
CS 6743 Lecture 14 1 Fall 2007

1 PSPACE-Completeness

Recall the NP-complete problem SAT: Is a given Boolean formula φ(x1, . . . , xn) satisfiable?
The same question can be stated equivalently as: Is the formula ∃x1 . . . ∃xnφ(x1, . . . , xn)
true? Also recall the coNP-complete problem TAUT: Is a given Boolean formula ψ(x1, . . . , xn)
a tautology (i.e., true on all assignments)? This can be stated as: Is the formula ∀x1 . . . ∀xnψ(x1, . . . , xn)
true?

What if we start alternating the quantifiers? Let us define the language TQBF (True
Quantified Boolean Formulas) as the set of true formulas of the form

Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn),

where Qi ∈ {∃.∀} is a quantifier, φ is a Boolean formula in CNF (conjunctive normal form),
and the sequence of quantifiers Q1 . . . Qn alternates between ∃ and ∀. For example, all odd
Q2k+1 can be ∃, and all even Q2k can be ∀.

We can assume, without loss of generality, that Q1 = ∃: if not, then we can always add
an ∃y before the formula for some variable y that does not occur in the formula. In this
case, one can think of a QBF as a game between two players: Player ∃ and Player ∀. First,
Player ∃ sets the value of x1. Then Player ∀ sets the value of x2. Then Player ∃ sets the
value of x3, and so on. After n moves, the winner is declared using the following criterion:
Player ∃ wins iff the assignments to x1 . . . xn constructed during the game is satisfying for
the formula φ. It is easy to see that a given QBF is true iff Player ∃ has a winning strategy,
i.e., for any choice of moves by Player ∀, Player ∃ can play so as to guarantee its win.

How can we decide if a given QBF is true? The following simple recursive algorithm
Truth does the job.

Algo Truth(Φ)
if Φ is quantifier-free then return its value
end if
Let Ψ = Q1x1 . . . Qnxnφ(x1, . . . , xn).
b0 = Truth(Q2x2 . . . xnφ(0, x2, . . . , xn));
b1 = Truth(Q2x2 . . . xnφ(1, x2, . . . , xn));% re-using space
if Q1 = ∃ then return b0 ∨ b1

else return b0 ∧ b1
end if
end Algo

The algorithm Truth runs in polynomial space: the depth of the recursion is n, and the
size of each stack record is poly(n).

1This lecture is a modification of notes by Valentine Kabanets

1



Remark: Using some tricks (as those we used to show that every O(log n)-depth formula
can be evaluated in O(log n)-space), one can show that TQBF is in Space(n).

It turns out that PSPACE is probably the best possible we can do for TQBF, as it is
PSPACE-complete.

2 PSPACE-completeness of TQBF

Theorem 1. TQBF is PSPACE-complete.

Proof. (1) TQBF ∈ PSPACE: we already showed that above.
(2) TQBF is PSPACE-hard. We need to reduce every language in PSPACE to TQBF.

According to our definition of TQBF, the inner formula must be in CNF. However, it will be
easier for us to reduce every language in PSPACE to a quantified formula in DNF (disjunctive
normal form). This turns out to be sufficient since PSPACE is closed under complementation.
(Check this.)

Let L be any language in PSPACE. Say L is decided by some TM M in Space(nc) for
some constant c. To decide if x ∈ L, we consider the configuration graph of M on x. Each
configuration will be of size O(nc); let us denote this size by m. There at most 2m different
configurations. So, x ∈ L iff there is a path from the start configuration to the accept
configuration of length at most 2m. We will construct a QBF that will express the existence
of such a path.

In a sense, our proof is a restatement of the proof of Savitch’s Theorem. Recall the
function Path(a, b, i) that we used in the proof of Savitch’s Theorem: Path(a, b, i) is True iff
there is a path from node a to node b of length at most 2i. We will define a sequence of QBFs
ψi, i = 0, . . . ,m, where ψi(A,B) is True iff the variables A and B encode two configurations
a and b such that b is reachable from a in at most 2i steps; note that A and B are groups of m
variables each. The required QBF will then be ψm(Start, Accept), where Start and Accept
are the binary strings encoding the start configuration and accept configuration, respectively.

For i = 0, ψ0(X,Y ) is a quantified Boolean formula on free variables X and Y that is
True iff either X = Y or Y is reachable from X in 1 step. The formula ψ0(X, Y ) can be
written as a DNF of size poly(m). (Exercise: Explain why.)

