
CS 6743 Lecture 11 1 Fall 2007

1 More NP-complete problems

1.1 SubsetSum

Theorem 1. SubsetSum is NP-complete

Proof. We already have seen that SubsetSum is in NP (guess S, check that the sum is equal
to t). Now we will show that SubsetSum is NP-complete by reducing a known NP-complete
problem 3SAT ≤p SubsetSum.

Given a 3cnf on n variables and m clauses, we define the following matrix of decimal
digits. The rows are labeled by literals (i.e., x and x̄ for each variable x), the first n columns
are labeled by variables, and another m columns by clauses.

For each of the first n columns, say the one labeled by x, we put 1’s in the two rows
labeled by x and x̄. For each of the last m columns, say the one corresponding to the clause
{x, ȳ, z}, we put 1’s in the three rows corresponding to the literals occurring in that clause,
i.e., rows x, ȳ, and z. We also add 2m new rows to our table, and for each clause put two
1’s in the corresponding column so that each new row has exactly one 1. Finally, we create
the last row to contain 1’s in the first n columns and 3 in the last m columns.

The 2n + 2m rows of the constructed table are interpreted as decimal representations
of k = 2n + 2m numbers a1, . . . , ak, and the last row as the decimal representation of the
number T . The output of the reduction is a1, . . . , ak, T .

Now we prove the correctness of the described reduction. Suppose we start with a
satisfying assignment to the formula. We specify the subset S as follows: For every literal
assigned the value True (by the given satisfying assignment), put into S the corresponding
row. That is, if xi is set to True, add to S the number corresponding to the row labeled with
xi; otherwise, put into S the number corresponding to the row labeled with x̄i. Next, for
every clause, if that clause has 3 satisfied literals (under our satisfying assignment), don’t
put anything in S. If the clause has 1 or 2 satisfied literals, then add to S 2 or 1 of the
dummy rows corresponding to that clause. It is easy to check that the described subset S is
such that the sum of the numbers yields exactly the target T .

For the other direction, suppose we have a subset S that makes the subset sum equal to
T . Since the first n digits in T are 1, we conclude that the subset S contains exactly one of
the two rows corresponding to variable xi, for each i = 1, . . . , n. We make a truth assignment
by setting to True those xi which were picked by S, and to False those xi such that the row
x̄i was picked by S. We need to argue that this assignment is satisfying. For every clause,
the corresponding digit in T is 3. Even if S contains 1 or 2 dummy rows corresponding to
that clause, S must contain at least one row corresponding to the variables, thereby ensuring
that the clause has at least one true literal.

Corollary 2. Partition is NP-complete

1This lecture is a modification of notes by Valentine Kabanets

1

Proof. In the last lecture we have showed that SubsetSum ≤p Partition. Since SubsetSum
is NP-complete, so is Partition.

1.2 3-colourability

Graph 3-colourability is another classic NP-complete problem.
3Col: Instance:
Undirected graph G.
Acceptance Condition:
Accept if there is a way to assign to each vertex one of three possible colours in such a way
that no vertices connected by an edge have the same colour.

We skip the proof that 3Col is NP-complete here. Below, we will show how to represent
3Col problem in the finite model theory framework, as a model-checking problem for a
formula in second-order existential logic.

We encode a graph as a structure S = {1, . . . , n; E} where 1 . . . n are the n elements of
the universe (corresponding to vertices) and E is a binary relation corresponding to the edge
relation in G. Now, the following formula is true on S of the form above iff G encoded by S
is 3-colourable:

∃R∃G∃B∀v(R(v) ∨G(v) ∨B(v))∧
∀v∀uE(u, v) → (¬R(u) ∨ ¬R(v)) ∧ (¬G(u) ∨ ¬G(v)) ∧ (¬B(u) ∨ ¬B(v))

2 “Search-to-Decision” Reductions

Suppose that P = NP. That would mean that all NP languages can be decided in deter-
ministic polytime. For example, given a graph, we could decide in deterministic polytime
whether that graph is 3-colorable. But could we find an actual 3-coloring? It turns out that
yes, we can. In general, we can define an NP search problem: Given a polytime relation R,
a constant c, and a string x, find a string y, |y| ≤ |x|c, such that R(x, y) is true, if such a y
exists. . As the following theorem shows, if P = NP, then every NP search problem can also
be solved in deterministic polytime.

Theorem 3. If NP = P, then there is a deterministic polytime algorithm that, given a
formula φ(y1, . . . , yn), finds a satisfying assignment to φ, if such an assignment exists.

Proof. We use a kind of binary search to look for a satisfying assignment to φ. First, we check
if φ(x1, . . . , xn) ∈ SAT . Since we assumed that P = NP, this can be done in deterministic
polytime. Then we check if φ(0, x2, . . . , xn) ∈ SAT , i.e., if φ with x1 set to False is still
satisfiable. If it is, then we set a1 to be 0; otherwise, we make a1 = 1. In the next step,
we check if φ(a1, 0, x3, . . . , xn) ∈ SAT . If it is, we set a2 = 0; otherwise, we set a2 = 1.
We continue this way for n steps. By the end, we have a complete assignment a1, . . . , an to
variables x1, . . . , xn, and by construction, this assignment must be satisfying.

2

The amount of time our algorithm takes is polynomial in the size of φ: we have n steps,
where at each step we must answer a SAT question. Since, by our assumption, P = NP, each
step takes polytime.

