
CS 6743 Lecture 15 1 Fall 2007

1 Circuit Complexity

1.1 Definitions

A Boolean circuit C on n inputs x1, . . . , xn is a directed acyclic graph (DAG) with n nodes
of in-degree 0 (the inputs x1, . . . , xn), one node of out-degree 0 (the output), and every node
of the graph except the input nodes is labeled by AND, OR, or NOT; it has in-degree 2
(for AND and OR), or 1 (for NOT). The Boolean circuit C computes a Boolean function
f(x1, . . . , xn) in the obvious way: the value of the function is equal to the value of the output
gate of the circuit when the input gates are assigned the values x1, . . . , xn.

The size of a Boolean circuit C, denoted |C|, is defined to be the total number of nodes
(gates) in the graph representation of C. The depth of a Boolean circuit C is defined as the
length of a longest path (from an input gate to the output gate) in the graph representation
of the circuit C.

A Boolean formula is a Boolean circuit whose graph representation is a tree.
Given a family of Boolean functions f = {fn}n≥0, where fn depends on n variables,

we are interested in the sizes of smallest Boolean circuits Cn computing fn. Let s(n) be a
function such that |Cn| ≤ s(n), for all n. Then we say that the Boolean function family f is
computable by Boolean circuits of size s(n). If s(n) is a polynomial, then we say that f is
computable by polysize circuits.

It is not difficult to see that every language in P is computable by polysize circuits. Note
that given any language L over the binary alphabet, we can define the Boolean function
family {fn}n≥0 by setting fn(x1, . . . , xn) = 1 iff x1 . . . xn ∈ L.

Is the converse true? No! Consider the following family of Boolean functions fn, where
fn(x1, . . . , xn) = 1 iff TM Mn halts on the empty tape; here, Mn denotes the nth TM in
some standard enumeration of all TMs. Note that each fn is a constant function, equal to 0
or 1. Thus, the family of these fn’s is computable by linear-size Boolean circuits. However,
this family of fn’s is not computable by any algorithm (let alone any polytime algorithm),
since the Halting Problem is undecidable. Thus, in general, the Boolean circuit model of
computation is strictly more powerful that the Turing machine model of computation.

Still, it is generally believed that NP-complete languages cannot be computed by polysize
circuits. Proving a superpolynomial circuit lower bound for any NP-complete language would
imply that P 6= NP. (Check this!) In fact, this is one of the main approaches that was used
in trying to show that P 6= NP. So far, however, nobody was able to disprove that every
language in NP can be computed by linear-size Boolean circuits of logarithmic depth!

1This lecture is a modification of notes by Valentine Kabanets

1

1.2 TMs that take advice

The Boolean circuit model of computation is nonuniform, i.e., different algorithms (circuits)
are used for inputs of different sizes, and there may be no uniform algorithm (TM) that,
given n, will generate the nth Boolean circuit Cn.

This uniformity can be regarded as another kind of computational resources. We can
imagine a TM equipped with a special read-only tape, called advice tape, where some advice
string a(n) appears when the TM is given an input x of length n. Note that the same advice
string a(n) is used for all inputs of length n. If such a TM decides a language L, then we
say that L is accepted by a TM with advice.

More formally, we say that L ∈ Time(t(n))/f(n) if there is a family of advice strings
{an}n≥0 such that |an| ≤ f(n) for all n, and a t(n)-time TM M such that, for any string x
of length n,

x ∈ L ⇔ (x, an) ∈ L(M).

The most important class of languages accepted by TM with advice is the class P/poly =
∪kTime(nk)/nk.

Theorem 1. A language L is computable by polysize Boolean circuits iff L ∈ P/poly.

Proof Sketch. ⇒. Encode a Boolean circuit Cn as an advice string an. Then a polytime
TM with advice an, can decide if x ∈ L by decoding the Boolean circuit for L from an and
evaluating this circuit on x.

⇐. Let {an}n≥0 be the family of polysize advice strings for L, and let M be a polytime
TM such that x ∈ L iff (x, a|x|) ∈ L(M). We know that every polytime decidable language is
computable by polysize Boolean circuits. Let {Cn}n≥0 be a polysize circuit family computing
the language L(M). We have that x ∈ L iff Cm(x, a|x|) = 1, where m = |x|+|a|x|| ∈ poly(|x|).
By hardwiring the advice string an into a corresponding circuit Cm, we obtain a circuit
family deciding the language L. The sizes of all these new circuits are bounded by some
polynomial.