Given ψi(X, Y ), we can try to define ψi+1(X,Y ) = ∃Z[ψi(X,Z) ∧ ψi(Z, Y )]. However,
this is a bad idea: the size of ψi+1 doubles, and so, the size of ψm would be exponential. The
trick is to “re-use” the formula ψi. Here is a correct definition of ψi+1(X, Y ):

∃Zi+1∀Xi+1∀Yi+1[((Xi+1 = X ∧ Yi+1 = Zi+1) ∨ (Xi+1 = Zi+1 ∧ Yi+1 = Y )) ⇒ ψi(Xi+1, Yi+1)]

Note how the formula above is True iff there is a Zi+1 such that both ψi(X,Zi+1) and
ψi(Zi+1, Y ).

The rest of the proof takes care of technical details. First, note that in our definition
of ψi+1 all the quantifiers of the subformula ψi can be taken to the front, immediately after
the quantifiers ∃Zi+1∀Xi+1∀Yi+1. Secondly, we need to turn ψi+1 into a DNF. Since, by the
inductive hypothesis, ψi is already a DNF, it suffices to turn into a DNF the subformula

2



φ = ¬[(Xi+1 = X ∧Yi+1 = Zi+1)∨ (Xi+1 = Zi+1∧Yi+1 = Y )]. Let us denote the subformulas
of φ by φ1, . . . , φ4 so that φ = ¬[(φ1 ∧ φ2) ∨ (φ3 ∧ φ4)]. By simple logical transformations,
the equivalent DNF is

(¬φ1 ∧ ¬φ3) ∨ (¬φ1 ∧ ¬φ4) ∨ (¬φ2 ∧ ¬φ3) ∨ (¬φ2 ∧ ¬φ4).

Each of the four subformulas can be expressed as a DNF over the variables of φi’s. For
example, the first subformula (¬φ1 ∧ ¬φ3) is

∨1≤s,t≤mαs ∧ αt,

where αs expresses the fact that the strings Xi+1 and X differ in position s, and αt expresses
the fact that the strings Xi+1 and Zi+1 differ in position t. Finally, to express that two
strings x1 . . . xm and yi . . . ym differ in position s, we can use the DNF (xs∧¬ys)∨ (¬xs∧ys).

We conclude by observing that the formula ψm can be constructed in logspace, since ψm

has a very regular structure; the details are left as an exercise.

A few other two-person games are (e.g., Go and checkers) are also known to be PSPACE-
complete (see Papadimitriou’s book).

Definition 2. A combined complexity of model-checking is the complexity of this problem
when both the formula and the structure are given as an input (as opposed to the data
complexity where the input is just the structure and the formula is hardcoded).

Corollary 3. The combined complexity of model-checking for first-order logic is PSPACE-
complete.

Proof. The hardness follows immediately from the completeness of TQBF, by setting the
structure to have two elements and one relation differentiating between these elements (X =
{1}). To show how to evaluate a first-order formula in PSPACE, note that the algorithm
above for evaluating TQBF works for first-order formulas as well, since checking all possible
values of an existential or a universal quantifier can be done reusing space.

3 Polynomial-Time Hierarchy

Recall that TQBF talks about quantified Boolean formulas where the number of alternations
is non-constant, e.g., ∃x1∀x2 . . . Qnxnφ(x1, . . . , xn) has n alternating quantifiers. Also recall
that TQBF is PSPACE-complete. What happens if the number of alternating quantifiers
is fixed to some constant? Then we obtain complete problems for the Polynomial-Time
Hierarchy, defined below.

We call a k-ary relation R polynomially balanced if, for every tuple (a1, . . . , ak) ∈ R, the
lengths of all ai’s are polynomially related to each other.

Definition For any i ≥ 0, a language L ∈ Σp
i iff there is a polytime decidable, polyno-

mially balanced (i+ 1)-ary relation R such that

L = {x | ∃y1∀y2∃y3 . . . QiyiR(x, y1, . . . , yi)}.

3



Here, Qi is ∃ if i is odd, and ∀ if i is even.
For example, Σp

0 = P and Σp
1 = NP.