Theorem 3 shows the true importance of proving that NP = P. If NP = P, we could
efficiently generate a correct solution for any problem with an efficient recognition algorithm
for correct solution. For instance, if P = NP, then we could efficiently find a login password
of any user of a network, since checking if a password matches a login name can be done
efficiently. Thus, if P = NP, essentially any secret could be found out efficiently.

As another example of the “search-to-decision” reduction, consider the problem Hamilto-
nian Cycle: Given an undirected graph G, decide if G has a Hamiltonian cycle (i.e., a cycle
that visits every vertex of G exactly once). The corresponding search problem is: Given a
graph G, find a Hamiltonian cycle in G, if such a cycle exists.

Assuming that we have access to a subroutine solving the decision version of Hamiltonian
Cycle, here is an efficient algorithm for solving the search version: If G has no Hamiltonian
cycle, then output “No” and halt. Otherwise, for each edge e of the graph G, if G − e has
a Hamiltonian cycle then G = G− e. After all the edges have been checked, the remaining
graph is exactly a Hamiltonian cycle of G.

It should be stressed that we are interested in efficient (i.e., polytime) search-to-decision
reductions. Such efficient reductions allow us to say that if the decision version of our
problem is in P, then there is also a polytime algorithm solving the corresponding search
version of the problem.

3 Nondeterministic Time Hierarchy

We want to argue that in more nondeterministic time, we can accept more languages. Recall
how we argued that in the case of deterministic Turing machines. Given a proper complexity
function t(n), we constructed a language Diagt(n) that cannot be in Time(t(n)) by “diago-
nalizing” against every deterministic TM running in time t(n). That is, we considered an
enumeration of all TM’s M1, M2, . . . ,Mi, . . . and all inputs x1, x2, . . . , xi, . . . , and defined

Diagt(n) = {xi | Mi does not accept xi in t(|xi|) steps}

Then we argued that

1. The language Diagt(n) is not in Time(t(n)) (since it differs from the language of any
t(n)-time TM on at least one input).

2. The language Diagt(n) is in Time(t3(n)) (since we can simulate a deterministic TM on
a given input, and then flip its answer).

For the case of nondeterministic TM’s, we may try to follow the same approach. We can
define

NDiagt(n) = {xi | NTM Mi does not accept xi in t(|xi|) steps}

3

As before, it is possible to show (with exactly the same proof as in the Time case) that the
new language NDiagt(n) is not in NTime(t(n)). But, it is not at all clear if NDiagt(n) is
in NTime(tc(n)) for some constant c. The difficulty is that, unlike the case of deterministic
TM’s, we cannot flip the answers of a NTM deciding language L to get an NTM deciding

the complement of L. This is related to the big open question NP
?
= coNP.

Therefore, we must use a different approach. It is still based on diagonalization, but a
different kind of diagonalization - so-called “lazy” diagonalization.

Theorem 4 (NTime Hierarchy Theorem). For every proper complexity function f(n) ≥
n and g(n) ∈ ω(f(n + 1)), we have

NTime(f(n)) (NTime(g(n)).

Proof. First of all, we will prove the theorem for the case of unary input alphabets, i.e., our
NTMs will have 1n as inputs. (This makes the theorem stronger.)

Let t(n) be a sufficiently fast growing function so that a deterministic t(n)-time TM can
decide if a nondeterministic f(n)-time TM accepts unary input 1n. (Think of t(n) > 2f(n).)

We will define a NTM D whose language differs from every L(Mi), where Mi is an ith
NTM clocked to run for at most f(n) steps. Our NTM D will diagonalize against each
Mi as follows. Let us partition the interval [1..∞) of natural numbers into a collection of
finite subintervals: [1..t(1)], [t(1)+1..t(t(1))], . . . , [t(i−1)(1)+1..t(i)(1)], . . . , where t(i) denotes
the composition of t with itself i times. Let us number these intervals 1, 2, . . . so that
[t(i−1)(1) + 1..t(i)(1)] is the ith interval.

We will use the ith interval to diagonalize against NTM Mi. For notational convenience,
let the ith interval be [k..n]. We define the behaviour of NTM D as follows:

1. for k ≤ j < n, D(1j) accepts iff Mi(1
j+1) accepts;

2. D(1n) accepts iff Mi(1
k) does not accept.

Let us see how such a definition of D diagonalizes against Mi. Suppose that L(D) =
L(Mi). This and part (1) of the defintion of D ensures that D accepts 1k iff D accepts 1n.
But then part (2) of the definition of D ensures that D accepts 1n iff D does not accept 1k.
A contradiction. Hence, L(D) 6= L(Mi).

Now let us analyze how much time D needs on input 1j. We need to compute which
interval i = [k..n] contains j (so that we know which machine to diagonalize against); this
computation is efficient for “good” t(n) that we chose. Now, depending on where in the
interval j is, we either need (if k ≤ j < n) to simulate Mi(1

j+1) nondeterministically, in time
O(f(j + 1)), or (if j = n) deterministically simulate Mi(1

k) in time j. So, in total, D(1j)
runs in time at most g(j).

As a corollary of the Nondeterministic Time Hierarchy Theorem, we obtain the following.

Theorem 5. NP (NEXP

Proof. NP ⊆ NTime(2n) (NTime(2n2
) ⊆ NEXP.

4