1.3 NP
?
⊂ P/poly

There is an interesting connection between NP having polysize circuits and the collapse of a
polytime hierarchy.

Theorem 2 (Karp-Lipton). If NP ⊂ P/poly, then PH = Σp
2.

Proof Sketch. As we argued earlier, to show that PH = Σp
2, it suffices to prove that Σp

2 = Πp
2.

To prove the latter, it actually suffices to argue that Πp
2 ⊆ Σp

2. (Show that this is indeed
sufficient!)

Since NP ⊂ P/poly, there is a polysize family of circuits computing SAT. Moreover, since
there is a polytime algorithm for finding a satisfying assignment, given access to an algorithm
for SAT, we conclude that there is a polysize family of circuits Cn with the following property:

2

Given a propositional formula φ of size n, Cn(φ) outputs a satisfying assignment for φ if one
exists, or outputs the string of 0s if φ is unsatisfiable.

Now, consider any language L ∈ Πp
2. By definition, there is a polytime polybalanced rela-

tion R such that x ∈ L iff ∀y∃zR(x, y, z). Consider the language L′ = {(x, y) | ∃zR(x, y, z)}.
Obviously, L′ ∈ NP. By our assumption, there is a polysize circuit family such that Cm(x, y)
outputs a satisfying assignment z for R(x, y, z) if one exists; here, m = |x|+ |y|.

We can test if x ∈ L by the following polytime polybalanced formula: ∃Cm∀yR(x, y, Cm(x, y)).
Indeed, if x ∈ L, then there will be a polysize circuit Cm that would produce a satisfying
z-assignment for R(x, y, z) for every y. Conversely, if there is some small circuit Cm that
produces a satisfying z-assignment for R(x, y, z) for every y, then the formula ∀y∃zR(x, y, z)
must be true, and hence, x ∈ L. Thus, we have shown that L ∈ Σp

2, as required.

1.4 Hard Boolean functions

Every Boolean function f on n variables is computable by a Boolean circuit of size O(n2n):
consider a DNF formula, which is an OR of at most 2n ANDs, where each AND is a conjunc-
tion of n literals for each x such that f(x) = 1. A more careful argument shows that every
Boolean function on n variables is computable by a Boolean circuit of size 2n

n
(1 + o(1)).

A simple counting argument shows that almost all Boolean functions are hard in the sense
that they require Boolean circuits of size Ω(2n/n). The total number of n-variable Boolean
functions is B(n) = 22n

. On the other hand, the total number of Boolean circuits of size s on
n variables is at most (very roughly) C(n, s) = ((n + 3)s2)s; there are n + 3 gate types; each
gate has at most two inputs; there are s gates. When s < 2n/cn, we have C(n, s) � B(n).
So, most functions require Ω(2n/n) circuit size. Similar argument for formulas shows that
most n-variable Boolean functions require Ω(2n/ log n) formula size. Remark: more careful
arguments give 2n/n and 2n/ log n lower bounds for circuits and formulas, respectively.

Thus, we know that hard Boolean functions abound, but we cannot get our hands on any
particular hard function. That is, we do not know whether any language in NEXP requires
superpolynomial circuit size.

2 Parallel Computation

Imagine a Boolean formula on n variables. Suppose that we apply the appropriate electric
currents to the inputs. How long will take for these currents to “propagate” through the
formula, yielding the value of the formula on the given inputs? A moment’s thought suggests
that this time is proportionate to the depth of the formula. Thus, the smaller the depth, the
faster we can compute the formula value on any given input.

The considerations above show the importance of the following complexity classes (ac-
tively studied by Nick Pippenger, and named in his honor NC, for “Nick’s Class”, by Steve
Cook):

NCi = {L | L is decided by a family of polysize circuits of depth O(logi n)}

3

The class NC = ∪iNCi.
Thus, NC1 is the class of languages decided by polysize circuits of logdepth. In general,

almost all Boolean functions need circuits of linear depth. So, those Boolean functions that
can be computed by shallow circuits are the functions computable in parallel, as the depth
of a circuit corresponds to the parallel time.