Definition For any i ≥ 0, a language L ∈ Πp
i iff there is a polytime, polynomially

balanced (i+ 1)-ary relation R such that

L = {x | ∀y1∃y2∀y3 . . . QiyiR(x, y1, . . . , yi)}.

For example, Πp
0 = P and Πp

1 = coNP.
Note that, in general, for every i, Πp

i = coΣp
i .

Definition PH = ∪i≥0Σ
p
i .

Theorem 4. PH ⊆ PSPACE

Proof. We know that even the general version of TQBF is in PSPACE. Hence, so is the
version of TQBF with constant number of alternating quantifiers.

4 Examples of problems in PH

Unique-SAT = {φ | φ is a formula with exactly one satisfying assignment}

Theorem 5. Unique-SAT is in Σp
2.

Proof. Note that φ ∈ Unique− SAT iff there is y such that for all z, z 6= y, we have φ(y) is
True and φ(z) is False.

Min-Circuit = {C | C is a Boolean circuit s.t. no smaller equivalent circuit exists}
Here, the size of a Boolean circuit is the number of logical operations (ANds, ORs, and

NOTs), or gates, used in the circuit.

Theorem 6. Min-Circuit is in Πp
2.

Proof. Note that C is in Min-Circuit iff for every smaller circuit C ′ there is an input x such
that C(x) 6= C ′(x).

5 Alternative definition of PH

Definition An oracle TM is a TM M with special tape, called oracle tape, and special
states q?, qyes, qno. When run with some oracle O (where O is just some language), M can
query O on some strings x by writing these x onto its oracle tape, and then entering the
state q?. In the next step, TM M (miraculously) finds itself in the state qyes if x ∈ O, or the
state qno if x 6∈ O.

This definition of an oracle TM captures the notion of “having access to an efficient
algorithm deciding O”.

For complexity classes C1 and C2, we say that a language L ∈ CC2
1 if there is an oracle

TM M from class C1 that, given oracle access to some language O ∈ C2, decides L.

4



For example, Unique − SAT ∈ NPNP: Given a formula φ, nondeterministically guess
an assignment a. Check that φ(a) is True. If not, then Reject; otherwise, construct a
new formula φ′(x1, . . . , xn) ≡ “φ(x1, . . . , xn) ∧ [x1 . . . xn 6= a1 . . . an]′′. Ask the SAT oracle
whether φ′ is satisfiable. If it is, then Reject; otherwise, Accept. (Remark: With a more
careful argument one can show that Unique− SAT ∈ PNP, with only 2 queries to the SAT
oracle. Do you see how?)

Alternative definition of PH. Σp
0 = Πp

0 = P. For all i ≥ 0, Σp
i+1 = NPΣp

i and

Πp
i+1 = coNPΣp

i . Finally, set PH = ∪i≥0Σ
p
i .

Theorem 7. The original definition and the alternative definition of PH are equivalent.

Proof. The base case of i = 0 is immediate: in both definitions, the 0th level is just the class
P.

Just for the sake of this proof, let us denote by Σ1
i and by Σ2

i the ith level of polytime
hierarchy according to definitions 1 and 2, respectively. (The first definition is in terms of
logical formulas; the second definition is in terms of oracle TMs.)

We need to show that Σ1
i = Σ2

i , for all i. The case of i = 0 is already argued. Let us
assume the equivalence of the two definitions for i, and prove it for i+ 1.

Let us start by proving that Σ1
i+1 ⊆ Σ2

i+1. By definition, L ∈ Σ1
i+1 iff there is a poly-

balanced relation R such that x ∈ L ⇔ ∃y1∀y2 . . . R(x, y1, y2, . . . , yi+1). Consider the lan-
guage L′ = {(x, y) | ∀y2 . . . R(x, y, y2, . . . , yi+1)}. It is easy to see that L′ ∈ Π1

i , and hence,
by the induction hypothesis, L′ ∈ Π2

i . Now, to test if x ∈ L we can do the following: Nonde-
terministically guess a y, then check if (x, y) ∈ L′ by querying the Π2

i oracle. This algorithm
shows that L ∈ Σ2

i+1.
Let us now prove the other direction, i.e., that Σ2

i+1 ⊆ Σ1
i+1. Consider an arbitrary

language L ∈ Σ2
i+1. By definition, there is an NPΣ2

i TM M that decides L. Also, we have
that x ∈ L iff there is an accepting computation of M on x.

