such that

R = ∪k
i=1A⊕ si,

5

i.e., translating the set A for k times will cover the entire set R.

Claim 6. If |A|/|R| > 1 − 2−n, then there exist strings s1, . . . , sk, for k = |r|, such that
R = ∪k

i=1A⊕ si.

Proof of Claim. The proof is an easy application of the Probabilistic Method. We’ll show that
a random collection of k strings will have the required property with non-zero probability,
and so a desired collection of si’s certainly exists.

So, let’s pick a random sequence s1, . . . , sk uniformly and independently. Let S = ∪k
i=1A⊕

si. For a fixed string r ∈ R, we have

Pr[r 6∈ S] =
k∏

i=1

Pr[r ⊕ si 6∈ A] < (2−n)k = 2−nk.

Hence, applying the “union bound”,

Pr[∃r ∈ R such that r 6∈ S] ≤ |R|2−nk = 2k2−nk � 1.

It follows that a randomly chosen sequence s1, . . . , sk is good with probability 1−2−nk+k > 0,
and hence a good sequence exists.

Now, in case II: x 6∈ L. We have |A|/|R| < 2−n. We claim that there is no sequence
s1, . . . , sk such that R = ∪k

i=1A⊕ si in this case. The proof is very simple: | ∪k
i=1 A⊕ si| ≤

k|A| < k
2n |R| � |R|. So, we’ll never be able to cover the set R by few “translated” copies of

the small set A.
To summarize, what we proved above is the following: x ∈ L iff there exist s1, . . . , sk such

that for every r ∈ R at least one of M(x, r ⊕ si) accepts. But this is exactly a Σp
2 formula.

Hence, L ∈ Σp
2.

8 Example of a BPP language

8.1 Polynomial Identity Testing

Suppose we are given two arithmetic formulas f(x1, . . . , xn) and g(x1, . . . , xn) with integer
coefficients. We want to know whether these formulas are equivalent, i.e., whether f ≡ g
as polynomials. One way to check this is to write out all the coefficients of the polynomials
f and g, and compare them one by one. However, there may be exponentially many such
coefficients, and so this approach will result in a highly inefficient algorithm.

A better way to solve this problem is by using a randomized algorithm. We simply pick
random values to the variables x1, . . . , xn, and check if the two polynomials agree on these
values. If the two polynomials are equivalent, then they will evaluate to the same value on
any given point. If they are different polynomials, then it’s very unlikely that they will agree
on a random point. To formalize this, we need the following lemma. Recall that the degree
of a monomial xd1

1 . . . xdn
n is d1 + · · ·+ dn; the total degree of a polynomial f is the maximum

degree of a monomial of f .

6

Lemma 7 (Schwartz-Zippel, and many others). Let f(x1, . . . , xn) be a non-zero polynomial
over a field F , such that the total degree of f is d. Let S ⊆ F be a finite subset of field
elements. Then

Prr1,...,rn∈S[f(r1, . . . , rn) = 0] ≤ d

|S|
.

Proof. By induction on the number of variables n. Base case of n = 1 is easy: a univariate
degree d non-zero polynomial over a field can have at most d roots. Hence, a random point
r is a root with probability at most d/|S|.

Assume the statement is true for k variables, and let’s prove it for k+1 variables. Express
a polynomial f(x1, . . . , xk+1) as a polynomial f1(xk+1), whose coefficients are polynomials in
x1, . . . , xk (by factoring out the expressions xi

k+1 for 1 ≤ i ≤ d). Let d1 be the degree in xk+1

of f1. Let p(x1, . . . , xk) be the coefficient at xd1
k+1 in f1; that is, f1(xk+1) = xd1

k+1p(x1, . . . , xk)+
. . . . Note that the total degree of p is at most d − d1, since d is the total degree of f . We
have Prr1,...,rk+1

[f(r1, . . . , rk+1) = 0] =

Pr[f(r1, . . . , rk+1) = 0 | p(r1, . . . , rk) 6= 0] ∗Pr[p(r1, . . . , rk) 6= 0] (1)

+ Pr[f(r1, . . . , rk+1) = 0 | p(r1, . . . , rk) = 0] ∗Pr[p(r1, . . . , rk) = 0]. (2)

We can upperbound this sum as follows.

Pr[f(r1, . . . , rk+1) = 0 | p(r1, . . . , rk) 6= 0] ∗Pr[p(r1, . . . , rk) 6= 0] ≤
Pr[f(r1, . . . , rk+1) = 0 | p(r1, . . . , rk) 6= 0] ≤
Prrk+1

[f1(rk+1) = 0],

where f1(rk+1) is obtained after substituting the values r1, . . . , rk for x1, . . . , xk. Note that
after such substitutions, we obtain a univariate polynomial of degree at most d1. Hence,

Prrk+1
[f1(rk+1) = 0] ≤ d1/|S|.

For the second summand, we have

Pr[f(r1, . . . , rk+1) = 0 | p(r1, . . . , rk) = 0] ∗Pr[p(r1, . . . , rk) = 0] ≤
Pr[p(r1, . . . , rk) = 0] ≤
(d− d1)/|S|,

where the last inequality is by the Inductive Hypothesis.
Putting everything together, we get

Pr[f(r1, . . . , rk+1) = 0] ≤ d1/|S|+ (d− d1)/|S| = d/|S|,

as promised.

7

