
CS 6743 Lecture 12 1 Fall 2007

1 Savitch’s Theorem

We’ll prove an amazing result: Nondeterministic space algorithms can be simulated effi-
ciently by deterministic space algorithms, with only quadratic loss in space usage. That is,
nondeterminism does not give us extra power in the case of space-bounded computation!

Recall that NL = NSpace(log n), and NPSPACE = ∪kNSpace(nk).
First, using the notion of configuration graphs, we can show the following.

Theorem 1. NL ⊆ P

Proof. The proof is exactly the same as that for L ⊆ P.

Configuration graphs of space-bounded TMs are a very useful tool for analyzing space-
bounded computation. As the next theorem shows a reachability problem for graphs exactly
captures the complexity of the class NL.

Define ST − CON = {(G, s, t) | G is a directed graph with a path from s to t}.

Theorem 2. ST-CON is NL-complete under logspace reductions.

Remark: Note that we restricted the class of reductions to logspace computable ones.
This is necessary to make the notion NL-completeness nontrivial. (As you recall from Prob-
lem Set 1, basically every language in P is P-complete under polytime reductions.)

Proof. 1. ST −CON ∈ NL: Given a graph G = (V, E) and s, t ∈ V , nondeterministically
guess a path from s to t, by keeping track of a current vertex on a path and a next
vertex on a path. After guessing a next vertex on a path, make it the new current
vertex (erasing the old current vertex) so as to re-use the space, and run in O(log n)
space only. If ever t is a current vertex on a guessed path, then Accept.

2. ST − CON is NL-hard: Given any language L ∈ NL decided by some logspace NTM
M , and an input x, construct the configuration graph of M on x. This can be done in
logspace (can you see why?) Make s to be the start configuration, and t the accepting
configuration. (Note: we can always modify any given NTM so that it has only one
accepting configuration: after entering qaccept, the machine will erase all of its work-
tapes, and go to the first non-blank symbol of its input tape.)

Another representation of NL, which suggested to Immerman the idea of the proof of
NL = coNL (which we will do later today), is first-order logic with a transitive closure
operator. Transitive closure is essentially reachability: a pair of vertices (s,t) is in the

1This lecture is a modification of notes by Valentine Kabanets
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transitive closure of a graph if t is reachable from s. In the logic form, transitive closure of
a relation E is X satisfying the following:

X0(u, v)←E(u, v) ∨ u = v

Xi+1(u, v)←∃z < nXi(u, z) ∧Xi(z, v)

That is, it is the smallest value of X such that Xi+1 = Xi. In a more general case, instead
of the edge relation E we can put any first-order formula φ, which may have X as a free
variable.

Recall from the proof of Fagin’s theorem that the correctness of a run of a Turing ma-
chine can be described by a first-order formula (with arithmetic operators). Now, together
with the fact that a computation of an NL machine can be thought of as a reachability in
its configuration graph, it is easy to see that FO(TC) (first-order with transitive closure)
captures NL.

Theorem 3 (Savitch’s Theorem). ST − CON ∈ Space(log2 n).

Corollary 4. 1. NL ⊆ Space(log2 n).

2. NPSPACE = PSPACE.

Proof of Savitch’s Theorem. We will design a log2 n-space algorithm that, given a directed
graph G = (V, E) with |V | = n nodes, and s, t ∈ V , will accept iff t is reachable from s.
(For convenience, we assume that (u, u) ∈ E for every node u ∈ V .) The idea of the proof
is similar to the second line of the definition of transitive closure.

We design algorithm Path(x, y, i) which accepts iff there is a path from x to y of length
at most 2i. Note that t is reachable from s iff Path(s, t, log n) accepts. (Do you see why?)

Algo Path(x, y, i)
if i = 0 then

Accept iff (x, y) ∈ E
end if
for every z ∈ V

if Path(x, z, i− 1) accepts AND
Path(z, y, i− 1) accepts % we re-use space here!

then Accept
end if

end for
Reject % if no “middle” point z was found, we reject

end Algo

It is not hard to see that algorithm Path is correct. To analyze the space used, note
that the depth of the recursion is log n, and that the size of each “stack record” during the
recursion is the size of (x, y, i) ∈ O(log n). Thus, the total space used is O(log2 n).
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It is still a big open problem to decide if NL = L. To show this, it would suffice to give
a deterministic logspace algorithm for ST-CON, the problem of st-connectivity for directed
graphs on n vertices. Interestingly, Reingold has recently showed that the st-connectivity
problem for undirected graphs is solvable in detereministic logspace! The algorithm for doing
this is highly nontrivial and not at all obvious; it is based on the algebraic characterization
of connectivity in graphs (in terms of the so-called eigenvalue gap, the difference between the
two largest eigenvalues of the adjacency matrix of a given graph). This algorithmic success
renewed the interest in the NL vs. L question.