For any input x, consider a run of the TM M on x. During that computation, the TM
M may ask (up to a polynomial number of) oracle queries to the Σ2

i oracle. Some of these
oracle queries have the answer Yes, and the others No. Note that the Yes answers can be
verified in Σ2

i , which is equal to Σ1
i , by the inductive hypothesis. The No answers can be

verified in Π2
i , which is equal to Π1

i , by the inductive hypothesis.
Thus, to test if x ∈ L, we can guess (using the ∃ quantifier) an accepting computation

path of M on x together with all answers to the oracle queries, and check the correctness
of our path, including all the answers to the oracle queries, in (Σ1

i ∪Π1
i ). Put together, this

gives us a way to check whether x ∈ L by a Σ1
i+1 formula. Hence, we get L ∈ Σ1

i+1.
Finally, since Πi = coΣi for each of the two definitions, we immediately obtain the

equality Π1
i+1 = Π2

i+1.

6 Collapsing the Polynomial-Time Hierarchy

Many results in complexity theory have the form “StatementX is true, unless the polynomial-
time hierarchy collapses”. Since it is generally believed that all the levels of the polytime

5



hierarchy are distinct, i.e., that the polytime hierarchy does not collapse, such results give
us some evidence that the statement X is probably true.

Let us see under what conditions the polytime hierarchy would collapse to some finite
level, i.e., PH = Σp

i , for some constant i.

Theorem 8. If NP = coNP, then PH = Σp
1 = NP = coNP.

Proof. We want to show that Σp
i = Σp

1 for every i. Our proof is by induction. The base case
of i = 1 is obvious. Suppose the truth of the statement for i ≥ 1, and let us prove it for i+1.

Take any L ∈ Σp
i+1. By definition, there is an (i+ 2)-ary polytime polybalanced relation

R such that x ∈ L iff ∃y1∀y2 . . . R(x, y1, . . . , yi+1). Consider the language L′ = {(x, y) |
∀y2∃y3 . . . R(x, y, y2, . . . , yi+1). It is clear that L′ ∈ Πp

i . By the inductive hypothesis, we have
Πp

i = coΣp
i = coΣp

1 = Πp
1. On the other hand, our assumption is that NP = coNP, i.e., that

Σp
1 = Πp

1. Thus, we obtain that L′ ∈ Σp
1.

Finally, observe that x ∈ L iff ∃y (x, y) ∈ L′. Since L′ ∈ Σp
1, it follows that there

is a polytime polybalanced relation R′ such that w ∈ L′ iff ∃zR′(w, z). Thus, x ∈ L iff
∃(y, z)R′((x, y), z). Therefore, L ∈ Σp

1.

The theorem above can be easily generalized to show the following.

Theorem 9. If Σp
i = Πp

i for some i ≥ 1, then PH = Σp
i .

In other words, if the ith level of the polytime hierarchy (for i ≥ 1) is closed under
complement, then the polytime hierarchy collapses to the ith level. It is easy to see that the
converse is also true.

Theorem 10. If PH = Σp
i , then Σp

i = Πp
i .

Proof. This follows from the fact that PH = coPH, i.e., the polytime hierarchy is closed
under complement. (Remark: Note that this is different from saying that any fixed level Σp

i

is closed under complement.) For any i, we have that Σp
i ⊆ Πp

i+1, and Πp
i ⊆ Σp

i+1.

7 Oracles and unapplicability of diagonalization

It is a big open problem to find out whether PH collapses. A natural approach would be to
try techniques that worked well before such as diagonalization. However, it is not possible
to use diagonalization directly to prove that the polytime hierarchy is proper.

Definition 11. We call a proof technique relativizing if the proof works in the presence of
oracles.

In particular, diagonalization is a relativizing technique, since the proof stays the same
if we are diagonalizing against Turing machines with a given oracle.

Theorem 12 (Baker, Gill, Solovay). There are two oracles A and B such that PA = NPA

and PB 6= NPB.

6



Corollary 13. No relativizing technique can be used to resolve P vs. NP question.

Another result that could make it more believable that P 6= NP is that P 6= NP
with probability 1 with respect to a random oracle. That is, although there is an oracle
with respect to which they are the same, for an arbitrary oracles these classes are different.
However, this does not mean that P 6= NP : there is an example of classes (IP and PSPACE)
that were proven equal, although with respect to a random oracle they were distinct.

7