Some comments on the definition of NC. For NC1, it does not matter whether we consider
polysize circuits of logdepth or formulas of logdepth! This is because any polysize circuit
of depth O(log n) can be easily converted into a formula of the same depth O(log n), by
“unwinding” the underlying graph into a tree (i.e., each gate gives rise to as many copies of
itself as there are paths from that gate to the output gate of the circuit). (Check this!)

Also, the class of languages computable by logdepth formulas is the same as that com-
putable by polysize formulas (without any depth restrictions)! The reason is that any given
polysize formula can be “re-balanced” to become of logdepth. The details follow.

Let F (x1, . . . , xn) be a formula of size s, where s ∈ poly(n). Then it is possible to show
that F will contain a subformula F ′ of size t, where s/3 ≤ t ≤ 2s/3. (Think of a tree with
two subtrees: left and right. If either left or right subtree is of size between 1/3 and 2/3
of the size of the whole tree, then we are done. Otherwise, pick the subtree that is bigger
than 2/3 of the size of the original tree, and continue with that subtree. Sooner or later,
we will come across a subtree whose size is in the required range, since after each step our
subtree looses at least one leaf.) Let F̂ (x1, . . . , xn, z) be the formula F with the subformula
F ′ replaced by a new variable z. Then

F (x1, . . . , xn) = (F̂ (x1, . . . , xn, 1) ∧ F ′(x1, . . . , xn)) ∨ (F̂ (x1, . . . , xn, 0) ∧ ¬F ′(x1, . . . , xn)).

Now, we recursively re-balance the formulas F̂ (x1, . . . , xn, 1) and F ′(x1, . . . , xn). Then we
plug the resulting balanced formulas into the right-hand side of the expression for F given
above.

Each recursive call adds at most 3 to the depth of the formula. On the other hand, since
after each recursive call the size of the formula gets shrunk by a factor 2/3, there can be at
most log3/2 |F | nested recursive calls (i.e., the depth of the recursion is at most O(log n)).
Thus, in total, the depth of the formula obtained at the end of this recursive re-balancing
will be O(log n).

3 Examples of problems in NC1

Boolean matrix multiplication
Given two n × n Boolean-valued matrices A, B, the goal is to compute their product

C = AB. Note that C[i, j] = ∨n
k=1A[i, k] ∧ B[k, j]. For each triple i, k, j, we can compute

the AND of A[i, k] and B[k, j] in depth 1. Then, for each pair i, j, we can construct a binary
tree of depth log n that computes the OR of the n terms A[i, k] ∧ B[k, j]. Thus, each entry
of the matrix C can be computed in O(log n) depth.

4

4 Constant-depth circuits: AC0

We also consider Boolean circuits of constant depth. If the fan-in remains at most 2, such
circuits compute functions that do not depend on all of its inputs. So in NC0 we can only
compute constant functions.

To make things more interesting, we allow the fan-in to be unbounded. The resulting
class of polysize circuits of constant depth (and unbounded fan-in) is called AC0. This class
is especially important since it corresponds to first-order logic in the model checking setting.

Theorem 3. FO(+, ∗) captures AC0, where FO(+, ∗) is the first-order logic with built-in
predicates for addition and multiplication.

Proof sketch. The intuitive idea behind the proof is that for a first-order formula of constant
length, we can represent ∀ and ∃ as unbounded gates with as many inputs as there are
elements in the universe of our structure. So for every structure size there will be a different
circuit corresponding to the given formula on that structure. For the other direction, we do
need + and ∗ to talk about the order of inputs and gates; without + and ∗ first-order logic
is strictly weaker than AC0.

AC0 is a relatively weak class. For example, the Parity of n-bit strings cannot be com-
puted in AC0. (However, the proof of this result is rather involved, and is one of the few
successes of complexity theory in proving some kind of circuit lower bounds.) On the other
hand, adding two n-bit numbers a = a1 . . . an and b = b1 . . . bn can be done in AC0.

The idea is to compute for each bit position i, whether there is carry into that position.
This computation can be done independently (in parallel) for each bit position i. It is easy
to see that the carry into position i is 1 iff there exists an index j > i that generated a carry
(i.e., aj = bj = 1) and that carry was propagated all the way to i (i.e., for each i < k < j,
we have ak = 1 or bk = 1). It is now easy to construct a constant-depth (unbounded fan-in)
circuit computing the carry ci for each position i. Then using this carry computing circuit,
we can easily compute each bit in the sum a + b in AC0.

5