Next we will see another surprising result showing that NL = coNL, something we don’t
expect to be true in the setting of time complexity classes. (This might be taken as another
piece of evidence pointing to the possibility of NL = L...)

2 NL = coNL

Next we turn to an even more amazing result in complexity which proves the closure of
NL under complementation. (This is like NP = coNP for space-bounded machines!) The
question whether nondeterministic space is closed under complementation was open for 23
years; it was first stated in 1964 by Kuroda in relation to the class of context sensitive
languages, which Kuroda proved to be exactly the class NSpace(n). In 1987, Neil Immerman
and Robert Szelepcsényi, a Slovakian undergraduate student, independently proved that
NSpace(s(n)) = coNSpace(s(n)), for any proper complexity function s(n) ≥ log n. This was
a big shock to the CS community for two reasons: (1) it was widely believed that NL 6= coNL,
and (2) the proofs by Immerman and Szelepcsényi were quite simple. Immerman says that
his proof comes from his attempts to understand FO(TC): there, he realized that positive
occurrences of transitive closure can simulate negative occurrences, and from that designed
an NL algorithm for unreachability.

Since ST − CON is NL-complete, in order to prove NL = coNL, it suffices to prove that
ST − CON ∈ coNL, i.e., that it can be checked in nondeterministic logspace whether t is
not reachable from s.

Theorem 5 (Immerman-Szelepcsényi). ST − CON ∈ coNL

Proof. Idea: To check if t is not reachable from s, enumerate all nodes that are reachable
from s and check that t is not among them.

This sounds too easy. The trick is to do this enumeration of all nodes in logspace, and
ensuring that indeed all nodes reachable from s were enumerated. We need some clever idea
to do this. The clever idea is to count.

Let us imagine for a moment that we are given a number N = # of nodes reachable from
node s. (Later we’ll show how to compute this N in NL.) The following NL algorithm check
if t is not reachable from s in a given directed graph G = (V, E), where |V | = n.

Algo Unreach(G, s, t)
% given N = # nodes reachable from s
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count = 0;
for every node v

“make a nondeterministic guess whether v is reachable from s”
if guess is Yes then

“nondeterministically try to guess a path from s to v of length at most n”;
if “guessed path does not lead to v” then Reject end if
if v = t then Reject
else count = count + 1;
end if

end if
end for
if count < N then Reject
else Accept % if count = N
end if

end Algo

Clearly the algorithm Unreach runs in nondeterministic logspace; observe that N and
count can be at most n, and so they can be written as binary numbers of length at most
log n.

Claim 6. Algorithm Unreach(G, s, t) has an accepting computation iff t is not reachable
from s.

Proof of Claim. The algorithm makes sure that it enumerates all nodes reachable from s,
by comparing count with N . The algorithm accepts iff node t was not one of these N nodes
reachable from s.

To compute N = # nodes reachable from s, we will iteratively compute (re-using space)
the values R(i) = # nodes reachable from s in at most i steps. Then we obtain N = R(n).

Algo #Reach(G, s, t)
R(0) = 1 % s is reachable from s in 0 steps
for i = 1..n

R(i) = 0 % initialize R(i)
for every node v

% try all nodes u reachable from s in ≤ (i− 1) steps, and
% check if v is reachable in ≤ 1 steps from any such u
count = 0;
for every node u

“make nondeterministic guess whether u is reachable from s in ≤ (i− 1) steps”;
if“guess is Yes” then

“nondeterministically try to guess a path from s to u of length ≤ (i− 1)”;
if “guessed path does not lead to u” then Reject end if
count = count + 1; % if u is reachable, count it in
ifu = v OR (u, v) ∈ E
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then R(i) = R(i) + 1;
break; % go to next iteration of “for v” loop

end if
end if

end for
if count < R(i− 1) then Reject
end if

end for
end for
return R(n);

end Algo

Remark: The algorithm #Reach needs to remember only two successive values R(i)
and R(i + 1) at any point in time. So, it re-uses space when computing R(1), . . . , R(n).
Thus, the algorithm can be made to run in NL.

Claim 7. Algorithm #Reach computes the number of nodes reachable from s.

Proof of Claim. The proof is by induction on i. For i = 0, R(0) = 1 is obviously correct.
For the induction step, assume that R(i) is equal to the number of nodes reachable from

s in at most i steps. We need to prove that R(i+1) is equal to the number of nodes reachable
from s in at most (i + 1) steps. To prove this, notice that the algorithm increments R(i + 1)
on a node v iff v is reachable from s in at most (i + 1) steps. This is because R(i + 1) is
not incremented only if all nodes at distance ≤ i from s were tried, and v is not reachable
in ≤ 1 steps from any one of them.

Thus, to check if t is not reachable from s, we first run the algorithm #Reach to compute
N , then run the algorithm Unreach with that N . The total space this nondeterministic
procedure takes is O(log n), because each of the two algorithms is logspace.
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